BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary
00	00000	00000	000	0000	00000	00000	00

Holography as a probe of quantum gravity

Author: Ian T. Jardine

October 31st, 2017

Outline

- Black holes and the information paradox
- AdS/CFT duality
- Holographic conformal field theories (CFTs)
- String theory and black hole microstates
- D1D5 system
- Component twist method, based on work in 1704.03401
- Deformed D1D5 CFT operator mixing, based on work in 1703.04744
- Summary

BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary

Black holes and the information paradox

Black holes and the information problem

RHIP

AdS/CF1

Holographic CFTs

source: BH article on wikipedia

 Hawking 1975: radiation from black hole (BH) depends only on ADM data (*M*, *J_i*) & Noether charges *Q_i*. Mechanism: pair creation.

Problem: setup leads to information loss, non-unitary evolution.

- Why study quantum gravity? Semiclassical gravity has black hole (BH) information paradox, which must have a solution.
- Mathur 2009: subleading quantum corrections to classical gravity cannot resolve the information paradox [M 2009].
- Simple assumptions led to conclusion: only O(1) corrections can restore unitarity.

Summarv

Firewalls

- Black hole complementarity ['t Hooft 1985], [STU 1993]: Infalling observer is both reflected and transmitted through stretched horizon.
- Linearity of quantum mechanics: cannot clone quantum states (no-cloning theorem). Black hole geometry doesn't allow experiments to measure both elements of an EPR pair, so cannot detect violation of no-cloning theorem [HP 2007].
- [AMPS 2012]: complementarity has another flaw: unavoidable excitation of high-frequency modes in the infalling frame. "Fire!"
- AMPS strikes at the heart of the question of figuring out the nature of quantum gravity. When is effective field theory effective?
- Our approach: turn to string theory and the AdS/CFT duality.

BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary

AdS/CFT duality

String Theory Introduction

Holographic CFTs

BHIP

AdS/CFT

- Parameters of string theory: string length $\ell_s = \alpha'^{1/2}$ & coupling g_s .
- Planck scale $\ell_p \neq \ell_s$ (eg in its native $d = 10, \ell_p \sim g_s^{1/4} \ell_s$).
- Having large numbers of strings/Dp-branes N can give parametric enhancement of fundamental length scales. e.g. D-brane metric ~ g_sN.
- Dualities connect superstring theories (IIA, IIB, I, HE, HO):
 - e.g. an S-duality connects IIA to d = 11 M theory.
 - T-duality swaps momentum/winding modes & large/small radius.

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary ∞ ∞ ∞∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞∞ ∞∞∞∞∞ ∞∞∞∞∞ <

AdS/CFT duality

- AdS/CFT duality: Dynamics of asymptotic anti-de Sitter (AdS) gravity is dual to gauge theory in one fewer dimension [M 1997].
- What is AdS? Solution of Einstein's equations with negative cosmological constant.
- Relationship between couplings for gauge, (λ, N) , and for gravity, (α', g_s) . E.g.

$$\lambda = R^2/\alpha'^2$$
 $N/\lambda = 1/(4\pi g_s)$

where *R* is the scale of the bulk.

- Therefore have strong/weak duality i.e. weakly coupled gravity ⇔ strongly coupled dual and vice versa.
- Since AdS_{d+1} has SO(2, d) symmetry the dual field theory will have this symmetry as well: conformal field theory.

AdS/CFT holographic dictionary

Holographic CFTs

BHIP

AdS/CFT

- Holographic dictionary includes boundary operators ↔ bulk fields, e.g. boundary energy-momentum tensor dual to bulk graviton.
- Can also compute quantities on one side using another. e.g. correlators in CFT can be computed by Witten diagrams.

- Can also study less symmetric field theories with more complicated bulk geometries (AdS/CMT, AdS/QCD).
- Now how can we reconstruct things in the bulk from the CFT?

Summary

CFT operators and bulk reconstruction

Holographic CFTs

BHIP

AdS/CET

- Bulk reconstruction is a complicated issue: radial dimension is emergent. How can we see this from the CFT?
- Also, how can we reconstruct the local bulk fields from just the boundary? How much knowledge of the CFT is required to do so?
- A long series of papers, beginning with [HKLL 2005], found that a bulk field is expressed in the CFT as a non-local smeared operator.
- More recent works have found refinements on this construction but still non-local.
- Reconstructing interior of black hole using this method is very non-local. Explicit reconstructions in two sided black hole required smearing over both boundaries.

Summarv

Entanglement and bulk reconstruction

 Another approach of reconstructing bulk:
 Ryu-Takayanagi (RT) [RT 2006] to geometrize entanglement.

Holographic CFTs

BHIP

AdS/CFT

- Time-dependent formalism by Hubeney, Ranganmani, and Taykayangai (HRT) [HRT 2007].
- Entanglement entropy not the only quantum information quantity used in holography c.f. mutual information, error correcting codes, modular hamiltonians, etc.
- Can RT or HRT probe inside black hole horizons? Generically no, sometimes cannot probe horizons (entanglement shadows).
- Reconstructing bulk directly to examine horizon and information problem is difficult. Can we probe it without referencing the bulk?

BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary

Holographic CFTs

Introduction to CFT

BHIP

AdS/CF1

Holographic CFTs

- Suppose we start with a 1+1d CFT on a cylinder. This CFT has the symmetry group Vir × Vir. We can map the cylinder to the plane and see the Fourier modes in powers of z, z.
- Operators are classified by how they transform under this symmetry. Primary field with weights h and h transform as

$$O(z, \bar{z}) o O'(z, \bar{z}) = \left(\frac{\partial z'}{\partial z}\right)^h \left(\frac{\partial \bar{z}'}{\partial \bar{z}}\right)^{\bar{h}} O(z', \bar{z}').$$

- We can also define quasi-primary fields which transform as tensors only under the global subgroup of the full symmetry.
- Virasoro operators, L_n , are modes of stress-energy tensor T(z). Satisfy $[L_n, L_m] = \frac{c}{12}(n^3 - n)\delta_{m+n,0} + (n - m)L_{m+n}$.
- Here *c* is the central charge, which is a function of *N*. So large *N* holography (dual to small g_s) ~ large *c*.

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 0000 0000 0000 0000 0000 0000 0000

Conformal Invariance

- Suppose we have primary operator *O*. Can define descendant operators, L_{-k1}...L_{-kn}O. Primary and descendants are called conformal family.
- Low point correlators are fixed by conformal symmetry.

$$\langle O_i(z_1)O_j(z_2)\rangle = \frac{\delta_{ij}}{z_{12}^{2h_i}} \langle O_i(z_1)O_j(z_2)O_k(z_3)\rangle = \frac{C_{ijk}}{z_{12}^{h_i+h_j-h_k}z_{13}^{h_i+h_k-h_j}z_{23}^{h_k+h_j-h_i}}$$

Higher point ones are not fully fixed, depend on cross ratios. eg.

$$\langle O_1(z_1)O_2(z_2)O_3(z_3)O_4(z_4) \rangle = rac{z_{13}^{h_2+h_4}z_{24}^{h_1+h_3}}{z_{12}^{h_1+h_2}z_{23}^{h_2+h_3}z_{34}^{h_3+h_4}z_{14}^{h_1+h_4}}f(rac{z_{12}z_{34}}{z_{13}z_{24}})$$

C_{ijk} and spectrum of primaries' weights fully define CFT. So how can we reconstruct higher point correlators?

Conformal blocks and bootstrap

Holographic CFTs

AdS/CF1

BHIP

- Higher point functions can be obtained by inserting sets of complete states and summing. This gives products of three point functions, which are fixed by conformal symmetry.
- e.g. four point function of scalars: $\langle \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)\phi_4(x_4)\rangle =$

$$\sum_{\mathcal{O}} C_{\phi_1 \phi_2 \mathcal{O}} C_{\phi_3 \phi_4 \mathcal{O}} \left(\frac{x_{14}^2}{x_{13}^2} \right)^{\Delta_{34}/2} \left(\frac{x_{24}^2}{x_{14}^2} \right)^{\Delta_{12}/2} \frac{g_{\mathcal{O}}(u, v)}{x_{12}^{\Delta_1 + \Delta_2} x_{34}^{\Delta_3 + \Delta_4}}$$
Conformal blocks, $g_{\mathcal{O}}$, are functions of cross-ratios $u = \frac{x_{12}^2 x_{34}^2}{x_{13}^2 x_{24}^2}$,

$$v = rac{x_{14}^2 x_{23}^2}{x_{13}^2 x_{24}^2}$$
. Determined entirely by operator \mathcal{O}_1

- Can also insert states between φ₁ and φ₃, gives same 4pf. This is crossing symmetry and places major constraints on CFT.
- Solving crossing equations called conformal bootstrap and is done both numerically and analytically.

Semiclassical holographic CFTs

Holographic CFTs

BHIP

AdS/CF1

- Overall idea: use suitable CFT to define quantum gravity.
- Holographic CFTs can be defined without string theory, only need sparse spectrum and large c. [HPPS 2009]. This will gives large N and hierarchy between AdS/string scales in the bulk.
- Can translate CFT structures into bulk objects, e.g. conformal blocks are dual to geodesic Witten diagrams. [HKPS 2015] [HKPS 2015a]

Can investigate aspects of quantum gravity semiclassically using well expansions in 1/c.

Conformal field theories as quantum gravity

One can setup a "CFT information problem" using 2 heavy and 2 light operators and study 1/c corrections to conformal blocks of the four point function [FK 2015] + many others.

Holographic CFTs

0000

AdS/CF1

BHIP

- One can consider a setup of a null infalling shell of dust in CFT and examine 1/c corrections to correlators [AHRS 2016].
- Our approach is different, not semiclassical. Consider holographic D1D5 CFT. Start from string UV, probing down to IR semiclassical gravity with deformation.

BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary

String theory and black hole microstates

Brane construction of mircostates

Holographic CFTs

BHIP

AdS/CFT

Consider Dp-brane solution. Metric looks like

BH micro

000

$$dS^2 = H_{\rho}^{-1/2}(-dt^2 + dx_{||}^2) + H_{\rho}^{1/2}dx_{\perp}^2,$$

Here $H_p = 1 + \frac{(2\sqrt{\pi})^{5-p}\Gamma[(7-p)]g_sN_pl_s^{7-p}}{2r^{7-p}}$ and *r* is the radius perpendicular to the brane worldvolume.

- Can construct supersymmetric solutions with multiple brane ingredients. Duality allows these solutions to be studied in different parameter ranges with different ingredients.
- Want low dimensional black holes, not 10d ones. Compactify branes on cycles and dimensionally reduce.
- Classic examples: D1D5P for 3-charge, 5d black hole, D2D6NS5P for 4-charge, 4d black hole.

Summarv

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 0000 0000 0000 0000 0000 0000 0000

String and supergravity microstate construction

- What about solutions for astrophysical black holes? Very hard! Supersymmetry gives a lot of theoretical control.
- Huge body of work (e.g. Bena-Warner) on solutions generating and classification:
 - Non-supersymmetric: JMaRT solutions [JMRT 2005]
 - A neutral, t-dependent solution [MT 2013]
 - Solutions parameterized by arbitrary functions of two variables e.g. [BGRSW 2015]
 - Solutions with arbitrarily small angular momentum [BFMRSTW 2016]

 General properties: asymptotic infinity, finite AdS throat, horizon sized cap and no black hole singularity.

Black hole microstates

Holographic CFTs

BH micro

BHIP

AdS/CF1

- How do we know we truly have microstates of black holes?
- Can match entropy from area of horizon from microscopic degrees of freedom. First done by Strominger-Vafa [SV 1996] but matching has been done for a number of different constructions.
- Can go further for non-supersymmetric geometries. Reproduce emission spectrum for non-extremal black holes [CV 2010].
- Can we form these in nature? Rough argument states exponentially small tunnelling compensated by exponentially large phase space of geometries [M 2010].
- Could we see any observational signatures? Some works suggested possibilities but still unclear [P 2014] [HH 2017].

BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary

D1D5 system

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 00000 00000 0000 00000 00000 00000

D1D5 system

- We focus on prototype D1D5 system.
- Constructed by compactifying N_1 D1 branes, N_5 D5 branes on $S^1 \times T^4$. In near horizon limit, geometry is $AdS_3 \times S^3 \times T^4$.

- D1D5 system has size $R_{D1D5} \sim (N_1 N_5)^{1/6} \ell_{\rho}$.
- Since the throat has *AdS*₃, expect CFT₂ dual theory.
- Supersymmetry implies it will be a 2d $\mathcal{N} = (4, 4)$ SCFT.
- System has 20 dimensional moduli space, corresponding to 20 marginal deformation operators.
- At one point, described by supergravity, another by a dual symmetric orbifold CFT.

D1D5 CFT

AdS/CFT

BHIP

Holographic CFTs

Symmetric orbifold point is a free (1+1)-dimensional $(T^4)^N/S_N$ superconformal field theory, where $N = N_1 N_5$.

D1D5 system

0000

- Each copy has fundamental fields X^{AA}, ψ^{αA}, ψ^{άA}. Here α, ά are for the R-symmetry SU(2)_L × SU(2)_R and A, A are for global symmetry SU(2)₁ × SU(2)₂ from torus isometries
- Orbifold introduces operators with twisted boundary conditions between copies of T⁴.
- Implemented by bare twist operators σ_n with conformal weight $\frac{c}{24}(n-\frac{1}{n})$.
- e.g. $\sigma_{(12...n)}$ implements $X_{(1)} \rightarrow X_{(2)} \rightarrow ... \rightarrow X_{(n)} \rightarrow X_{(1)}$
- So operators break into untwisted sector and twisted sector, which can further be classified by the length of the permutation.

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 0000 0000 0000 0000 0000 0000 0000

D1D5 operators

- Algebra consists of modes of fundamental fields together with L_m, modes of the Virasoro algebra, as well as J^a_q and G^{αA}_r, modes of the R-symmetry current and the supercharges. Similarly for the anti-holomorphic side.
- Can also defined fractional modes using twist operators,

$$\mathcal{O}_{-m/n}\sigma_n = \oint \frac{dz}{2\pi i} \sum_{k=1}^n \mathcal{O}_{-m,(k)} e^{-2\pi i m(k-1)/n} z^{h-m/n-1} \sigma_n$$

- We focus on deforming with an operator \mathcal{O}_D , one of the 20 marginal deformations.
- It is dual to a blow up mode in the bulk and takes the form in the CFT of

$$\mathcal{O}_{D} = \epsilon_{AB} \epsilon_{\alpha\beta} \epsilon_{\dot{\alpha}\dot{\beta}} G^{\alpha A}_{-1/2} \tilde{G}^{\dot{\alpha}B}_{-1/2} \sigma_{2}^{\beta\dot{\beta}}$$

Twist operators and Lunin-Mathur

Holographic CFTs

BHIP

AdS/CF1

 Difficult to compute correlators in with twisted operators so we use Lunin and Mathur method [LM 2000][LM 2001].

D1D5 system

Lift operators from target space to covering space using map where twists insertions are ramified to identity.

- Key fact: non-zero central charge ($c = 6N_1N_5$), and so have a Weyl anomaly. Track transformation using Liouville action.
- Twist insertions and infinities regulated, giving non-trivial contributions.

Component twist method

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 0000 0000 0000 0000 0000 0000 0000

Review of previous work

- Deformation by O_D is important in studying thermalization of the free CFT. Breaking of symmetric product introduces interactions between the copies of the CFT needed for thermalization.
- Previously: calculations investigated a twist operator acting on two copies and twisting them together [ACM2010] [CHMT2014] [CMT2014] [CMT2014a] [BMPZ2014]. Calculations furthered to second order in twist in [CHM2015,2016,2016a].
 - Twist operators yield a squeezed state, e.g. for a single twist,

$$egin{aligned} &\sigma_2|0
angle_{(1)}|0
angle_{(2)}\sim e^{\sum_{s,s'}\gamma^B_{ss'}a^\dagger_s a^\dagger_{s'}}|0
angle\ &a^{(1)\dagger}_q|0
angle_{(1)}|0
angle_{(2)}
ightarrow \sum_s f^B_{qs}a^\dagger_s e^{\sum_{s,s'}\gamma^B_{ss'}a^\dagger_s a^\dagger_{s'}}|0
angle \end{aligned}$$

Interested in calculating the Bogoliubov coefficients $\gamma_{ss'}^B$ of the state after the twist has been applied and the transition amplitudes f_{qs}^B .

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 00000 0000 0000 0000 0000 0000 0000

Twists in action

- Consider component CFT copy (*i*) before the twist insertions and copy (*j*') after the twist insertions. One can expand scalar field of a copy as $X^{(i)}(x) = \sum_m \left(h_m^{(i)}(x)a_m^{(i)} + h_m^{(i)*}(x)a_m^{(i)\dagger}\right)$.
- Twists will only twists copies together, so one should be able to relate mode expansion of scalar fields before and after twist. This matching will lead us to the relation,

$$\mathbf{a}_{m}^{(i)} = \sum_{n} \left(\alpha_{mn}^{(i)(j')} \mathbf{a}_{n}^{(j')} + \beta_{mn}^{(i)(j')} \mathbf{a}_{n}^{(j')\dagger} \right)$$

• Using this, we can also find $f = (\alpha^{-1})^T$, $\gamma = \alpha^{-1}\beta = f^T\beta$.

Can then use standard inner product $(h,g) \equiv -i \int_{\Sigma} d\Sigma^{\mu} (f \partial_{\mu} g^* - g^* \partial_{\mu} f)$ to find $\alpha_{mn}^{(i)(j')} = (h_m^{(i)}, h_n^{(j')}) \qquad \beta_{mn}^{(i)(j')} = (h_m^{(i)*}, h_n^{(j')})$

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 0000 000 000 000 000 000 000

Method for Computation

- Purpose of our paper [CJP 2017]: further the results to multiple twists in the continuum limit.
- Continuum limit has expected behaviour of BHs, parametrically small gap by momentum modes scaling as 1/(N₁N₅R).
- Results can be obtained with Lunin-Mathur, but this generally will run into inverting quintic or higher polynomials.
- Challenge: α is an infinite matrix so inverting to obtain α^{-1} directly is generally not possible.
- Previous work: α⁻¹ is related to the transition amplitude *f*. Our idea: break twists into components twist 2s and build α⁻¹ from multiplying transition amplitudes from each component twist.

Confirmation of method

- To confirm the method, we considered the setup σ₍₁₂₎σ₍₂₁₎. This twists and then untwists two copies. It was studied with Lunin-Mathur method in previous papers [CHM2015,2016,2016a].
- General results of this method involve infinite sums, so we have numerical calculations to compare (this is also what happens in Lunin-Mathur cases in continuum limit as well).
- Matched previous results with large enough cutoff.

New results

- Turn to new configuration σ₍₁₂₎σ₍₂₃₎, which will act as a twist 3 when the two twists are brought together.
- $f^{(1)}$ and $f^{(3)}$ have simple results, agreeing with a single twist. $f^{(2)}$ exhibited new behaviour.
- Confirms previously conjectured general form of the *γ* and *α*⁻¹.
 Power counting w/ this method suggests this is full generic.

Deformed D1D5 CFT operator mixing

D1D5 operator mixing

BHIP

AdS/CFT

Holographic CFTs

Motivation and introduction

- How does the deformation O_D change the physics from the orbifold point? One approach, examining anomalous dimensions and structure constants C_{ijk} defining CFT.
- Orbifold point has a closed subsector described by massless higher spin fields [GG 2014]. Corresponds to a tensionless limit, where strings are large and floppy.
- Deformation turns on string tension, gives mass to the higher spin fields. Reaches down from α' → ∞ to finite α'. Anomalous dimensions of the higher spin currents were studied in [GPZ 2015].
- We continued the work of [BPZ 2012,2012a] in our paper [BJP2017]. Use conformal perturbation theory to examine mixing.

Conformal Perturbation Theory

Holographic CFTs

D1D5 system

$$\langle \phi_i(\boldsymbol{z}_1, \bar{\boldsymbol{z}}_1) \phi_j(\boldsymbol{z}_2, \bar{\boldsymbol{z}}_2) \rangle_{\lambda} = \frac{\int \boldsymbol{d}[\boldsymbol{X}, \boldsymbol{\psi}] \boldsymbol{e}^{-S_{\text{free}} + \lambda \int d^2 \boldsymbol{z} \mathcal{O}_D(\boldsymbol{z}, \bar{\boldsymbol{z}}) \phi_i(\boldsymbol{z}_1, \bar{\boldsymbol{z}}_1) \phi_j(\boldsymbol{z}_2, \bar{\boldsymbol{z}}_2)}{\int \boldsymbol{d}[\boldsymbol{X}, \boldsymbol{\psi}] \boldsymbol{e}^{-S_{\text{free}} + \lambda \int d^2 \boldsymbol{z} \mathcal{O}_D(\boldsymbol{z}, \bar{\boldsymbol{z}})}}$$

So to first order:

BHIP

AdS/CF1

$$\frac{\partial}{\partial \lambda} \langle \phi_i(z_1, \bar{z}_1) \phi_j(z_2, \bar{z}_2) \rangle_{\lambda} = \int d^2 z \langle \phi_i(z_1, \bar{z}_1) \mathcal{O}_D(z, \bar{z}) \phi_j(z_2, \bar{z}_2) \rangle$$

Recall: three point function is fixed by conformal invariance.

Regularize and renormalize the field. Anomalous dimension is then

$$rac{\partial h_i}{\partial \lambda} = -\pi C_{iDi}, \quad rac{\partial \tilde{h}_i}{\partial \lambda} = -\pi C_{iDi}$$

Must diagonalize C_{iDk} over fields with same conformal dimension and so must identify all ϕ_k that mix with ϕ_i and iterate.

D1D5 operator mixing

OPEs versus correlators

Holographic CFTs

BHIP

AdS/CFT

• C_{iDj} computed by three point functions (3pfs), $\langle \mathcal{O}_i \mathcal{O}_D \mathcal{O}_j \rangle$.

D1D5 system

- Can be computed by hand but involves hundreds of correlators, most of which are zero. Wrote a package for Mathematica to help.
- However, operator product expansions (OPEs) also involve the structure constants,

$$\mathcal{O}_i(z)\mathcal{O}_D(w) = \sum_k (z-w)^{h_k-h_i-h_D} \mathcal{C}_{iDk}\mathcal{O}_k(w).$$

- Idea: if we can lift O_iO_D to cover, where twists are ramified, we could extract structure constants and mixing operators directly.
- OPE contains both quasi-primaries and descendants.
- Descendants do not contribute to anomalous dimensions, so we came up with a procedure to project descendants out.

D1D5 operator mixing

00000

Protected results

- Warm up OPE with operator dual to supersymmetric protected operators, O_S(z, z̄)O_D(0, 0). Showed no term for anomalous dimension, as expected.
- Next, we specialized to the operator dual to the dilaton $\mathcal{O}_{dil}(z, \bar{z})$.
- $\mathcal{O}_{dil}(z,\bar{z})\mathcal{O}_D(0,0)$ has leading coefficient 2⁻².
- Coefficient matched the results from [BPZ2012a], which found the leading singularity of the coincident limit of the four point function.

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary 00 00000 0000 00000 0000 0000 00

Unprotected results

- Now do an unprotected operator, \mathcal{O}_C , and OPE $\mathcal{O}_C(z, \bar{z})\mathcal{O}_D(0, 0)$.
- Leading singularity of OPE indicated mixing with deformation that contributes to renormalization; matched results from [BPZ2012a].
- Looked for term indicating mixing that contributes to anomalous dimension, shows up at $z\bar{z} = |z|^2$ order.
 - Through much effort, found the result

$$\frac{3}{2^6|z|^2}\mathcal{O},$$

where \mathcal{O} is a complicated combination of operators. Coefficient matched with coincidence limit of $\langle \mathcal{O}_C \mathcal{O}_D \mathcal{O}_D \mathcal{O}_C \rangle$ from [BPZ2012a].

Compared this with results obtained from considering the 34 possible mixing operators and computing all the 3pfs with our Mathematica package. They matched!

BHIP	AdS/CFT	Holographic CFTs	BH micro	D1D5 system	Component twist method	D1D5 operator mixing	Summary

Summary

- Quantum gravity must be considered for solution to black hole information paradox.
- Use holography to probe (and maybe even define?) quantum gravity.
- Can consider semiclassical and even some non-perturbative corrections with 1/c.
- Instead consider from a string theoretic point and probe down to semiclassical gravity.
- String theory can be used to construct microstates for black holes, one such system: D1D5.

BHIP AdS/CFT Holographic CFTs BH micro D1D5 system Component twist method D1D5 operator mixing Summary Summary →

- Start with orbifold point of D1D5 CFT and perturbatively deform to semiclassical gravity.
- To examine thermalization, we considered the effect of twists on states in the D1D5 CFT with new composite twist method.
- Our method allows us to examine excitations on a single strand spreading through the twist interactions to higher orders.
- To examine the deformation more closely, we looked at the mixing of operators by lifting the OPE to the cover.
- Could consider continuing work the OPE to find full anomalous dimension. OPE method is less clear with twisted operators.

