A Light Composite Higgs and its Heavy Vector Partners

Kenneth Lane, with Lukas Pritchett Boston University A Light Composite Higgs and its Heavy Vector Partners

Kenneth Lane, with Lukas Pritchett Boston University

- The data
- The light composite Higgs model
- $\rho_H, a_H \to VV, VH$ decays
- $ho_H, a_H
 ightarrow VV, VH$ cross sections
- Tests for Run 2

ATLAS "WZ" nonleptonic

ATLAS "WZ" nonleptonic

CMS "ZZ" semileptonic

CMS "WW" semileptonic

CMS "WH" semileptonic

ATLAS "WH" semileptonic

"WZ" resonance significances

"WW,ZZ" resonance significances

WH resonance significances

ALL models for H(125) are <u>finely-tuned</u>:

- -> The SM (of course)
- -> SUSY

-> even composite Higgs models! They require top, W-partners — none have been found. (see, e.g., Guidice 1307.7879 Bellazzini, Csaki, Serra 1401.2457, Barnard, et al. 1409.7391)

ALL models for H(125) are <u>finely-tuned</u>:

- -> The SM (of course)
- -> SUSY

-> even composite Higgs models! They require top, W-partners — none have been found. (see, e.g., Guidice 1307.7879 Bellazzini, Csaki, Serra 1401.2457, Barnard, et al. 1409.7391)

Do we need top, W partners?

TC models (Yamawaki, et al., Sannino, et al.)

 No plausible explanation why H(125) is <u>so light</u> (dilaton??)

• No plausible explanation why H(125) is <u>so much</u> <u>lighter</u> than other technihadrons — where is ρ_T ?? A new composite Higgs model (KL, PRD 90, (2014) 9, 09525; arXiv:1407:2270; KL + Luke Pritchett, in preparation; see also Chivukula, Cohen, KL NPB 343 (1990) 554)
 A fine-tuned solution (inspired by BHL PRD41, 1647 (1989))
 NJL applied to strong ETC:
 Strong ETC, not TC, drives EWSB!

(KL, PRD 90, (2014) 9, 09525; arXiv:1407:2270; see also Chivukula, Cohen, KL NPB 343 (1990) 554)

- A fine-tuned solution (BHL PRD41, 1647 (1989)) NJL applied to strong ETC:
- <u>Strong</u> ETC, not TC, drives EWSB!
- ETC coupling is <u>fine-tuned</u> to be near the critical value for EWSB.

(KL, PRD 90, (2014) 9, 09525; arXiv:1407:2270; see also Chivukula, Cohen, KL NPB 343 (1990) 554)

- A fine-tuned solution (BHL PRD41, 1647 (1989)) NJL applied to strong ETC:
- <u>Strong</u> ETC, not TC, drives EWSB!
- ETC coupling is <u>fine-tuned</u> to be near the critical value for EWSB.

The fine tuning: in the large-N approximation, $m_f, M_H \simeq 2m_f \ll \Lambda_{ETC} = \Lambda$ (a physical cut-off)

• <u>WEAK TC</u> binds T-fermions to make technihadrons ho_H, a_H, \dots with $M_{
ho_H}, M_{a_H}, \dots = \mathcal{O}(\Lambda_{TC}) = 1 - 2 \,\mathrm{TeV} \gg M_H, \,\,\mathrm{but} \,\ll \Lambda$

• <u>WEAK TC</u> binds T-fermions to make technihadrons ho_H, a_H, \dots with $M_{
ho_H}, M_{a_H}, \dots = \mathcal{O}(\Lambda_{TC}) = 1 - 2 \, \mathrm{TeV} \gg M_H, \, \mathrm{but} \ll \Lambda$

(this slide is too small to hold the argument)

• <u>WEAK TC</u> binds T-fermions to make technihadrons ho_H, a_H, \dots with $M_{
ho_H}, M_{a_H}, \dots = \mathcal{O}(\Lambda_{TC}) = 1 - 2 \, \mathrm{TeV} \gg M_H, \, \mathrm{but} \, \ll \Lambda$

• The Higgs is much lighter than ho_{H}, a_{H}, \ldots

• <u>WEAK TC</u> binds T-fermions to make technihadrons ho_H, a_H, \dots with $M_{
ho_H}, M_{a_H}, \dots = \mathcal{O}(\Lambda_{TC}) = 1 - 2 \,\mathrm{TeV} \gg M_H, \,\,\mathrm{but} \,\ll \Lambda$

• The Higgs is much lighter than ho_H, a_H, \ldots

and there are no top, W-partners!

a simplest TC-ETC model:

 $egin{split} \mathcal{L}_{ETC} &= G_1 \, ar{q}_L^{ia} \, t_{Ra} \,\, ar{t}_R^b \, q_{Lib} + G_3 \, ar{T}_L^{ilpha} \, U_{Rlpha} \,\, ar{U}_R^eta \, T_{Lieta} \ &+ G_2 \,\, ig(ar{q}_L^{ia} \, t_{Ra} \,\, ar{U}_R^lpha \,\, T_{Lilpha} + ext{h.c.}ig) \end{split}$

 $egin{aligned} q_L &= (t,b)_L \in (2,rac{1}{6},3_C,1_{TC}), \, t_R \in (1,rac{2}{3},3_C,1_{TC}), \, b_R \in (1,-rac{1}{3},3_C,1_{TC}) \ T_L &= (U,D)_L \in (2,0,1_C,d_{TC}), \, U_R \in (1,rac{1}{2},1_C,d_{TC}), \, D_R \in (1,-rac{1}{2},1_C,d_{TC}) \end{aligned}$

consider this model in the limit of large-N and weak-TC

In the limit of large N and weak TC:

$$m_t = rac{G_1 N_C m_t}{8\pi^2} \left(\Lambda^2 - m_t^2 \ln rac{\Lambda^2}{m_t^2}
ight)
onumber \ + rac{G_2 d_{TC} m_U}{8\pi^2} \left(\Lambda^2 - m_U^2 \ln rac{\Lambda^2}{m_U^2}
ight)$$

$$egin{aligned} m_U &= rac{G_2 N_C m_t}{8 \pi^2} \left(\Lambda^2 - m_t^2 \ln rac{\Lambda^2}{m_t^2}
ight) \ &+ rac{G_3 d_{TC} m_U}{8 \pi^2} \left(\Lambda^2 - m_U^2 \ln rac{\Lambda^2}{m_U^2}
ight) \end{aligned}$$

Independence of N_C and $d_{TC} = \dim(d_{TC})$ $\Rightarrow G_2 = (m_U/m_t)G_1 = (m_t/m_U)G_3$

A magic relation that makes everything else work-including disappearance of Λ^2 -divergence!

$$\begin{split} \Gamma_{0^+}^{\bar{t}t\to\bar{t}t}(p) &= m_t^2 \bigg[\frac{m_t^2 N_C(p^2-4m_t^2)}{8\pi^2} \int_0^1 dx \, \ln\left(\frac{\Lambda^2}{m_t^2-p^2 x(1-x)}\right) \\ &+ \frac{m_U^2 N_{TC}(p^2-4m_U^2)}{8\pi^2} \int_0^1 dx \, \ln\left(\frac{\Lambda^2}{m_U^2-p^2 x(1-x)}\right) \bigg]^{-1} \end{split}$$

This has a pole at $p = M_H(\Lambda) = 250 \,\mathrm{GeV}$

$$M_{H} \cong 2\sqrt{\frac{N_{C}m_{t}^{4} + d_{TC}M_{U}^{4}}{N_{C}m_{t}^{2} + d_{TC}M_{U}^{2}}}$$

$$\begin{split} \Gamma_{0^+}^{\bar{t}t\to\bar{t}t}(p) &= m_t^2 \bigg[\frac{m_t^2 N_C(p^2 - 4m_t^2)}{8\pi^2} \int_0^1 dx \, \ln\left(\frac{\Lambda^2}{m_t^2 - p^2 x(1-x)}\right) \\ &+ \frac{m_U^2 N_{TC}(p^2 - 4m_U^2)}{4\pi^2} \int_0^1 dx \, \ln\left(\frac{\Lambda^2}{2\pi^2 - 4\pi^2}\right) \bigg]^{-1} \end{split}$$

1

+ $\frac{1}{8\pi^2}$ $\int_0^{ax} \ln\left(\frac{1}{m_U^2 - p^2 x(1-x)}\right)$ This has a pole at $p = M_H(\Lambda) = 250 \,\mathrm{GeV}$

$$M_H \cong 2\sqrt{\frac{N_C m_t^4 + d_{TC} M_U^4}{N_C m_t^2 + d_{TC} M_U^2}}$$

N.B.: These are masses at scale Λ — to be renormalized to Λ_{EW}

The Higgs' heavy vector partners – ρ_H and a_H

KL & Luke Pritchett, PLB 753, 211-214; 1507.07102

• ρ_H and a_H are the most accessible <u>technihadron</u> partners of H(125)

• Describe them via Hidden Local Symmetry as the gauge bosons of an $SU(2)_L \otimes SU(2)_R$ flavor symmetry.

The Higgs' heavy vector partners – ρ_H and a_H

KL & Luke Pritchett, PLB 753, 211-214; 1507.07102

- ho_H and a_H are the most accessible <u>technihadron</u> partners of H(125)
- Describe them via Hidden Local Symmetry as the gauge bosons of an $SU(2)_L \otimes SU(2)_R$ flavor symmetry.
- TC interactions are <u>vectorial</u>, isospin and parity-invariant:

 $\rightarrow g_L = g_R \equiv g_{
ho_H} = 3 - 5$ (minimizes S from ho_H and a_H too!)

 $ightarrow P_H^0
ightarrow W_L^+ W_L^-, \
ho_H^\pm
ightarrow W_L^\pm Z_L$

 $ightarrow \ a_{H}^{0}
ightarrow Z_{L}H, \ a_{H}^{\pm}
ightarrow W_{L}^{\pm}H$

(the Goldstone bosons of EWSB)

Decay rates and Cross sections

• ρ_H and a_H are parity-doubled isotriplets $\Rightarrow M_{\rho_H} \cong M_{a_H}$

• Near the EW phase transition H, W_L^{\pm}, Z_L are a degenerate (2,2) quartet => equal decay rates!

$$\Gamma(\rho_H^0 \to W^+ W^-) \cong \Gamma(\rho_H^\pm \to W^\pm Z) \cong \frac{g_{\rho_H}^2 M_{\rho_H}}{48\pi}$$

 $\Gamma(a^0 \to ZH) \cong \Gamma(a^{\pm} \to W^{\pm}H) \cong \frac{g_{\rho_H}^2 M_{a_H}}{48\pi}$

 $\Gamma(a_H^0 \to W^+ W^-) \cong \Gamma(a_H^\pm \to W^\pm Z) \cong \frac{g_{\rho_H}^2 M_W^2 M_{a_H}^3}{24\pi M_{\rho_H}^4}$

$M_{ ho_{H}} \ (M_{a_{H}} = 1.05 M_{ ho_{H}})$	$\Gamma(ho_H o VV)~({ m GeV})$	$\Gamma(a_H o VH) \; ({ m GeV})$	$\Gamma(a_H o VV) \; ({ m GeV})$
1800	178	184	0.82
1900	188	196	0.78
2000	198	208	0.74

for $g_{\rho_H} = 3.86$

$M_{ ho_{H}} \ (M_{a_{H}} = 1.05 M_{ ho_{H}})$	$\Gamma(ho_H o VV)~({ m GeV})$	$\Gamma(a_H o VH) \; ({ m GeV})$	$\Gamma(a_H o VV) \; ({ m GeV})$
1800	178	184	0.82
1900	188	196	0.78
2000	198	208	0.74

N.B.: These widths may be significantly depleted ($\sim 1/4$?) by the $\bar{t}t$, $\bar{t}b$ content of H, W_L, Z_L

$\rho_H, a_H \to VV, VH \text{ cross sections}$

- ρ_H , a_H are mainly produced at LHC via Drell-Yan.
- Large VV coupling of $\rho_H \Rightarrow$ appreciable VBF too.
- Small VV coupling of $a_H \Rightarrow$ NO appreciable VBF.

$\sqrt{s} \; ({ m TeV})$	$M_{ ho_H}~({ m GeV})$	$\sigma(ho_{H}^{\pm}) ext{ (fb)} \ (DY+VBF)$	$\sigma(ho_{H}^{0})~({ m fb})\ (DY+VBF)$	$\sigma(a_{H}^{\pm})~({ m fb})$	$\sigma(a_{H}^{0})~({ m fb})$
8	1800	1.53+0.36	0.74+0.18	0.71	0.37
8	1900	1.05+0.24	0.50+0.12	0.51	0.27
8	2000	0.73+0.15	0.36+0.08	0.36	0.17
13	1800	7.61+3.67	3.74+1.93	4.65	2.23
13	1900	5.74+2.62	2.81+1.37	3.16	1.69
13	2000	4.37+1.90	2.16+0.99	2.39	1.27

for $g_{\rho_H} = 3.86, M_{a_H} = 1.05 M_{\rho_H}, Y_{T_L} = 0, Y_{U_R} = -Y_{D_R} = \frac{1}{2}$

$ho_H, a_H ightarrow VV, VH$ cross sections

- ρ_H , a_H are mainly produced at LHC via Drell-Yan.
- Large VV coupling of $\rho_H \Rightarrow$ appreciable VBF too.
- Small VV coupling of $a_H \Rightarrow$ NO appreciable VBF.
- $\sigma_{DY}(a_H) \simeq 0.5 \, \sigma_{DY}(\rho_H)$
- $\sigma_{DY}(13 \,\mathrm{TeV}) = 5 7 \,\sigma_{DY}(8 \,\mathrm{TeV})$
- $\sigma_{VBF}(a_H) < 0.01 \ \sigma_{VBF}(\rho_H)$
- $\sigma_{VBF}(\rho_H) \simeq \frac{1}{4} \sigma_{DY}(\rho_H)$ at $\sqrt{s} = 8 \text{ TeV}$, rising to about $\frac{1}{2} \sigma_{DY}(\rho_H)$ at 13 TeV
- proton pdf's $\Rightarrow \sigma(\rho_H^{\pm}) \simeq \sigma(\rho_H^{+}) \simeq 2\sigma(\rho_H^{0})$ uniformly ditto for a_H $\Rightarrow W^+Z \gg W^-Z, W^+H \gg W^-H$

<u>Predictions & recommendations for Run 2-300 fb^{-1} !</u>

VV production from *PH* only: W[±]Z, W⁺W⁻ but <u>NO</u>ZZ!
 => Distinguish W from Z - using leptonic decays.

<u>Predictions & recommendations for Run 2-300 fb^{-1} !</u>

VV production from *PH* only: W[±]Z, W⁺W⁻ but <u>NO</u>ZZ!
 => Distinguish W from Z - using leptonic decays.

• VH due to a_H not ρ_H . How to distinguish if degenerate?

<u>Predictions & recommendations for Run 2–300 ${ m fb}^{-1}$!</u>

VV production from *PH* only: W[±]Z, W⁺W⁻ but <u>NO</u>ZZ!
 => Distinguish W from Z — using leptonic decays.

• VH due to a_H not ρ_H . How to distinguish if degenerate? 1/3 of VV, not VH, production is VBF, with forward jets!

<u>Predictions & recommendations for Run 2-300 ${ m fb}^{-1}$!</u>

VV production from *PH* only: W[±]Z, W⁺W⁻ but <u>NO</u>ZZ!
 => Distinguish W from Z — using leptonic decays.

- VH due to a_H not ρ_H . How to distinguish if degenerate? 1/3 of VV, not VH, production is VBF, with forward jets!
- Difficult to explain DY+VBF > few fb at 8 TeV. Therefore, Run 1 was an up-fluctuation — like H(125)! This was confirmed (!!) last December.

<u>Predictions & recommendations for Run 2-300 fb^{-1} !</u>

VV production from *PH* only: W[±]Z, W⁺W⁻ but <u>NO</u>ZZ!
 => Distinguish W from Z — using leptonic decays.

- VH due to a_H not ρ_H . How to distinguish if degenerate? 1/3 of VV, not VH, production is VFB, with forward jets!
- Difficult to explain DY+VBF > few fb at 8 TeV.
 Therefore, Run 1 was an up-fluctuation like H(125)!
 This was confirmed (!!) last December.
- There will be <u>NO</u> top & W partners. Our model doesn't need them!

That's all, Folks!