

A QCD Analogy for Quantum Gravity

--- Revisit Quadratic Gravity in Analogy with QCD

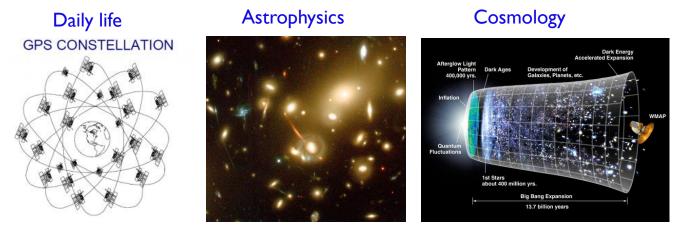
Jing Ren

University of Toronto February 9, 2016

Based on Bob Holdom, JR, arXiv: 1512.05305

General Relativity

I00 years of General relativity: huge success in large scale!



- Quantum mechanics + General relativity??
 - Non-renormalizable, treat as an effective field theory

$$S_{\rm GR} = \int d^4x \sqrt{-g} \left[M_{\rm Pl}^2 \left(-\Lambda + \frac{1}{2}R \right) + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + \dots \right]$$

Gravitational interactions get strong at M_{Pl} , need UV completion.

Decades of efforts for quantum gravity: string, loop, asymptotic safety...

Quadratic Gravity

• Generalization with quadratic curvature terms R^2 , $R^{\mu\nu}R_{\mu\nu}$, $R^{\mu\nu\alpha\beta}R_{\mu\nu\alpha\beta}$

$$S_{\rm QG} = \int d^4x \, \sqrt{-g} \left(\frac{1}{2} M^2 R - \frac{1}{2f_2^2} C_{\mu\nu\alpha\beta} C^{\mu\nu\alpha\beta} + \frac{1}{3f_0^2} R^2 \right)$$

- Quadratic gravity is renormalizable and asymptotically free
 - Perturbative renormalizable: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, $1/k^4$ propagator softens the UV divergence [Stelle, PRD 16, 953 (1977)]
 - Asymptotically free [Fradkin, Tseytlin, NPB 201, 469 (1982); Avramidi, Barvinsky, PLB 159, 269 (1985)]

$$\frac{df_2^2}{dt} = -\left(\frac{133}{10} + a_m\right)f_2^4, \quad \frac{1}{f_2^2}\frac{dw^2}{dt} = -\left[\frac{5}{12} + w\left(5 + \frac{133}{10} + a_m\right) + \frac{10}{3}w^2\right] \quad w = f_2^2/f_0^2$$

- f_2^2 always asymptotically free: $a_m > 0$ (constructive interference)
- Two roots of the ratio $w_2 < w_1 < 0$: $w = w_1$ is UVFP, $(w_2, 0)$ is UV attractive

QUE: Why NOT a UV completion of quantum gravity?

ANS: Because of "the ghost problem"!

The Ghost Problem

Extract the perturbative spectrum from $h_{\mu\nu}$ propagator on a flat background with gauge-fixing [Stelle, PRD 16, 953 (1977)]

$$D_{\mu\nu\rho\sigma} = i \left(\left(-\frac{2f_2^2 P_{\mu\nu\rho\sigma}^{(2)}}{k^2 (k^2 - M_2^2)} \right) + \frac{f_0^2 P_{\mu\nu\rho\sigma}^{(0)}}{2k^2 (k^2 - M_0^2)} + GF \right) \qquad M_2^2 = \frac{1}{2} f_2^2 M^2, \quad M_0^2 = \frac{1}{4} f_0^2 M^2$$

$$\frac{-i}{k^2 (k^2 - M_2^2)} = \frac{1}{M_2^2} \left(\frac{i}{k^2} - \frac{i}{k^2 - M_2^2} \right) \qquad \text{wrong sign??}$$

$$i\epsilon \text{ prescription} \qquad \text{Negative energy: vacuum instability}$$

$$\frac{\text{Negative norm: no probability}}{\text{interpretation, unitarity violation}}$$

Ostrogradski instability in Hamiltonian (ADM) formalism [Ostrogradski, Mem. Ac. St. Petersbourg VI (1850) 385.]

- For non-degenerate higher derivative theory, the Hamiltonian has linear dependence on some canonical variable, i.e. unbounded from below
- For quadratic gravity, it is the case when Weyl term C^2 is present

HOWEVER, note one caveat

- These arguments are based on tree-level propagator or classical Hamiltonian.
- Implicit assumption that the perturbative analysis reflects the true physical spectrum for any physical process that manifests the ghost problem.

$$S_{QG} = \int d^4x \sqrt{-g} \left(\frac{1}{2} M^2 R - \frac{1}{2f_2^2} C^2 + \frac{1}{3f_0^2} R^2 \right)$$

- When *M* is large, f_2^2 , f_0^2 remain weak, the perturbative analysis makes sense.
- BUT when *M* is small, f_2^2 , f_0^2 get strong at some low energy scale $\Lambda_{QG} > M$. Perturbative poles fall into the nonperturbative region. Do we still suffer from "the ghost problem"?

QCD and Quadratic Gravity Analogy

- QCD: gluon is not in the physical spectrum, but useful to describe hard process involving high virtuality (far off-shell gluon).
- **Proposal**: when $M^2 < \Lambda^2_{QG}$, the quadratic gravity enters into a distinctive phase where the ghost mode is absent in the physical spectrum. We conjecture that it may define a healthy theory.

QCD	Quadratic Gravity
AF at UV, g_s^2 gets strong at Λ_{QCD}	AF at UV, f_0^2 , f_2^2 get strong at Λ_{QG}
Perturbative transverse gluon removed from physical spectrum	Perturbative ghost pole removed from physical spectrum
Color singlet states described by Chiral Lagrangian in the IR	M = 0, massless graviton described by General relativity in the IR, $M_{Pl} \sim \Lambda_{QG}$
(Current quark mass gives pion mass)	New scale <i>M</i> controls graviton mass gap

 Use path integral as a nonperturbative definition of a quantum theory: a nontrivial measure may cure the problem of classical action

The rest of the talk

- Analogy based on propagators
 - how does the analogy proceed and where do we go?

• A focus on the measure

-- how could gravity be like QCD anyway?

Implications and speculations

-- what physics do we expect from this picture?

Summary

Analogy based on Propagators -- How does the analogy proceed?

QCD in the IR

Confinement problem

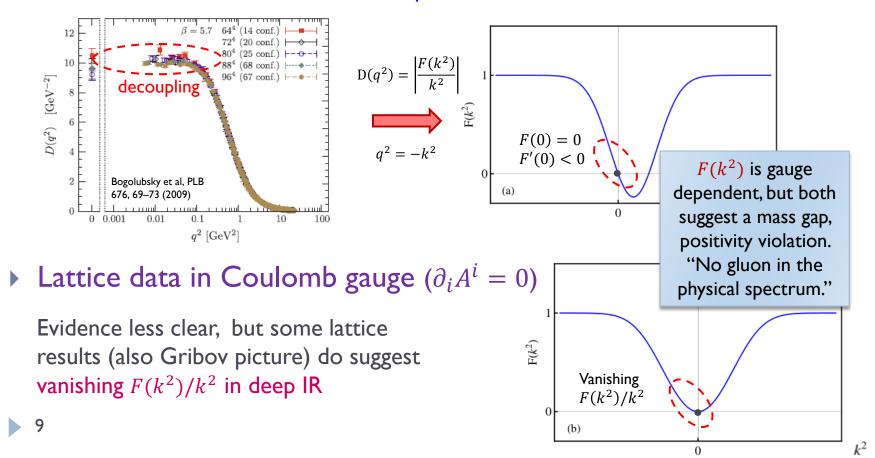
"Why quark and gluon confined in the hadrons?" still far from solved, but some general features known and studied in many different approaches: lattice, Schwinger-Dyson equation, Gribov copies ...

"Gluon is unphysical" in view of propagator

- A consequence of confinement, but more directly understood by the full gluon propagator (gauge dependent but should provide self-consistent picture)
- Traditionally studied by Schwinger-Dyson equations, propagator suppressed in the IR and no poles anymore. Find solutions different in deep IR, scaling (non-integer anomalous power) v.s. decoupling (constant)
- Later on lattice opens up the black box by gauge fixing. Confirmed the decoupling solution in Landau gauge.
- As the gluon develops a mass gap, the IR Landau pole is removed.

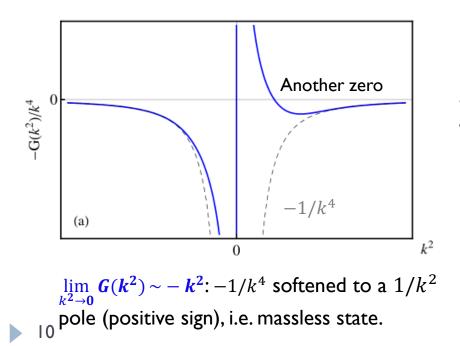
Transverse Gluon Propagators

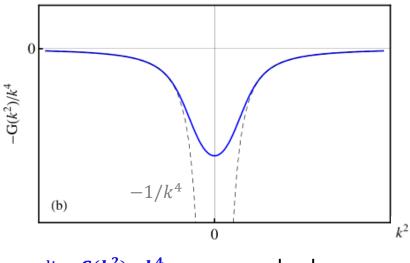
- The full propagator: $F(k^2)/k^2 \times (\text{tensor factor}) \times (\text{perturbative correction})$
 - ▶ $F(k^2) \rightarrow 1$ for $k^2 \rightarrow \pm \infty$; $F(k^2)$ is only nontrivial in the IR
- Lattice data in Landau gauge ($\partial_{\mu}A^{\mu} = 0$)



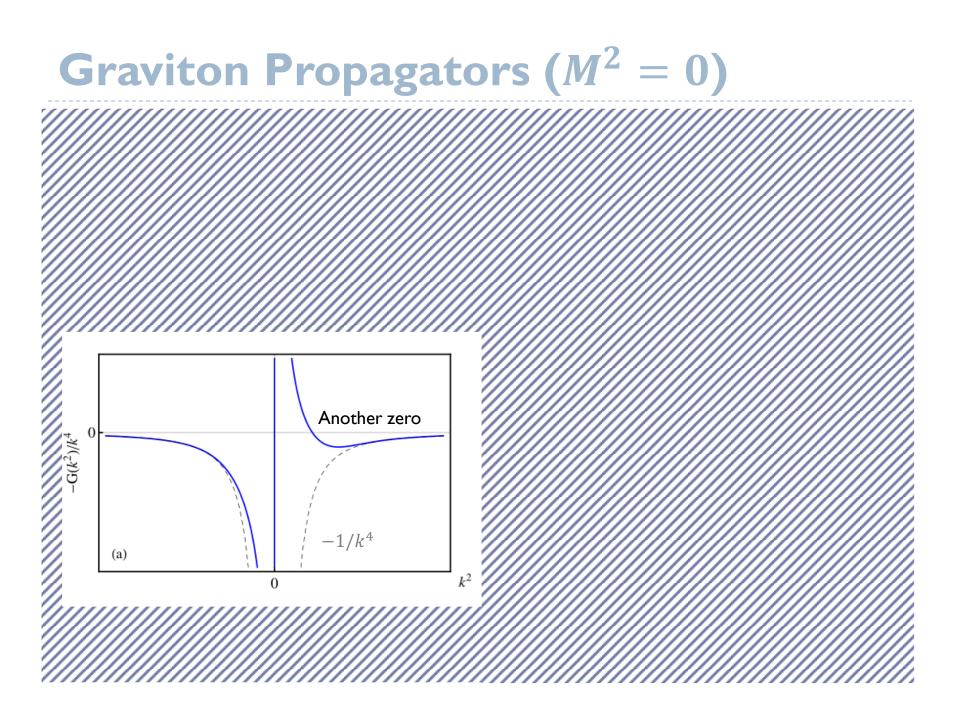
Graviton Propagators ($M^2 = 0$)

- First focus on pure quadratic gravity on flat background
- The full propagator: $-G(k^2)/k^4 \times (\text{tensor factor}) \times (\text{perturbative correction})$
- What if the nonperturbative effects in quadratic gravity operate in a way similar to QCD? Consider the same two possibilities for $G(k^2)$ as found for $F(k^2)$ from lattice QCD. Plot $-G(k^2)/k^4$.



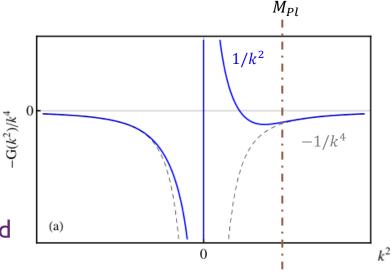


 $\lim_{k^2 \to 0} G(k^2) \sim k^4$: a mass gap develops, no propagating graviton. More like QCD.



More on the Case (a)

- Only a 1/k² pole, implies a massless spin-2 particle, on-shell graviton, naive ghost pole removed from physical spectrum
- UV linear rising potential $(\sim 1/k^4)$ is modified as IR Newtonian potential $(\sim 1/k^2)$



• Given the general covariance in the strong phase, the massless graviton is described by General relativity with $M_{Pl}^2 = -1/G'(0) \sim \Lambda_{QG}^2$. UV physics is encoded in the derivative expansion of curvature terms

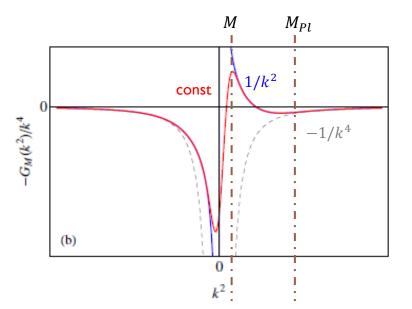
$$S_{\rm EFT} = \int d^4x \sqrt{-g} \left(\frac{1}{2} M_{\rm Pl}^2 R + c_1 R^2 + c_2 C_{\mu\nu\alpha\beta} C^{\mu\nu\alpha\beta} + \dots \right)$$

Gravitational interaction is non-renormalizable, weak. A new way to remove Landau pole without a mass gap.

(Different from QCD, the same field appears in both UV and IR)

A New Mass Scale $M^2 < M_{\text{Pl}}^2$ $S_{\text{QG}} = \int d^4x \sqrt{-g} \left(\frac{1}{2} M^2 R - \frac{1}{2f_2^2} C_{\mu\nu\alpha\beta} C^{\mu\nu\alpha\beta} + \frac{1}{3f_0^2} R^2 \right)$

- Mass gap as a massive graviton pole (assuming $G(k^2)$ insensitive to M)
 - May imply dynamical symmetry breaking of diffeomorphism (no known UV completion of massive gravity)
 - May indicate a spin-0 ghost (no Fierz-Pauli tuning) (fatal vacuum instability)
- Mass gap more like in QCD
 - A confining phase: all perturbative modes removed from the physical spectrum
 - Mass gap controlled by another M
 - When $M^2 \ll M_{Pl}^2$, three regions with different propagator behavior (red line)



12

A Focus on the Measure -- How could gravity be like QCD anyway?

Path Integral in Gauge Theory

Fundamental similarity between gravity and QCD regarding the nontrivial measures in the path integral!

• Gauge symmetry as a redundancy

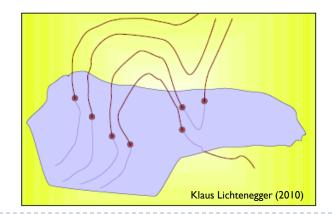
Formally, define path integral in physical configuration space, i.e. the space of gauge orbits.

In practice, use Faddeev-Popov procedure to extend path integral to the full configuration space.

Gribov copies problem

In sensible gauges, i.e. Landau and Coulomb gauge, a gauge orbit intersects with gaugefixing surface more than once

[Gribov, Nucl. Phys. B139 (1978) 1; Singer, Commun. Math. Phys. 60, 7 (1978).]



Gribov Copies in Gauge Theory

► Generalized generating function [Gribov, Nucl. Phys. B139 (1978) 1]

$$Z = \int \mathcal{D}A \underbrace{1}_{A} \delta(F(A^U)) \det M_F(A) e^{iS(A)}$$

Number of copies (defined for gauge orbits)

- Small fluctuation (perturbative): $N_F(A) = 0$, det $M_F > 0$, goes back to FP formalism
- Large fluctuation (nonperturbative): $N_F(A) \neq 0$, det $M_F = 0$ (horizon) or det $M_F < 0$
- In any gauge with copies, copies are effects built into the theory, could be essential for the correct nonperturbative description.
- Impact of $1/(1 + N_F(A))$ on gluon propagator $F(k^2)$ factor [Holdom, PRD 79, 085013 (2009)]
 - The effects of copies turn on at the strong scale Λ_{QCD} . Copies are important only if $A_k^2 \gtrsim k^2 / \Lambda_{QCD}^4$ (typical size $A_k^2 \sim 1/k^2$)
 - At high k^2 , exponentially small corrections, $F(k^2) \sim 1 + O(exp(-k^4/\Lambda^4))$
 - In deep IR, easily sample configurations above critical value, $N_F(A)$ grows fast, $F(k^2)$ suppressed (explicit form sensitive to how $N_F(A)$ grows)

Path Integral of Quadratic Gravity

• Gauge transformation of the metric perturbation: $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$

 $\delta_{\xi}h_{\mu\nu} = \mathcal{L}_{\xi}g_{\mu\nu} = \bar{\nabla}_{\nu}\xi_{\mu} + \bar{\nabla}_{\mu}\xi_{\nu} + \xi^{\rho}\bar{\nabla}_{\rho}h_{\mu\nu} + h_{\mu\rho}\bar{\nabla}_{\nu}\xi^{\rho} + h_{\rho\nu}\bar{\nabla}_{\mu}\xi^{\rho}$

Generalized generating function

$$Z = \int \mathcal{D}h \, \frac{1}{1+N_F(h)} \delta(F(h)) \left| \det M_F(h) \right| \, e^{\mathrm{i}S_{\mathrm{QG}}(g)},$$

If there are Gribov copies for gravity, nontrivial measure comes in.

- Gribov copies in gravity: the infinitesimal version
 - Gribov horizon equation with different background $\bar{g}_{\mu\nu}$: find solution of ξ with det $M_F(h) = 0$ for F(h) = 0.
 - Flat background: no solution at $h_{\mu\nu} = 0$, but do have solution for nontrivial $h_{\mu\nu}$, similar to QCD
- Although far from proving the demanded similarity, similar nontrivial infrared effects are built in path integral of both theories

Implications and Speculations -- What physics do we expect in this picture?

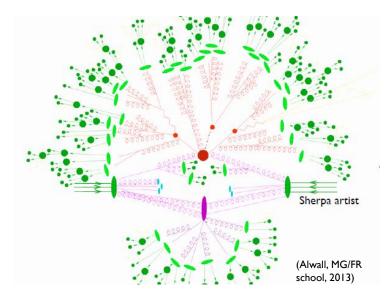
The General Picture at $M^2 = 0$

- IR region: general relativity as EFT with derivative expansion (coefficients might be constrained by the UV completion with a local QFT)
- Intermediate region: large metric fluctuation, semi-classical picture breaks down, not much to say; BUT only expands a limited range
- UV region: asymptotically free quadratic gravity (main difference)
 - Far UV, small couplings and QM fluctuations, the theory could be fundamentally defined around flat spacetime
 - Background with typical curvature scale well above M_{Pl} , i.e. sourced by a heavy probe, the effective action at the scale receives small QM correction
 - Classical solution of quadratic gravity is good approximation for high curvature region, no higher derivative corrections

Schd Black Hole	Horizonless Object	
Exterior r_h Interior	Exterior rh Interior	
Schwarzchild metric with horizon $r_h \sim M_S / M_{Pl}^2$	Yukawa type correction (small) to Schd metric	
derivative expansion breaks down at $r_s \sim (M_S/M_{Pl}^4)^{1/3}$	curvature blows up close to would-be horizon r_h	
spacelike singularity	y Naked, timelike singularity (nonsingular one with matter)	
	Exterior r_h $(linerior)$ r_s $(linerior)$ r_s Schwarzchild metric with horizon $r_h \sim M_S / M_{Pl}^2$ derivative expansion breaks down at $r_s \sim (M_S / M_{Pl}^4)^{1/3}$	

SuperPlanckian High Energy Collider

In analogy to QCD, in principle, we may collide graviton/matter with $\sqrt{s} \gg M_{Pl}$ to probe the UV region.



- Factorization theorem (ansatz): hard process + parameterized strong regime
- Useful tools: PDF, parton shower, hard process, fragmentation function...
- All particles interact gravitationally, no analogy of electron in QCD

• Difference from QCD: strong gravity object produced ($\sqrt{s} \gg M_{Pl}$)

A close trapped surface forms, may insensitive to UV physics [Eardley, Giddings, PRD 66, 044011 (2002)]

May form semiclassical BH or horizonless objects?

Implication for Matter Sector

Motivate asymptotically free extension of the SM

- When matter couplings run through the limited range of strong gravity region, mild effects, i.e. O(1) multiplicative factor
- The SM structure cannot persist in far UV region due to UV Landau pole problems of U(1) gauge coupling, scalar quartic couplings
- Solve problems within matter sector
 - Stable Asymptotically Free Extensions (SAFEs) of the SM Holdom, JR, Zhang, JHEP 1503, 028 (2015)
 - Non-Abelian gauge couplings drive yukawa, scalar quartic couplings asymptotically safe $(4\pi)^2 \beta_y = a_y y^3 - a_g g^2 y$ $(4\pi)^2 \beta_\lambda = a_{\lambda\lambda} \lambda^2 - a_{\lambda g} \lambda g^2 + a_{gg} g^4$ $a_{y,a_g,a_{\lambda\lambda},a_{\lambda g},a_{gg} > 0$
 - The simplest possibility is Pati-Salam model with one (4,2,1), SAFEs require $2n_F + n_f = 21$

Fields	Number	SU(4)	$SU(2)_L$	$SU(2)_R$
F_L	n_F	4	2	1
F_R	n_F	4	1	2
$f_{L,R}$	n_f	4	1	1
Φ	1	4	2	1

Instability within M = 0 Theory?

Theory has fatally unstable when M is large. Is it possible that the M = 0 theory could be pushed into instability within the theory in certain circumstance?

- A universe compactified with size $\ll 1/M_{Pl}$ or in high $T \gg M_{Pl}$ phase: there is an IR cutoff that eliminates the strong dynamical effects that protect us from the ghost.
- Background with naked, timelike singularity
 - Gribov copies exist for $h_{\mu\nu} = 0$, perturbative description breaks down
 - A high curvature region develops in gravitational collapse (around timelike singularity) ⇒ vacuum decay, negative modes confined in high curvature region, positive modes escape as normal graviton ⇒ matter density reduced and high curvature region removed ⇒ a burst of energy, might be a source of high energy cosmic ray

Summary

- We conjecture that the quadratic gravity with $M < M_{Pl}$ might not suffer from the ghost problem by incorporating nonperturbative effects. In analogy with QCD, general relativity, or a modification that depends on M, can emerge in the IR.
- Both QCD and quadratic gravity are based on path integrals over space of orbits — similar nontrivial infrared effects are built in.
- Although strong gravity around M_{Pl} still unknown, existence of UV asymptotically free region has interesting implications.

Open questions...

- Other approaches of strong gravity: lattice gravity, SD equation??
- Implication of no fundamental holographic picture??
- Conceptual issue of gravity that has no analogy in QCD??

Thank You!

Literature on The Ghost Problem

Remove ghost pole by quantum effects

- Large matter loop corrections transform real ghost pole into complex conjugate poles, implement Lee-Wick prescription [Tomboulis, 1977]
- Anomalous running at non-Gaussian UVFP [Salam et al, 1978; Benedetti et al, 2009]

Alternative quantization schemes

- ▶ PT symmetric Hamiltonian, negative Dirac-norm \rightarrow positive PT-norm [Mannheim, 2007]
- Negative-norm (Dirac-Pauli) coordinate representation [Salvio, Strumia, 2015]

Require ghost-free at classical level

- Summing up all higher derivative terms: non-local classical action [Tomboulis, 1997; Biswas et al, 2011]
- Horava gravity: breaking Lorentz symmetry at the beginning [Horava, 2009]
- Implement boundary condition to remove ghost solution [Maldacena, 2011]
- Implement constraint but break Lorentz symmetry [Chen et al, 2014]

Nonperturbative Form Factor

Two examples of nonperturbative multiplicative factor $F(k^2)$

(a)
$$\frac{k^2}{k^2 + b/(k^2 - a)}$$
, (b) $\frac{\operatorname{erf}(a) - \operatorname{erf}(bk^2) - \operatorname{erf}(-bk^2 + a)}{\operatorname{erf}(a)}$

- In both cases, a, b > 0 corresponds to F(k²) in Landau gauge, while a → 0 corresponds to F(k²) in Coulomb gauge.
- Case (a) has complex conjugate poles. a, b > 0 corresponds to refined Gribov-Zwanziger propagator.
- Case (b) shows an entire function, with exponentially small effect in the UV as we expected.

Gribov Horizon Equation for Gravity

- Gribov horizon equation with different background $\bar{g}_{\mu\nu}$: find solution of ξ with det $M_F(h) = 0$ for F(h) = 0.
- Instead of de-Donder gauge, doing gauge-fixing by functional minimization of the norm (norm gauge)

$${\cal N}=\int d^3x\sqrt{-ar g}h_{\mu
u}h^{\mu
u}$$

In QCD, Landau gauge is directly derived from norm function

- Flat background: no solution at $h_{\mu\nu} = 0$, but do have solution for nontrivial $h_{\mu\nu}$, similar to QCD
- For background with naked timelike singularity, there are even copies for vanishing $h_{\mu\nu}$. Perturbative theory breaks down?
- Still much unknown: the shape of Gribov horizons, the nature of the space of gauge orbit...