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Conserved	quantities	
Consider	a	long wavelength	disturbance	
of	a	system	in	thermal	equilibrium

non-conserved quantities:	relax	locally,	

conserved quantities:	cannot relax	locally,	can	only	via	transports	

Conserved	quantities Gapless modes
(only	ones	in	
thermal	
equilibrium)

They	control	low	energy	physics:	 Low	energy	effective	theory?



Hydrodynamics	

Thermal	equilibrium:	

Promote	these	quantities	to	dynamical	variables:	(local	equilibrium)

slowly	varying	functions	
of	spacetime

Express	expectation	values	of	the	stress	tensor	and	conserved	
current in	terms	of	derivative	expansion	of	these	variables:	
the	so-called	constitutive	relations.	

Equations	of	motion:	

d+1	variables,	d+1	equations	





Despite	the	long	and	glorious	
history	of	hydrodynamics

It	does	not capture	fluctuations.	



Fluctuations
There	are	always	statistical fluctuations	…..

molecular	(hydro)dynamics,	dynamical	aspects	of	phase	
transitions,	non-equilibrium	stead	states,	turbulence,	….

Important	in	many	contexts:	

At	low	temperatures,	quantum fluctuations	are	also	important.		

Phenomenological	level:	stochastic hydro

:	Gaussian	noises

2.	fluctuations	of	dynamical	variables	themselves		

Does	not	capture:	

1.	interactions	between	dynamical	variables	and	noises



Constraints	

Constitutive	relations	:	Expand																															in	derivatives	
of	

Naively	one	should	just	write	down	the	most	general	expansion	
consistent	with	symmetries.	But	that	turns	out	to	be	wrong.

1.	Entropy	condition	
Entropy current 
constructed out of 
dynamical variables

2.	Onsager	relations:	linear	response	matrix	must	be	symmetric

Phenomenological	constraints:	solutionsshould	satisfy	

Are	these	complete?	

Current	formulation	of	hydrodynamics	is awkward.

awkward:	use	solutions	to	constrain	equations	of	motion
Microscopic	explanation?



Hopefully	an	effective	field	theory	(EFT)	
based	on	action	principle	can	address		
these	issues.



Results
Long	standing	problem,	dating	back	at	least	to	G.	Herglotz in	1911	…

It	turns	out: Easiest	to	start	with	a	full	quantum	system	in	
curved	spacetimes.

1.	Hydrodynamics	with	classical	statistical	fluctuations

is	described	by	a	(supersymmetric)	quantum field	theory		

2.	Hydrodynamics	with	quantum	fluctuations	also	incorporated		

is	described	by	a	“quantum-deformed”	(supersymmetric)	
quantum	field	theory.



Part	II:	formulation



Transition	amplitudes	v.s.	expectation	values

We	are	interested	in	an	effective	theory	describing	nonlinear	
dynamics	around	a	state.	

Should	be	contrasted	with	EFT	describing	transition	amplitudes,	
e.g.	the	Pion	theory.	

Closed	time	path	(CTP)	or	Schwinger-Keldysh contour



Effective	field	theory	
MicroscopicSchwinger-Keldysh path	integral:	

thermal	density	matrix

Integrate	out	all	massive	modes:	 gapless	hydrodynamic	modes	

EFT	approach:

1.	What	are						? do	not	work

2.	What	are	the	symmetries	of																?



Dynamical	variables	(I)	
Toy	example:	a	single	conserved	current

1.		Current	conservation:

2.		W	should	contain	non-derivative terms	of	

(i)	W	must	be	nonlocal (ii)	Non-locality	due	to
integrating	out		hydro	modes	

Need	to	un-integrate hydro	modes

guide:	conservation	and	locality



Proposal:

is	a	local action.	 :	hydro	modes

Satisfy	the	following	consistency	requirements:	

1.

2.					Eoms of											are	equivalent	to	current	conservations.



Dynamical	variables	(II)
For	stress	tensor,	we	put	the	system	in	a	curved	spacetime

Conservation	of	stress	tensor:	

Un-integrate	hydro	modes:	

There	is	an	emergent spacetime with	coordinates	

Promote	spacetime coordinates	to	
dynamical	fields



Again	with	a	local	action

1. 2.	X	eoms are	equivalent	to	
conservation	of	stress	tensor

Interpretation	of							:		 label	individual	fluid	elements,	 internal	time

:	motion	of	a	fluid	element	in	physical	spacetime

Standard	hydro	variables	(which	are	now	derived	quantities)



A	bit	history:

Nickel	and	Son	showed	the	covariant	version	arises	naturally	
from	holography	(arXiv:1103.2137).

Doubled	copies	appeared	in	 Haehl eta	al		arXiv:1502.00636,	
and	Crossley	et	al	arXiv:1504.07611.

Using	a	single	copy	of																	as	dynamical	variable	for	an	
ideal	fluid	action	dated	back	to	G.	Herglotz in	1911.

Covariant																	was	used	by	Taub in	1954.		

Rediscovered	in	2005	by	Dubovsky,	Gregoire,	Nicolis and	Rattazzi
in	hep-th/0512260	and	further	developed	by	Dubovsky,	Hui,	
Nicolis and	 Son	 in	arXiv:1107.0731	 ,	......

The	current	way	to	motivate	them	is	new.		

The	introduction	of						is	new.	



Symmetries	(I)
Now	need	to	specify	the	symmetries	of

Note	that	it	is	defined	in	fluid	spacetime

Require	the	action		to	be	invariant	under:	

Interpretation	of							:		 label	individual	fluid	elements,	 internal	time



It	turns	out	these	symmetries	do	magic	for	you:

at	the	level	of	equations	of	motion,	they	ensure	all	dependence	
on	dynamical	variables	can	be	expressed	in

Given	that	EOMs	of															are	equivalent	to	the	conservation	of	
current	and	stress	tensor				

Recover	standard	formulation	of	hydrodynamics
(modulo	 phenomenological	 constraints)

This	would	be	the	full	the	story	in	a	usual	situation.



Symmetries	(II)
We	are	considering	EFT	for	a	
system	defined	with	CTP:

The	generating	functional	has	the	following	properties:		

Thermal	ensemble	plus	time	reversal	imply	KMS	condition	(Z2):

(1)

(2)

(3)(1)	Can	be	easily	achieved:		

Complex action	and	nontrivial	positivity	conditions	



Local	KMS	conditions
KMS	condition:

Proposal	(Z2 symmetry):	

Note:

:	(i)	contact	terms	for	W

1.	In	various	cases	we	have	checked	W	satisfied	the	KMS	condition

2.	Lead	to	entropy	constrains	in	equations	of	motion	

3.	New	constraints	on	equations	of	motion

(ii)	determines	the	full	action	



BRST	symmetries	

is	a	“topological”	condition:	i.e.	the	theory	is	independent	of	
background	metric	and	external	fields	when	

Introduce	fermionic partners									(ghost	fieds)	for	dynamical	
variables	and	require	the	action	to	be	BRST	invariant:

Dynamical	variables:	 Background	fields:	

for

See	also	Haehl et	al
arXiv:	1510.02494
1511.07809

The	theory	is	not	topological	in	the	absence	of	background	fields	
as	the	observables	are	not	BRST	invariant.		



Supersymmetries

Given	a	bosonic action,	the	BRST	symmetry	does	not	completely	
fix	the	fermionic part	of	the	action,	leading	to	potential	ambiguities.	

The	ambiguities	do	not	arise	at	quadratic	level	of	the	action.	

Here	we	find	an	interesting	surprise,	generalizing	an	earlier	
observation	in	Langevin equations.		

One	finds	that	at	quadratic	level,	with	local	KMS	condition	imposed,	
the	action	possesses	an	emergent	fermionic symmetry

See	also	Haehl et	al,	arXiv:	1510.02494,	1511.07809



Combining	two	fermionic symmetric	we	have:

The	currents	also	transform	as	irreducible	multipletunder	the	
algebra.			

Classical	limit:	

become	standard	supersymmetry in	time	direction.	
Conjecture:	in	the	classical	limit	supersymmetry can	fix	the	
fermionic part	action	uniquely.

Have	checked	this	to	cubic	orders

Quantum	theory:	higher	derivative	version	of	SUSY,	
“quantum-deformed”



Example:	nonlinear	stochastic	diffusion

Consider	the	theory	for	a	single	conserved	current,	where
the	relevant	physics	is	diffusion.

Dynamical	variables:	 (or															)

Roughly,								:	standard	diffusion	mode,							:	the	noise.

If	ignoring	interactions	of	noise

A	variation	of	Kardar-Parisi-Zhang	 equation



Nonlinear	charged	fluids
Full	non-linear	action	requires	more	apparatus	to	
write	down.	

Introduce	differential	geometric	structure	which	captures	this,	
including:	

With	all	possible	terms	constructed	using	this	
structure,	precisely	recover	the	expected	constitutive	
relations.	

Need	the	most	general	invariant	term	with	the	split	
spatial	and	temporal	diffeomorphisms.	



Summary

Emergent	supersymmetry.

An	EFT	for	general	dissipative	fluids.

Recovers	the	standard	hydrodynamics	as	equations	
of	motion,	constitutive	relations,	constraints.

Encodes	quantum	and	thermal	fluctuations	
systematically	in	a	path	integral	expansion.

Full	non-linear	fluid	fluctuating	dynamics	encoded	
in	non-trivial	differential	geometry.	



Future	directions	
Formalism:

Non-relativistic	limit	,	
superfluids,
Anisotropic,	inhomogeneous,
“quantum-deformed”	Supersymmetry

…....
Applications:	

Longtime	tails,	running	of	viscosities,	

Dynamical	aspects	of	classical	and	
quantum	phase	transitions	

Scaling	behavior	in	hydro	behavior	via	fixed	points	
of	QFTs,	such	as	KPZ	scaling,	turbulence	….

….........
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