Unsafe but Calculable Jesse Thaler

University of Toronto, THEP Seminar — December 8, 2015

Sudakov Safety

[Andrew Larkoski, JDT, 1307.1699, 1406.7011] [Andrew Larkoski, Simone Marzani, Gregory Soyez, JDT, 1402.2657] [Andrew Larkoski, Simone Marzani, JDT, 1502.01719]

Offline: Generalized Fragmentation Functions

[Hsi-Ming Chang, Massimiliano Procura, JDT, Wouter Waalewijn, 1303.6637, 1306.6630] [Andrew Larkoski, JDT, Wouter Waalewijn, 1408.3122] All observables are calculable, but some observables are more calculable than others.

 \approx George Orwell, Animal Farm

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

High Energy \Rightarrow Boosted Regime

High Luminosity \Rightarrow Pileup

[ATLAS, 2012]

High Luminosity \Rightarrow Pileup

(Both jets have $m \approx 170 \text{ GeV}$)

N-Prong vs. I-Prong

[JDT, Van Tilburg, 2010, 2011] [see also Stewart, Tackmann, Waalewijn, 2010; Larkoski, Moult, Neill, 2014]

ATLAS Search for Heavy W Bosons

Trimming + B-tagging + N-subjettiness

Similar techniques used for ATLAS diboson excess

[ATLAS, 2014]

Rest of this talk:

Jet substructure as motivation to delve into subtleties of QCD

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

Infrared/Collinear Safety

IRC Safe Observable: Insensitive to IR or C emissions

Examples from Jet Substructure

Ratio Observables?

(esp. N-subjettiness)

IRC Safe Numerator = IRC Safe Denominator

= IRC Unsafe Ratio

[Soyez, Salam, Kim, Dutta, Cacciari, 1211.2811]

WHAT?! Safe/Safe = Unsafe?!

WHAT?! Safe/Safe = Unsafe?!

The Key Realization

Generalization in backup

Sudakov Safety in Action

Ratios of angularities (I-subjettiness)

[Berger, Kucs, Sterman, 2003; Ellis, Vermilion, Walsh, Hornig, Lee, 2010] [Recoil-free Versions: Larkoski, Salam, JDT, 1305.0007; Larkoski, Neill, JDT, 1401.2158]

Turning the Crank

$$e_{\beta} \simeq \sum_{i \in \text{jet}} z_i \left(\theta_i\right)^{\beta} \qquad \frac{d\sigma}{dr} = \int de_{\alpha} \, de_{\beta} \, \frac{d^2\sigma}{de_{\alpha} de_{\beta}} \, \delta\left(r - \frac{e_{\alpha}}{e_{\beta}}\right)$$

$$\frac{d^2 \sigma^{\rm FO}}{de_{\alpha} de_{\beta}} \simeq \frac{2\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{1}{e_{\alpha} e_{\beta}}$$
$$\frac{d\sigma^{\rm FO}}{dr} \Rightarrow \text{Not integrable! (IRC Unsafe)}$$

Single emission: Order α_s (LO)

[Larkoski, JDT, 1307.1699]

Turning the Crank

$$e_{\beta} \simeq \sum_{i \in \text{jet}} z_i \left(\theta_i\right)^{\beta} \qquad \frac{d\sigma}{dr} = \int de_{\alpha} \, de_{\beta} \, \frac{d^2\sigma}{de_{\alpha} de_{\beta}} \, \delta\left(r - \frac{e_{\alpha}}{e_{\beta}}\right)$$

$$\frac{d^2 \sigma^{\text{LL}}}{de_{\alpha} de_{\beta}} \simeq \frac{2\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \frac{1}{e_{\alpha} e_{\beta}} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\beta} \log^2 e_{\beta}} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\beta} \log^2 e_{\beta}}$$
Many emissions:
All orders in α_s (LL)
$$\frac{d\sigma^{\text{LL}}}{dr} \simeq \sqrt{\alpha_s} \frac{\sqrt{C_F \beta}}{\alpha - \beta} \frac{1}{r} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r} e^{-\frac{\alpha_s}{\pi} \frac{C_F}{\alpha - \beta} \log^2 r}$$
Unsafe... but Calculable (Sudakov Safe)

[Larkoski, JDT, 1307.1699]

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

Textbook QCD

Universal collinear limit

The Core of QCD

Basis for parton shower MC generators, PDF evolution, NLO subtractions, k_t clustering, jet substructure studies...

 $\mathbf{r}_{\theta}|^2$

Splitting Function I→2

singularity singularity

Measurable? Calculable?

→ IRC Unsafe

Measure Universal Singularity?

Angular-ordered tree...

... gives splitting function?

IRC Unsafe

Measure Universal Singularity?

Groomed angular-ordered tree...

... gives splitting function?

IR Safe Zg C Unsafe ($\beta \ge 0$)

[Larkoski, Marzani, Soyez, JDT, 1402.2657] [see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

Measure Universal Singularity?

Soft Drop $z > z_{cut} \theta^{\beta}$ energy angular threshold exponent

One prong jet...

... gives splitting function?

[Larkoski, Marzani, Soyez, JDT, 1402.2657] [see also Butterworth, Davison, Rubin, Salam, 0802.2470; Dasgupta, Fregoso, Marzani, Salam, 1307.0007]

How to calculate from first principles?

Exploit Sudakov Safety

(see backup for two additional approaches)

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

 $\begin{array}{l} \text{Core Feature} \\ \text{of QCD:} \end{array} \simeq \frac{1}{z_g} \\ \ddagger \\ dP_{i \rightarrow ig} \simeq \frac{2\alpha_s}{\pi} C_i \frac{\mathrm{d}\theta}{\theta} \frac{\mathrm{d}z}{z} \end{array}$

≈ independent of α_s (!) ≈ independent of jet energy/radius ≈ same for quarks/gluons

[Larkoski, Marzani, JDT, 2015; using Larkoski, JDT, 2013]

The Future is Open

CMS 2010:

Unique data set with very low pileup

Accelerating science through public data

Theory Calculation

Andrew Larkoski

Simone Marzani

Simulated LHC Data

Summary

Inspiration from Jet Substructure

Exceptional LHC performance + (B)SM physics

From IRC Safe to Sudakov Safe

All orders in α_s yields new insights into QFT

Probing the Core of QCD

Measuring the universal singularity structure of gauge theories

All IRC safe observables are alike; each IRC unsafe observable is unsafe in its own way.

 \approx Leo Tolstoy, Anna Karenina

Backup Slides

IRC safe observables, useful, measurable, and calculable...seemed to unite some of the best blessings of perturbation theory; and have existed nearly forty years in the world with very little to distress or vex them.

 \approx Jane Austen, *Emma*

Systematically Improvable

Predictions for jet substructure from first-principles QCD

0. Learn from Our Elders

Me: " ϕ is IRC unsafe"

My Elder: "We explicitly calculated $d\sigma/d\phi$ in 1978"

$$\frac{2\pi}{\sigma_0} \frac{d\sigma}{d\varphi} = \frac{1 + O(\alpha_s(Q^2)) + \frac{\alpha_s(Q^2)}{\pi} (\frac{16}{3} \ln \frac{3}{2} - 2) \cos 2\varphi}{Born \ \text{cross section despite ambiguity (!)}}$$

Lesson: Use IRC limit to resolve ambiguities

[Pi, Jaffe, Low, 1978; Kramer, Schierholz, Willrodt, 1978]

I. Use Sudakov Form Factors

[Larkoski, JDT, 1307.1699]

I. Use Sudakov Form Factors

Unsafe Want: $p(u) = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}u}$

Need:
$$p(u|s) = \frac{p(u,s)}{p(s)}$$

... with Safe companion

(all orders in α_s)

Suppresses isolated singularities...

(fixed order in α_s)

... at each perturbative order

2. Use Fragmentation Functions

