Unsafe but Calculable

Jesse Thaler Iliit

University of Toronto,THEP Seminar — December 8, 2015

IRC Safe IRC Unsafe

Lore: \quad Calculable in pQCD ?
 Controlled Λ_{ecD} Effects?

 x

IRC Safe IRC Unsafe

New Lore:

Calculable in PQCD ?
Controlled Λ_{QCD} Effects?

Sudakov Safety

[Andrew Larkoski, JDT, I307.I699, I406.70 I I]
[Andrew Larkoski, Simone Marzani, Gregory Soyez, JDT, I402.2657]
[Andrew Larkoski, Simone Marzani, JDT, I502.0I719]

Offline: Generalized Fragmentation Functions

[Hsi-Ming Chang, Massimiliano Procura, JDT,Wouter Waalewijn, I303.6637, I306.6630]
[Andrew Larkoski, JDT,Wouter Waalewijn, I408.3I22]

All observables are calculable, but some observables are more calculable than others.

\approx George Orwell, Animal Farm

Outline

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

CMS Experiment at LHC, CERN
Data recorded: Sun Jul 12 07:25:11 2015 CEST
Run/Event: 251562 / 111132974
Lumi section: 122
Orbit/Crossing: 31722792 / 2253

[CMS 201I, 2013, 2015]
[using Kaplan, Rehermann, Schwartz, Tweedie, 2008; using Ellis,Vermilion, Walsh, 2009]

High Energy \Rightarrow Boosted Regime

High Luminosity \Rightarrow Pileup

High Luminosity \Rightarrow Pileup

[ATLAS, 20I 2; using Krohn, JDT,Wang, 2009]

N-Prong vs. I-Prong

(Both jets have $\mathrm{m} \approx 170 \mathrm{GeV}$)

N-Prong vs. I-Prong

N-subjettiness

$$
\begin{aligned}
& \text { momentum }
\end{aligned}
$$

ATLAS Search for Heavy W Bosons

Trimming + B-tagging
+N -subjettiness

Similar techniques used for ATLAS diboson excess

Rest of this talk:

Jet substructure as motivation to delve into subtleties of QCD

Probing the Core of QCD

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Infrared/Collinear Safety

Original Jet
 Collinear

IRC Safe Observable: Insensitive to IR or C emissions

Formally:

IRC divergences cancel order-by-order in α_{s}

Examples from Jet Substructure

Ratio Observables?

IRC Safe $\quad \Rightarrow \quad$ Useful Ratio
$\mathrm{T}_{\mathrm{N}} \Rightarrow \frac{\mathrm{T}_{\mathrm{N}}}{\mathrm{T}_{\mathrm{N}-\mathrm{I}}}$

Ubiquitous in jet substructure
(esp. N-subjettiness)

IRC Safe Numerator
 $=$ IRC Unsafe Ratio

IRC Safe Denominator

WHAT?!
 Safe/Safe = Unsafe?!

WHAT?!
 Safe/Safe = Unsafe?!

The Key Realization

Generalization in backup

$$
\frac{d \sigma}{d r}=\int d e_{\alpha} d e_{\beta} \frac{d^{2} \sigma}{d e_{\alpha} d e_{\beta}} \delta\left(r-\frac{e_{\alpha}}{e_{\beta}}\right)
$$

\uparrow
 IRC Safe

"I can simultaneously measure e_{α} and $e \beta$ "

Sudakov Safety in Action

Ratios of angularities (I-subjettiness)

Single emission:
Order $\alpha_{s}(\mathrm{LO})$
Many emissions:
All orders in $\alpha_{s}(L L)$

"Sudakov Safe"
[Larkoski, JDT, I 307.1699]

Turning the Crank

$$
e_{\beta} \simeq \sum_{i \in \mathrm{jet}} z_{i}\left(\theta_{i}\right)^{\beta} \quad \frac{d \sigma}{d r}=\int d e_{\alpha} d e_{\beta} \frac{d^{2} \sigma}{d e_{\alpha} d e_{\beta}} \delta\left(r-\frac{e_{\alpha}}{e_{\beta}}\right)
$$

$$
\frac{d^{2} \sigma^{\mathrm{FO}}}{d e_{\alpha} d e_{\beta}} \simeq \frac{2 \alpha_{s}}{\pi} \frac{C_{F}}{\alpha-\beta} \frac{1}{e_{\alpha} e_{\beta}}
$$

Single emission:
Order $\alpha_{s}(\mathrm{LO})$

$$
\frac{d \sigma^{\mathrm{FO}}}{d r} \Rightarrow \text { Not integrable! (IRC Unsafe) }
$$

Turning the Crank

$$
e_{\beta} \simeq \sum_{i \in \mathrm{jet}} z_{i}\left(\theta_{i}\right)^{\beta} \quad \frac{d \sigma}{d r}=\int d e_{\alpha} d e_{\beta} \frac{d^{2} \sigma}{d e_{\alpha} d e_{\beta}} \delta\left(r-\frac{e_{\alpha}}{e_{\beta}}\right)
$$

$$
\frac{d^{2} \sigma^{\mathrm{LL}}}{d e_{\alpha} d e_{\beta}} \simeq \frac{2 \alpha_{s}}{\pi} \frac{C_{F}}{\alpha-\beta} \frac{1}{e_{\alpha} e_{\beta}} e^{-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{\beta} \log ^{2} e_{\beta}}
$$

Many emissions:
All orders in α_{s} (LL)

$$
\frac{d \sigma^{\mathrm{LL}}}{d r} \simeq \underset{\substack{\alpha_{s}}}{\sqrt{\alpha_{F} \beta}} \frac{\sqrt{C_{F}}}{\alpha-\beta} e^{-\frac{\alpha_{s}}{\pi} \frac{C_{F}}{\alpha-\beta} \log ^{2} r}
$$

Inspiration from Jet Substructure

From IRC Safe to Sudakov Safe

Probing the Core of QCD

Textbook QCD

Universal collinear limit

The Core of QCD

Basis for parton shower MC generators, PDF evolution, NLO subtractions, k_{t} clustering, jet substructure studies...

[ATLAS, 20I5]
Measurable? Calculable?
\hookrightarrow IRC Unsafe

Splitting Function
$\mathrm{I} \rightarrow 2$

Measure Universal Singularity?

Angular-ordered tree...

...gives splitting function?

$$
\begin{aligned}
& -\bigcirc \mathcal{I - z}_{\mathrm{z}}^{1} \hat{\theta} \\
& \frac{2 \alpha_{s}}{\pi} C_{i} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} z}{z}
\end{aligned}
$$

Z IRC Unsafe

Measure Universal Singularity?

Soft Drop
$z>z_{\substack{\text { ent } \\ \text { energy } \\ \text { thressold }}} \theta_{\substack{\text { angular } \\ \text { exponent }}}^{\beta}$

Groomed angular-ordered tree...

...gives splitting function?

$$
\frac{2 \alpha_{s}}{\pi} C_{i} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} z}{z}
$$

$$
\mathbf{Z}_{\mathrm{g}} \xlongequal{\text { IR Safe }} \mathrm{C} \text { Unsafe }(\beta \geq 0)
$$

Measure Universal Singularity?

One prong jet...

$$
\theta_{\mathrm{g}}=0
$$

$$
\theta_{\mathrm{g}}=0
$$

...gives splitting function?
Soft Drop

$$
-\infty<{ }_{1-z}^{z} \uparrow \theta
$$

$$
\frac{2 \alpha_{s}}{\pi} C_{i} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} z}{z}
$$

$$
\mathbf{Z}_{\mathbf{g}} \quad \begin{aligned}
& \text { IR Safe } \\
& \text { C Unsafe }(~
\end{aligned}(\mathbb{2} 0)
$$

How to calculate from first principles?

Exploit Sudakov Safety

(see backup for two additional approaches)

First-Principles QCD

$z>z_{\text {cut }} \theta^{\beta}$

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

First-Principles QCD

$z>z_{\text {cut }} \theta^{\beta}$

$\simeq \frac{2 \alpha_{s} C_{i}}{\pi|\beta|} \frac{1}{z_{g}} \log \frac{z_{g}}{z_{\mathrm{cut}}}$

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

First-Principles QCD

$z>z_{\text {cut }} \theta^{\beta}$

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

First-Principles QCD

$z>z_{\mathrm{cut}} \theta^{\beta}$

[Larkoski, Marzani, JDT, 2015; using calculational techniques in Dasgupta, Fregoso, Marzani, Salam, 2013; Larkoski, JDT, 2013]

First-Principles QCD

Core Feature
of QCD: $\simeq \frac{1}{z_{g}}$
\uparrow

$$
\mathrm{d} P_{i \rightarrow i g} \simeq \frac{2 \alpha_{s}}{\pi} C_{i} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} z}{z}
$$

Simulated LHC Data

\approx independent of $\alpha_{s}(!)$
\approx independent of jet energy/radius
\approx same for quarks/gluons
cf. $\left|-\underset{I-z}{\bigodot_{-}^{z}} \theta\right|^{2}$

First-Principles QCD

Simulated LHC Data

The Future is Open

CMS 2010:
Unique data set with very low pileup

Accelerating science through public data

Theory Calculation

Andrew Larkoski

Simone Marzani

Simulated LHC Data

Simone Marzani

Alexis Romero

CMS Open Data

Andrew
Larkoski *

Simone Marzani

Alexis Romero

Aashish Tripathee

CMS advice from

CMS Open Data

Andrew
Larkoski *

Simone Marzani

Alexis Romero

Aashish Tripathee

Wei
Xue

MS advice from
Sal Rappoccio

Summary

Inspiration from Jet Substructure

Exceptional LHC performance + (B)SM physics

Probing the Core of QCD

Measuring the universal singularity structure of gauge theories

All IRC safe observables are alike; each IRC unsafe observable is unsafe in its own way.

₹ Leo Tolstoy, Anna Karenina

Backup Slides

IRC safe observables, useful, measurable, and calculable...seemed to unite some of the best blessings of perturbation theory; and have existed nearly forty years in the world with very little to distress or vex them.

\approx Jane Austen, Emma

Systematically Improvable

Predictions for jet substructure from first-principles QCD

0. Learn from Our Elders

Me: " φ is IRC unsafe"
My Elder: "We explicitly calculated $\mathrm{d} \sigma / \mathrm{d} \varphi$ in 1978"

$$
\frac{2 \pi}{\sigma_{0}} \frac{d \sigma}{d \varphi}=1+O\left(\alpha_{s}\left(Q^{2}\right)\right)+\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\left(\frac{16}{3} \ln \frac{3}{2}-2\right) \cos 2 \varphi
$$

Lesson: Use IRC limit to resolve ambiguities

I. Use Sudakov Form Factors

Measure jet mass?

$\begin{array}{ll}Z_{g} & \begin{array}{l}\text { IR Safe } \\ \text { C Unsafe }\end{array}\end{array}$

Jet mass never zero!

Fixed $O\left(\alpha_{s}\right) \rightarrow \zeta_{m=0}$ singular

VS.

All α_{s} Orders

I. Use Sudakov Form Factors

Calculable...
Need: $\underset{\uparrow}{\underset{\uparrow}{\downarrow}(u \mid s)}=\frac{p(u, s)}{p(s)}$
...with Safe companion

Suppresses isolated singularities... ...at each perturbative order

2. Use Fragmentation Functions

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} z_{g}} \simeq F\left(z_{g}\right) \quad-\frac{1}{2 \epsilon} \frac{\alpha_{s} C}{\pi} F\left(z_{g}\right)+\frac{\alpha_{s} C}{\pi} \int \frac{\mathrm{~d} \theta}{\theta} P\left(z_{g}\right) \\
F\left(z_{g}\right) \\
\\
\\
\\
\text { renormalize } \\
\Rightarrow \\
F
\end{gathered}
$$

