Emergent symmetries and large N confining gauge theories

Aleksey Cherman
INT, University of Washington

with linear combinations of
G. Basar (University of Maryland, College Park),
K. Dienes (University of Arizona),
D. Dorigoni (DESY, Hamburg),
D. McGady (NBI - Copenhagen),
M. Unsal (North Carolina State University)
M. Yamazaki (IPMU, Tokyo)

arXiv:1306.2960,1406.6329, 1408.3120,1409.1617, $1507.08666+$ to appear + ongoing

Hard versus easy

Confining theories like QCD with
 $\mathrm{N}=3$ colors are notoriously hard

Strongly coupled at low energies, no analytic way to compute spectrum or correlation functions.

Free theories are easy!

Writing down the Lagrangian = solving the theory.

$$
\begin{gathered}
\mathcal{L}=\sum_{i=1}^{K} \frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m_{i}^{2} \phi^{2}\right] \\
\text { spectrum }=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\} . \\
\text { correlation functions taught in first } \\
1-2 \text { weeks of intro QFT class }
\end{gathered}
$$

Hard versus easy

Confining theories like QCD with
 $\mathrm{N}=3$ colors are notoriously hard

Free theories are easy!
Good news from 70s: QCD is a free theory at large N !

Free in the physical basis given by mesons and glueballs
Bad news from 2015: these free theories are so hard, no solution yet.

$$
\mathcal{L}_{\text {physical }}=? ? ?
$$

Symmetries and free spectra

Typical free relativistic QFTs with K particles have $\approx \mathrm{K}$ parameters

$$
\left\{m_{1}, m_{2}, m_{3}, \cdots\right\}
$$

Symmetries reduce the number of parameters.
`Symmetries' could mean e.g. $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$ (global symmetry), or something like $m_{n}=2 m_{n-1}$ (spectrum-generating algebra).

Symmetries and free spectra

Typical free relativistic QFTs with K particles have $\approx \mathrm{K}$ parameters

$$
\left\{m_{1}, m_{2}, m_{3}, \cdots\right\}
$$

Symmetries reduce the number of parameters.
`Symmetries' could mean e.g. $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$ (global symmetry), or something like $m_{n}=2 m_{n-1}$ (spectrum-generating algebra).

For large N confining theories $\left\{m_{k}\right\}$ is an infinite set.
Only parameter in pure YM is strong scale \wedge. In 3-flavor large N QCD, only four parameters.

Could there be some emergent (spectrum-generating) symmetries at $\mathrm{N}=\infty$ organizing the confined-phase spectrum?

This talk: evidence that answer is yes.

Why should you care?

Nature

Understanding QCD = understanding a big already-observed chunk of nature
Understanding large N QCD would help if $1 / \mathrm{N}$ corrections are small...
... and there's a lot of evidence that they are.
QCD-like QFTs may be important for physics beyond the Standard Model

Formal theory

Confining gauge theories = rich class of non-supersymmetric string theories.

$$
g_{\text {string }} \sim 1 / N, \alpha^{\prime} \sim \Lambda^{2}
$$

But we know very little about these particular string theories.
Better understanding of confining gauge theories \Longrightarrow insights into string theory and quantum gravity.

The Plan

(1) Confining theories are hard even at large N . Introduce calculable regime to explore possible emergent symmetries.
(2) Explain concrete reason why emergent symmetries expected even outside such a regime
(3) Use calculable regime to explore large N confining spectrum

Large N control parameter

To explore symmetries, need to find a control parameter " ϵ "

$$
\left\{m_{1}, m_{2}, m_{3}, \cdots\right\}
$$

$$
\left\{m_{1}(\epsilon), m_{2}(\epsilon), m_{3}(\epsilon), \cdots\right\}
$$

Desires:

Want spectrum to become calculable as $\epsilon \rightarrow 0$.
Want ϵ to be a control parameter even in the 't Hooft limit.
Want to stay in the confined phase for all ϵ.

Control by compactification

Key idea: if we lived in a box, QCD and its cousins would be easier Most obvious type of box: a three-torus $T^{3}=S^{1} x S^{1} x S^{1}$

Space: T^{3}

$$
\text { Time: } \mathbb{R}
$$

Once T^{3} is small, system becomes weakly-coupled
But in Euclidean space, finite temperature $T=1 /($ circle size L)
Small-volume theory = high-temperature theory

Control by compactification

Key idea: if we lived in a box, QCD and its cousins would be easier Most obvious type of box: a three-torus $\mathrm{T}^{3}=\mathrm{S}^{1} \mathrm{x} \mathrm{S}^{1} \mathrm{x} \mathrm{S}^{1}$

Space: T^{3}

Time: \mathbb{R}

Once T^{3} is small, system becomes weakly-coupled
quark-gluon plasma

Loss of confinement at small L!

Control by compactification

Key idea: if we lived in a box, QCD and its cousins would be easier Most obvious type of box: a three-torus $T^{3}=S^{1} x S^{1} \times S^{1}$

Space: T3

Doesn't

 workTime: \mathbb{R}

Once T^{3} is small, system becomes weakly-coupled
quark-gluon plasma

Loss of confinement at small L!

$S_{R}^{3} \times \mathbb{R}$ compactification

A better box for studying large N confinement!

Space: S 3
If $R \wedge \gg 1$, back to R^{4}.
$\lambda(1 / R)$ is not small

Time: \mathbb{R}
If $R \wedge \ll 1$, weak coupling!
$\lambda=\lambda(1 / R) \rightarrow 0$ $\epsilon=R \wedge$ is a control parameter for QCD.

$S_{R}^{3} \times \mathbb{R}$ compactification

What about confinement?

Need order parameters that make sense in finite volume.
(1) Realization of center symmetry confinement \approx unbroken center symmetry

(2) N -scaling of the free energy

Glueball masses and numbers don't scale with N
Number of gluons scales like N^{2}
confinement \approx free energy $F \sim N^{0}$ deconfinement \approx free energy $F \sim N^{2}$

Both (1) and (2) require the large N limit to be well-defined!
Fortunately, we want to work at large N anyway...

Small R^ behavior

In principle small R \wedge theories can be solved with any matter content.
So far, analytic results for theories with massless adjoint matter only \Longrightarrow focus on theories with massless adjoint matter in this talk.

Symmetry structure:

Unbroken/broken center symmetry for low/high T
$\mathrm{O}\left(\mathrm{N}^{0}\right)$ free energy for low T , $\mathrm{O}\left(\mathrm{N}^{2}\right)$ free energy for high T

This is best illustrated by an illustration...

Large N phase diagram on $\mathrm{S}^{3}{ }_{\mathrm{R}} \times \mathrm{S}^{1}{ }_{\mathrm{L}}$

L/R

Large N confined-phase partition functions

Complete spectrum is exactly calculable when $\mathrm{R} \Lambda \rightarrow 0, \lambda \rightarrow 0$
As $\lambda \rightarrow 0$, microscopic fields $A_{\mu}, \psi, \phi=$ matrix-valued harmonic oscillators

Gauss law \Longrightarrow physical states are color singlets

With adjoint fields, color singlets are built from color traces
Large N: $\quad|a\rangle=\operatorname{Tr} F_{\mu \nu} F^{\mu \nu}|0\rangle$
$|a\rangle|b\rangle=\operatorname{Tr} F_{\mu \nu} F^{\mu \nu} \operatorname{Tr} F_{\alpha \beta} F^{\alpha \beta}|0\rangle$
single-particle state
multi-particle state

Large N confined-phase partition functions

(1) Get partition functions for microscopic fields, $z_{v}(q), z_{F}(q), z_{s}(q), q=e^{-L / R}$.

$$
\left.\left.\mathbf{z}_{\mathrm{v}}, \mathbf{z}_{\mathrm{f}}, \mathbf{z}_{\mathrm{s}}=\curvearrowleft+\curvearrowleft\right)+\right)_{\nearrow}+\ldots \underset{\text { Gauss law }}{\text { color }}
$$

(3) Build single-trace canonical partition function from $\mathrm{zv}_{\mathrm{v}}(\mathrm{q}), \mathrm{z}_{\mathrm{F}}(\mathrm{q}), \mathrm{zs}_{\mathrm{s}}(\mathrm{q})$

Large N confined-phase partition functions

Complete spectrum is exactly calculable when $\mathrm{R} \Lambda \rightarrow 0, \lambda=0$
The (-1) ${ }^{\text {F-twisted }}$ and thermal confined-phase grand-canonical partition functions are

$$
\begin{gathered}
Z(L)=\operatorname{Tr} e^{-L H}, \quad \tilde{Z}(L)=\operatorname{Tr}(-1)^{F} e^{-L H} \\
Z(L)=\prod_{k=1}^{\infty} \frac{1}{1-z_{v}\left(q^{k}\right)-n_{s} z_{s}\left(q^{k}\right)+(-1)^{k} n_{f} z_{f}\left(q^{k}\right)}
\end{gathered}
$$

Aharony et al
2003

$$
\tilde{Z}(L)=\prod_{k=1}^{\infty} \frac{1}{1-z_{v}\left(q^{k}\right)-n_{s} z_{s}\left(q^{k}\right)+n_{f} z_{f}\left(q^{k}\right)}
$$

These are the objects we'll study in most of the talk.

Emergent symmetries

Will squeeze a lot of juice from $\mathrm{R} \Lambda \rightarrow 0, \lambda \rightarrow 0$ expressions

But free QFTs have more symmetries than interacting ones.

> Can we really expect any large N emergent symmetries we find at small $R \wedge$ to extrapolate to large $R \wedge$?

Consideration of large N volume independence and Hagedorn instabilities suggests that answer is yes.

Basar, AC, Dorigoni, Unsal, 2013

First, a reminder of what large N volume independence is...

Large N volume independence

Finite volume corrections to hadronic correlators vanish at $\mathrm{N}=\infty$.
Discovered by Eguchi and Kawai in 1982, in YM theory
Cartoon picture:

How would glueballs find out they're in a toroidal box?

Technical argument uses center symmetry as proxy for confinement
Implication: within the confined phase at large N, no phase transitions.

Large N volume independence

EK's Jan. 1982 dream was for volume independence for all L...
... but the dream instantly got in trouble.
Bhanot, Heller, Neuberger Feb. 1982

Euclidean QFT on $\mathrm{R}^{3} \times \mathrm{S}_{\mathrm{L}}{ }^{\mathrm{L}} \Longleftrightarrow$ system at temperature $\mathrm{T}=1 / \mathrm{L}$.

> At $\mathrm{L} \lesssim 1 /$ QCD $^{\mathrm{YM}}$ goes into a quark-gluon plasma phase!
> Deconfinement transition kills volume independence

Volume independence only holds when $L>L_{c} \approx 1 / \bigwedge_{Q C D}$

Large N volume independence

Roadblock for ~ 25 years...

Volume independence for any L

Kovtun, Unsal, Yaffe, 2007

Consider adjoint QCD on $\mathrm{R}^{3} \mathrm{x} \mathrm{S}^{1}$, with periodic BCs on S^{1}
QCD $(\operatorname{Adj})=\operatorname{SU}(\mathrm{N}) \mathrm{YM}$ theory $+\mathrm{N}_{\mathrm{F}}$ massless adjoint Majorana fermions
KUY's observation: gluons drive center-symmetry breaking, while adjoint fermions try to prevent it.

In QCD(Adj) center symmetry doesn't break at small enough L; Kovtun, Unsal, suggests volume independence may be valid at all $\mathrm{L} \sim \mathrm{N}^{0}$.

Lattice simulations consistent with confinement for all $\mathrm{L} \sim \mathrm{N}^{0}$.

On $S^{3} \times S^{1}$ with $R \wedge \ll 1$ and $N_{F}>0$, center symmetry in QCD(Adj) never breaks with periodic BCs

All evidence so far: volume independence and confinement for all $\mathrm{L} \sim \mathrm{N}^{0}$

Hagedorn instability

$$
Z(L)=\operatorname{Tr} e^{-L H}=\int d E \rho(E) e^{-L E}
$$

Hagedorn
scaling

$$
\rho(E) \sim e^{+L_{H} E}, L_{H} \sim \Delta^{-1} \quad \text { mass gap }
$$

Signature of a string theory
Expected for any confining large N theory, and can be verified explicitly for $\mathrm{R} \wedge \ll 1$.

$$
\text { Once } \mathrm{L}<\mathrm{L}_{\mathrm{H}}=1 / \mathrm{T}_{\mathrm{H}}, \text { partition function become singular! }
$$

Must have phase transition at or below T_{H} - deconfinement transition
Hagedorn instability and volume independence seem to conflict.
How can we have confinement for all L?

Volume independence vs Hagedorn

There isn't necessarily a conflict - but to avoid it we need a miracle.
Periodic BCs for fermions \Longrightarrow working with twisted partition function

$$
\begin{aligned}
\tilde{Z}(L) & =\operatorname{Tr}(-1)^{F} e^{-L H} \\
& =\int d E\left[\rho_{B}(E)-\rho_{F}(E)\right] e^{-L E}
\end{aligned}
$$

Compare this to the thermal partition function

$$
Z(\beta)=\int d E\left[\rho_{B}(E)+\rho_{F}(E)\right] e^{-\beta E}
$$

'All' we need is enough cancellation between ρ_{B} and ρ_{F}

How much cancellation do we need?

Expect Hagedorn scaling for both ρ_{B} and ρ_{F}. More precisely:

$$
\begin{aligned}
\rho_{B}(E) & \rightarrow e^{+\beta_{B, 1} E} \sum_{n=n_{1}}^{\infty} p_{B, n, 1} E^{-n}+e^{+\beta_{B, 2} E} \sum_{n=n_{1}}^{\infty} p_{B, n, 2} E^{-n}+\cdots \\
& +\sum_{n=\tilde{n}}^{\infty} \tilde{p}_{B, n} E^{-n}+\cdots \\
\rho_{F}(E) & \rightarrow e^{+\beta_{F, 1} E} \sum_{n=n_{1}}^{\infty} p_{F, n, 1} E^{-n}+e^{+\beta_{F, 2} E} \sum_{n=n_{2}}^{\infty} p_{F, n, 2} E^{-n}+\cdots \\
& +\sum_{n=\tilde{n}}^{\infty} \tilde{p}_{F, n} E^{-n}+\cdots
\end{aligned}
$$

ALL red terms must cancel EXACTLY to avoid an instability!
This is a wildly-over-optimistic thing to expect...

Emergent fermionic symmetries

Unless, of course, cancellations enforced by some sort of symmetry!

Is there some sort of emergent fermionic symmetry at large \mathbf{N} ?
Thinking along these lines, at $N_{F}=1$, we rediscover supersymmetry.
$N_{F}=1$ fermionic symmetry happens to work away from large N as well.
If $N_{F}>1$, emergent symmetry can't be supersymmetry!
$\mathrm{N}_{\mathrm{F}}\left(\mathrm{N}^{2}-1\right)$ microscopic fermions, only ($\mathrm{N}^{2}-1$) microscopic bosons.
NB: At large N the QFT is free and S matrix is trivial.
No conflict with Coleman-Mandula-type no-go theorems.
Let's see what happens at $\mathrm{R} \wedge \ll 1$!

Level degeneracies

We have the full partition functions for all adjoint-matter theories:

$$
Z=\sum_{n=0}^{\infty} d_{n} q^{n}
$$

Hagedorn phenomenon: size of level-degeneracies d_{n} grow exponentially!
Can verify it by plotting $\log \left(d_{n}\right)$ versus n

Level degeneracies in adjoint QCD

Eyeball \Rightarrow leading exponential growth of B and F states identical (Half-integral Bose-Fermi splitting due to S^{3} curvature couplings)

Cancellation of Hagedorn instabilities

Expect the asymptotics of density of states to be described by an infinite series of exponentials, one for each 'Regge trajectory'

$$
\begin{aligned}
& \rho_{B}(E) \rightarrow e^{+\beta_{B, 1} E} \sum_{n} p_{B, n, 1} E^{-n}+e^{+\beta_{B, 2} E} \sum_{n} p_{B, n, 2} E^{-n}+\cdots \\
& \rho_{F}(E) \rightarrow e^{+\beta_{F, 1} E} \sum_{n} p_{F, n, 1} E^{-n}+e^{+\beta_{F, 2} E} \sum_{n} p_{F, n, 2} E^{-n}+\cdots
\end{aligned}
$$

Can't tell whether enough cancellations happen by eyeballing d_{n}
Instead, look for poles of partition functions $Z[q]$ in $q \in[0,1]$

$$
\text { Reason: if } d_{n} \sim a^{n} \text {, then }
$$

$$
\sum_{n} d_{n} q^{n} \sim \frac{1}{1-a q}
$$

No singularities in $[0,1] \Longrightarrow$ complete cancellation of Hagedorn.

Singularities of pure YM partition function Im x
 $$
x=e^{-L / R}
$$

Singularities of $\mathrm{N}_{\mathrm{F}}=1$ thermal $\mathrm{QCD}(\mathrm{Adj})$
$N_{F}=1$ Thermal

Singularities of $\mathrm{N}_{\mathrm{F}}=2$ thermal $\mathrm{QCD}(\mathrm{Adj})$
$N_{F}=2$ Thermal

Singularities of $\mathrm{N}_{\mathrm{F}}=1$ twisted $\mathrm{QCD}(\mathrm{Adj})$

$$
N_{F}=1 \text { Twisted }
$$

$$
\operatorname{Im} Q
$$

$$
Q=e^{-\frac{L}{2 R}}
$$

Singularities of $\mathrm{N}_{\mathrm{F}}=2$ twisted $\mathrm{QCD}(\mathrm{Adj})$

$$
N_{F}=2 \text { Twisted }
$$

$$
\operatorname{Im} Q
$$

$Q=e^{-\frac{L}{2 R}}$

Cancellation of Hagedorn instabilities

In a theory with volume independence for all L, all Hagedorn instabilities cancel for $N_{F} \geq 1$, as expected from general arguments.

Enormous cancellations in twisted partition function of QCD(Adj) testify to very tight relations between B and F states.

And it's happening in QFTs which are manifestly not supersymmetric.

$$
\begin{aligned}
\rho_{B}(E) & \rightarrow e^{+\beta_{B, 1} E} \sum_{n=n_{1}}^{\infty} p_{B, n, 1} E^{-n}+e^{+\beta_{B, 2} E} \sum_{n=n_{1}}^{\infty} p_{B, n, 2} E^{-n}+\cdots \\
& +\sum_{n=\tilde{n}}^{\infty} \tilde{p}_{B, n} E^{-n}+\cdots \\
\rho_{F}(E) & \rightarrow e^{+\beta_{F, 1} E} \sum_{n=n_{1}}^{\infty} p_{F, n, 1} E^{-n}+e^{+\beta_{F, 2} E} \sum_{n=n_{2}}^{\infty} p_{F, n, 2} E^{-n}+\cdots \\
& +\sum_{n=\tilde{n}}^{\infty} \tilde{p}_{F, n} E^{-n}+\cdots
\end{aligned}
$$

Who ordered that?

Look for inspiration in the string theory literature...

Similar Hagedorn cancellations seen in non-supersymmetric string spectra; called 'asymptotic/misaligned supersymmetry'

Implication of modular symmetries of the 2D worldsheet CFT.

Confining gauge theories are believed to have a dual string description.
Are there 2D modular symmetries controlling the spectrum of QCD(Adj) and other confining theories?

$$
\text { At least in the } \mathrm{R} \wedge \rightarrow 0 \text { limit, yes. }
$$

Confession: despite our initial inspiration, relation of result to string theory expectations is not yet clear!

Modular structure in 4D large N YM

For simplicity, consider YM first.

$$
\begin{array}{r}
Z_{\mathrm{YM}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)^{3}}{1-3 q^{n}-3 q^{2 n}+q^{3 n}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)^{3}}{\left(1+q^{n}\right)\left(1-q^{n} z\right)\left(1-q^{n} z^{-1}\right)} \\
z=2+\sqrt{3}
\end{array}
$$

Basar, AC, McGady, Yamazaki arXiv:1406.6329

Pairing of roots $\{z, 1 / z\}$ related to "T-reflection symmetry"
Analytically continue confined-phase partition function in L

$$
q=e^{-L / R} \rightarrow e^{2 \pi i \tau}
$$

Then $Z_{Y M}$ is a finite product of modular forms in τ.

$$
\operatorname{Im} \tau=L /(2 \pi R)=C_{S^{1}} / C_{S^{3}}
$$

Turning on Re τ may be related to twisting by total angular momentum

Modular structure in 4D large N YM

$$
\begin{gathered}
Z_{\mathrm{YM}}(\tau)=\eta(\tau)^{3}\left(\frac{-\sqrt{2} e^{-i \pi b} \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b+1 / 2
\end{array}\right](\tau)}\right) \sqrt{\frac{2 \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right](\tau)}} \\
\text { where } b=i \log (2+\sqrt{3}) / 2 \pi \approx 0.21 i \\
\vartheta\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right](\tau) \equiv q^{\alpha^{2} / 2} \prod_{n=1}^{\infty}\left[\left(1-q^{n}\right) \times\left(1+q^{n-\frac{1}{2}+\alpha} e^{2 i \pi \beta}\right)\left(1+q^{n-\frac{1}{2}-\alpha} e^{-2 i \pi \beta}\right)\right] \\
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
\end{gathered}
$$

Fact that b is imaginary builds in the Hagedorn singularities
$Z_{Y M}$ is a (vector-valued, meromorphic) modular form of weight $+3 / 2$
Irrationality of b means $Z_{Y M}$ lives in an infinite-dimensional vector space

Modular structure with adjoint matter

$$
\begin{gathered}
Z\left(\tau ; n_{s}\right)=\eta(\tau)^{3}\left(\frac{-\sqrt{2} e^{-i \pi b\left(n_{s}\right)} \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b\left(n_{s}\right)+1 / 2
\end{array}\right](\tau)}\right) \sqrt{\frac{2 \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right](\tau)}} \\
\text { where } b\left(n_{s}\right)=\arccos \left(2+n_{s} / 2\right) / 2 \pi \\
Z\left(\tau ; n_{s}, n_{f}\right)=\prod_{i=1}^{3} \frac{2 \cos \left(\pi b_{i}\right)}{e^{+i \pi b_{i}}} \frac{\eta(\tau)^{3}}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b_{i}
\end{array}\right](\tau)} \frac{1}{\vartheta\left[\begin{array}{c}
0 \\
b_{i}+1 / 2
\end{array}\right](\tau)} . \\
\tilde{Z}\left(\tau ; n_{s}, n_{f}\right)=\prod_{i=1}^{3} \frac{2 \cos \left(\pi b_{i}\right)}{e^{+i \pi b_{i}}} \frac{\eta(\tau)^{3}}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b_{i}
\end{array}\right](\tau)} \frac{1}{\vartheta\left[\begin{array}{c}
0 \\
b_{i}
\end{array}\right](\tau)} . \\
\text { where } b_{i}=b_{i}\left(n_{s}, n_{f}\right)
\end{gathered}
$$

(Valid for all n_{s}, n_{f} except for SUSY cases $n_{s}=2 n_{f}-2$. SUSY theory Z's are also modular, but look slightly different.)

So what?

$Z_{Y M}, Z_{Q C D(A d j)}, \ldots=$ nasty-looking functions, which turn out to be writable in terms of some special functions.

Specialness of these special functions implies some remarkable things

Reason: extremely unusual $Z_{4 D}$ be modular in a non-SUSY theory, for at least three reasons

(3) Large Im t behavior

4D-2D spectral equivalence

$$
\begin{array}{ll}
\substack{\text { confined-phase large-N 4D } \\
\text { partition function }} & Z_{4 \mathrm{D}}(\tau)=Z_{2 \mathrm{D}}(\tau) \quad \begin{array}{l}
\text { a chiral partition function } \\
\text { (character) of a 2D CFT }
\end{array}
\end{array}
$$

Spectrum of certain 4D QFTs = spectrum of certain 2D QFTs, in their respective relevant sectors.

Reason: modular forms $\mathrm{f}(\tau)$ are building blocks of 2D CFT partition functions on a torus $S_{C_{1}}^{1} \times S_{C_{2}}^{1}, \tau \sim C_{2} / C_{1}$.

`Modular properties' of $\mathrm{f}(\tau) \Longleftrightarrow$ large coordinate transforms in $\mathrm{Z}_{2 \mathrm{D}}$ \Longleftrightarrow constraints of 2D conformal symmetry

No time to explain the modular group and action on $f(\tau)$

4D-2D spectral equivalence

$$
\begin{gathered}
\text { confined-phase large-N 4D } \\
\text { partition function }
\end{gathered} \quad Z_{4 \mathrm{D}}(\tau)=Z_{2 \mathrm{D}}(\tau) \quad \begin{aligned}
& \text { a chiral partition function } \\
& \text { (character) of a 2D CFT }
\end{aligned}
$$

Spectrum of a 4D QFTs = spectrum of a 2D QFT, in their respective relevant sectors.

Reason: modular forms $\mathrm{f}(\tau)$ are building blocks of 2D CFT partition functions on a torus $S_{C_{1}}^{1} \times S_{C_{2}}^{1}, \tau \sim C_{2} / C_{1}$.

Important in view of original motivation concerning emergent symmetries!
Spectrum of 2D CFTs controlled by infinite-dimensional spectrum-generating algebras, which include Virasoro

So large N 4D spectrum should also be controlled by these symmetries!
So what are these magic 2D CFTs?

You can't hear the shape of a drum

Spectra of two QFTs can be the same while correlators differ, so identification of 2D CFT based just on $\mathrm{Z}_{4 \mathrm{D}}$ can't be unique.

The remarkable thing is that concrete 2D CFTs with chiral partition functions coinciding with the large $N Z_{4 D}$'s exist.

This miracle definitely does not happen for generic 4D theories.

4D-2D spectral equivalence for YM

$$
Z_{\mathrm{YM}}(\tau)=\eta(\tau)^{4} \frac{1}{\eta(\tau)}\left(\frac{-\sqrt{2} e^{-i \pi b} \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b+1 / 2
\end{array}\right](\tau)}\right) \sqrt{\frac{2 \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right](\tau)}}
$$

2 copies of chiral partition function of $\mathrm{c}=-26$ bc-ghost CFT (with necessary zero mode insertions)
chiral (e.g. left-mover) partition
 function of $c=1$ scalar CFT
b sets fugacity $z=e^{2 i \pi b}$ for $U(1)$ conserved charge in $c=2 \beta \gamma$-ghost CFT
The $c=2 \beta \gamma$-ghost CFT is irrational and logarithmic
Large-N 4D YM is (spectrum) equivalent to a 2D direct-product irrational CFT.
Similar story goes for theories with matter.

4D-2D spectral equivalence for YM

$$
Z_{\mathrm{YM}}(\tau)=\eta(\tau)^{4} \frac{1}{\eta(\tau)}\left(\frac{-\sqrt{2} e^{-i \pi b} \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b+1 / 2
\end{array}\right](\tau)}\right) \sqrt{\frac{2 \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
0
\end{array}\right](\tau)}}
$$

2 copies of chiral partition function of $\mathrm{c}=-26$ bc-ghost CFT (with necessary zero mode insertions)
chiral (e.g. left-mover) partition
chiral partition function of $\mathrm{c}=1$ scalar with R-NS boundary conditions
chiral partition function of ac $=2 \beta \gamma$-ghost CFT
b sets fugacity $z=e^{2 i \pi b}$ for $U(1)$ conserved charge in $c=2 \beta \gamma$-ghost CFT
The $c=2 \beta \gamma$-ghost CFT is irrational and logarithmic
Large-N 4D YM is (spectrum) equivalent to a 2D direct-product irrational CFT.
Similar story goes for theories with matter.

Small $|\tau|$ behavior

Partition functions of generic 4D QFTs on $\mathrm{M}_{3} \mathrm{xS}{ }^{1} \mathrm{~L}$ behave like

$$
\log Z(L \rightarrow 0) \rightarrow \sigma \operatorname{Vol}_{M_{3}} L^{-3}
$$

Free massless scalar on S^{3}

$$
\begin{gathered}
Z_{\text {scalar }}=q^{1 / 240} \prod_{n \geq 1}\left(1-q^{n}\right)^{-n^{2}} \\
\log Z_{\text {scalar }}(L \rightarrow 0) \rightarrow \frac{\pi^{4} R^{3}}{45} L^{-3} \quad \text { as } L \rightarrow 0
\end{gathered}
$$

Vanishing of L^{-3} requires a symmetry; for instance, SUSY does the job. But most of our examples manifestly lack SUSY.

Small $|\tau|$ behavior of $\mathrm{QCD}(\mathrm{Adj})$

Partition functions of generic 4D QFTs on $\mathrm{M}_{3} \times \mathrm{S}^{1} \mathrm{~L}$ behave like

$$
\log Z(L \rightarrow 0) \rightarrow \sigma \operatorname{Vol}_{M_{3}} L^{-3}
$$

But large N confining-phase gauge theories are not generic QFTs.

Small $|\tau|$ behavior of $\mathrm{QCD}(\mathrm{Adj})$

Partition functions of generic 4D QFTs on $\mathrm{M}_{3} \mathrm{xS}{ }^{1} \mathrm{~L}$ behave like

$$
\log Z(L \rightarrow 0) \rightarrow \sigma \operatorname{Vol}_{M_{3}} L^{-3}
$$

But large N confining-phase gauge theories are not generic QFTs.

$$
\log Z(L \rightarrow 0) \rightarrow \sigma R L^{-1}
$$

Infinite sum over the particle species conspires to kills the L^{-3} term.
QCD(Adj) behaves as if it were a 2D QFT, for any N_{F}
Vanishing of the L^{-3} term is due to modular symmetries.

$$
f(|\tau| \gg 1)=e^{2 \pi i \tau \Delta}(1+\ldots) \quad \Longrightarrow \quad f(|\tau| \ll 1)=e^{-2 \pi i \Delta / \tau}(1+\ldots)
$$

(Can be generalized for θ functions)

Small $\operatorname{Im} \tau$ behavior of YM

For thermal partition functions like $Z_{Y M}$, correct statement is

$$
\lim _{\arg \tau \rightarrow \pi / 2}\left[\lim _{|\tau| \rightarrow 0} \log Z_{\mathrm{YM}}(\tau)\right] \rightarrow \kappa_{\mathrm{YM}} R / L
$$

Note: opposite order governed by deconfined phase, gives $\log Z \sim L^{-3}$

Large $\operatorname{Im} \tau$ behavior: the vacuum energy

'vacuum energy' of modular forms fixed by modular symmetries in terms of the spectral data $\left\{\mathrm{C}_{n}\right\}$

$$
\chi(\tau)=q^{\Delta} \sum_{n} c_{n} q^{n}
$$

Modularity of $Z_{4 D}$ then fixes $E_{\text {vac }}$, with result independent of N_{S}, N_{F}

$$
E_{\mathrm{vac}}=0= \begin{cases}3 \times \frac{1}{24}+\left(\frac{1}{24}-\frac{1}{8}\right)+\frac{1}{2}\left(\frac{1}{24}-\frac{1}{8}\right), & \text { pure YM } \\ 3 \times\left[\frac{1}{24}+\left(\frac{1}{24}-\frac{1}{8}\right)+\left(\frac{1}{24}-0\right)\right], & \text { QCD(Adj) with } N_{f}=2 \\ \cdots & \cdots\end{cases}
$$

Modularity forbids finite counter-terms which could otherwise shift Evac.
Matches recent direct evaluations of large N spectral sums
NB: Assumes $N \rightarrow \infty$ before $\mu_{\mathrm{uv}} \rightarrow \infty$.
Given $\Lambda=\mu_{\mathrm{uv}} e^{-\frac{8 \pi^{2}}{\beta_{0} \lambda\left(\mu_{\mathrm{uv})}\right)}}$, natural order for confining theories.
In literature on e.g. $\mathcal{N}=4$ SYM, opposite order used, giving a different result.

The role of large N

To see why large N is vital, consider YM at finite N on $\mathrm{S}^{3} \mathrm{x} \mathrm{S}^{1}$.

QFT in finite volume with finite-rank fields \Longrightarrow smooth partition function $Z(L)$

At high temperature, $\log Z \sim L^{-3}$

But any finite product of modular forms necessarily gives $\log \mathrm{Z} \sim \mathrm{L}^{-1}$ thanks to modular S transform

So for thermal partition functions, 4D-2D relations like ours are only conceivable in the large N limit.

In SUSY QFTs, $\log Z \sim L^{-1}$, so 4D-2D equivalences akin to ours conceivable - and sometimes exist! - at finite N

The importance of large N and confinement \Longrightarrow hope that results not just an accident of working at $\lambda \rightarrow 0$

Summary

Might expect some emergent symmetries at large N in confining theories

> Interplay of volume independence and Hagedorn behavior suggests emergent fermionic symmetries

We explored these issues using $\mathrm{R} \Lambda \rightarrow 0$ as a control parameter

Saw behavior consistent with emergent fermionic symmetries
Found that spectrum of confining 4D large N coincides with spectrum of certain 2D CFTs, and hence is controlled by their symmetries

Many consequences for behavior of 4D partition functions

Open questions

What happens at finite λ (finite R Λ)? Mapping for correlation functions?
What do the other sectors of 2D CFT mean in the 4D theory?
What's the explicit realization of e.g. Virasoro symmetry on 4D side?
Expect conserved higher spin currents at $\mathrm{R} \Lambda \rightarrow 0$ in 4D theories; do associated 2D CFTs have a W symmetry?

Relation to other 4D-2D relations?
Why is our 4D-2D relation possible at all? Origin in string theory?
There is a lot to do!
Thanks for listening!

Backup: modularity in SUSY QFTs

$$
\begin{aligned}
& \tilde{Z}_{\kappa<3}(\tau)=\eta(\tau)\left(\frac{\eta(\tau)}{\vartheta\left[\begin{array}{l}
0 \\
\frac{0}{2}
\end{array}\right](\tau)}\right) \prod_{ \pm} \frac{2 \cos \left(\pi b_{ \pm}\right) e^{-i \pi b_{ \pm}} \eta(\tau)^{2}}{\vartheta\left[\begin{array}{l}
1 / 2 \\
b_{ \pm}
\end{array}\right](\tau) \vartheta\left[\begin{array}{l}
{ }^{0} \pm
\end{array}\right](\tau)}, \\
& \tilde{Z}_{\kappa=3}(\tau)=\frac{1}{\eta(\tau)}\left(\frac{\eta(\tau)}{\vartheta\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right](\tau)}\right)^{2} \frac{2 \cos \left(\pi b_{\kappa=3}\right) e^{-i \pi b_{\kappa=3}} \eta(\tau)^{2}}{\vartheta\left[\begin{array}{l}
\left.\left.b_{\kappa=3}^{1 / 2}\right]\right](\tau) \vartheta\left[b_{\kappa=3}^{0}\right](\tau)
\end{array}\right.}
\end{aligned}
$$

k is number of adjoint $\mathcal{N}=1$ matter multiplets, so $\mathrm{k}=3$ is $\mathcal{N}=4 \mathrm{SYM}$
Modular weight is $+1 / 2$ and $-1 / 2$, compared to $+3 / 2$ for non-SUSY cases

$$
\lim _{b_{\alpha} \rightarrow 0} \frac{\cos \left(\pi b_{\alpha}\right)}{\theta_{1}\left(b_{\alpha}-\frac{1}{2}, \tau\right)}=\frac{1}{2 \eta(\tau)^{3}}
$$

Backup: 4D-2D spectral equivalence for YM

$$
Z_{\mathrm{YM}}(\tau)=\eta(\tau)^{4} \frac{1}{\eta(\tau)}\left(\frac{-\sqrt{2} e^{-i \pi b} \eta(\tau)}{\vartheta\left[\begin{array}{c}
1 / 2 \\
b+1 / 2
\end{array}\right](\tau)}\right) \sqrt{\frac{2 \eta(\tau)}{\vartheta\left[\begin{array}{l}
1 / 2 \\
0
\end{array}\right](\tau)}}
$$

Large-N 4D YM is (spectrum) equivalent to a 2D direct-product irrational CFT.
To get info on primary spectrum of 2D CFT, calculated the modular orbit of $Z_{Y м}$ and the diagonal modular invariant

Eigenvalues of modular $\mathrm{T}: \tau \rightarrow \tau+1$ operator give

$$
\begin{gathered}
h^{(\mathrm{eff})}=h-c / 24(\bmod 1) \\
h_{m, \ell, \alpha}^{(\mathrm{eff})}=\frac{1}{2}\left[\frac{1-\frac{1}{2}\left(1+(-1)^{m}\right)}{8}+m^{2}|b|^{2}\right]-\alpha
\end{gathered}
$$

m , I are integers, $\alpha \in[0,1)$, consistent with irrational CFT interpretation

Backup: Simple QM example

An instructive ultra-simplified toy QM model
Finite number of degrees of freedom

$$
H=\omega b^{\dagger} b+\sum_{\substack{\text { 'gluon' } \\ \text { bosonic } \\ \text { oscillator }}}^{N_{i=1}} \omega f_{\substack{\text { 'gluino' } \\ \text { fermionic } \\ \text { oscillators }}}^{\dagger} f_{i}
$$

$$
\begin{array}{cl}
\mathrm{N}_{\mathrm{F}}=1 & Q=b^{\dagger} f,[H, Q]=0 \\
\text { general } \mathrm{N}_{\mathrm{F}} & Q_{i}=b^{\dagger} f_{i},\left[H, Q_{i}\right]=0 \quad \text { Not SUSY }
\end{array}
$$

How does the twisted partition function behave?

Twisted partition function

Compute $N_{F}=1$ twisted partition function of the toy model:

$$
\left.\begin{array}{rl}
\tilde{Z} & =\underset{|0,0\rangle}{1}+\left[\begin{array}{c}
e_{|1,0\rangle}^{-L \omega}
\end{array}-e_{|0,1\rangle}^{-L \omega}\right.
\end{array}\right]+\left[\begin{array}{c}
e_{|2,0\rangle}^{-2 L \omega}-e_{|1,1\rangle}^{-2 L \omega}
\end{array}\right]+\cdots .
$$

Twisted partition function

Compute $N_{F}=1$ twisted partition function of the toy model:

$$
\begin{aligned}
\tilde{Z} & ={\underset{|0,0\rangle}{1}+\left[\begin{array}{cc}
e_{|1,0\rangle}^{-L \omega} & -e_{|0,1\rangle}^{-L \omega}
\end{array}\right]+\left[\begin{array}{c}
e_{|2,0\rangle}^{-2 L \omega}-e_{|1,1\rangle}^{-2 L \omega}
\end{array}\right]+\cdots}=1 \quad \text { SUSY! }
\end{aligned}
$$

Compute $N_{F}=2$ twisted partition function:

$$
\begin{aligned}
& \tilde{Z}=\underset{|0,0,0\rangle}{1}+\left[\begin{array}{l}
e^{-L \omega}-\underset{|1,0,0\rangle}{2 e^{-L \omega}} e_{|0,1,0\rangle,|0,0,1\rangle}
\end{array}\right] \\
&+\left[\begin{array}{l}
e^{-2 L \omega}-\underset{|1,1,0\rangle,|1,0,1\rangle}{2 e^{-2 L \omega}}+1 e^{-2 L \omega} \\
|2,0,0\rangle
\end{array}\right] \\
&+\left[\begin{array}{l}
|0,1\rangle
\end{array}\right] \\
&\left.e_{|3,0,0\rangle}^{-3 L \omega}-\underset{|2,1,0\rangle,|2,0,1\rangle}{2 e^{-3 L \omega}}+\underset{|1,1,1\rangle}{2 e^{-3 L \omega}}\right]+\cdots
\end{aligned}
$$

Twisted partition function

Compute $N_{F}=1$ twisted partition function of the toy model:

$$
\begin{aligned}
\tilde{Z} & ={\underset{|0,0\rangle}{1}+\left[\begin{array}{c}
e_{|1,0\rangle}^{-L \omega}-e_{|0,1\rangle}^{-L \omega}
\end{array}\right]+\left[e_{|2,0\rangle}^{-2 L \omega}-e_{|1,1\rangle}^{-2 L \omega}\right]+\cdots}=1 \text { SUSY! }
\end{aligned}
$$

Compute $N_{F}=2$ twisted partition function:

$$
\begin{aligned}
& \tilde{Z}=\underset{|0,0,0\rangle}{1}+\left[\begin{array}{c}
e^{-L \omega} \\
|1,0,0\rangle
\end{array} \underset{|0,1,0\rangle,|0,0,1\rangle}{2 e^{-L \omega}}\right] \\
& +\left[\begin{array}{c}
e^{-2 L \omega}-2 e^{-2 L \omega}+1 e^{-2 L \omega} \\
|2,0,0\rangle, 1,1\rangle
\end{array}\right] \\
& \text { Not SUSY } \\
& +\left[\begin{array}{c}
e^{-3 L \omega}-\frac{2 e^{-3 L \omega}}{(3,0,0\rangle}+1 e^{-3 L \omega} \\
|2,1,0\rangle,|2,0,1\rangle
\end{array}\right]+\cdots \\
& =1+e^{-L \omega}-2 e^{-L \omega}
\end{aligned}
$$

Cancellations at $N_{F}=1$

Level ...
Level 3
Level 2
Level I
Level 0

All states contribute to thermal partition function
In twisted partition function, states in the box all cancel each other
Only states annihilated by Q (outside box) contribute to $\quad \tilde{Z}$

Cancellations at $\mathrm{N}_{\mathrm{F}}=2$

All states contribute to thermal Z, and are related by Q_{i} and J_{i}
In twisted partition function, states in the box all cancel each other
Only states annihilated by all Q_{i} (outside box) contribute to $\quad \tilde{Z}$
Cancellations start at level N_{F}

