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Hard versus easy
 Confining theories like QCD with 
N = 3 colors are notoriously hard

Free theories are easy!

Writing down the Lagrangian = solving the theory.

Strongly coupled at low energies, no analytic way 
to compute spectrum or correlation functions.

spectrum = {m1, m2, …, mK}.

correlation functions taught in first 
1-2 weeks of intro QFT class



~ 1/N2 ~ 1/N
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Free in the physical basis given by mesons and glueballs

Good news from 70s: QCD is a free theory at large N ! ‘t Hooft 1973 
Witten 1979

Bad news from 2015: these free theories are so hard, no solution yet.

Hard versus easy
 Confining theories like QCD with 
N = 3 colors are notoriously hard

Free theories are easy!



Symmetries and free spectra
Typical free relativistic QFTs with K particles have ≈ K parameters

Symmetries reduce the number of parameters.

`Symmetries’ could mean e.g. m1 = m2 = m3 (global symmetry), 
or something like mn =  2mn-1 (spectrum-generating algebra).



Symmetries and free spectra

For large N confining theories { mk } is an infinite set.

Typical free relativistic QFTs with K particles have ≈ K parameters

Only parameter in pure YM is strong scale Λ. 
In 3-flavor large N QCD, only four parameters.

Could there be some emergent (spectrum-generating) 
symmetries at N = ∞ organizing the confined-phase spectrum?

Symmetries reduce the number of parameters.

`Symmetries’ could mean e.g. m1 = m2 = m3 (global symmetry), 
or something like mn =  2mn-1 (spectrum-generating algebra).

This talk: evidence that answer is yes.

(+ θ angle)



Why should you care?

Understanding QCD = understanding a big already-observed chunk of nature

Understanding large N QCD would help if 1/N corrections are small…

… and there’s a lot of evidence that they are.

Nature

Formal theory

Confining gauge theories = rich class of non-supersymmetric string theories.

But we know very little about these particular string theories.
Better understanding of confining gauge theories ⟹ 

insights into string theory and quantum gravity.

QCD-like QFTs may be important for physics beyond the Standard Model

gstring ~ 1/N, 𝝰’ ~ Λ2



The Plan

(2) Explain concrete reason why emergent 
symmetries expected even outside such a regime

(1) Confining theories are hard even at large N.  
Introduce calculable regime to explore possible emergent symmetries.

(3) Use calculable regime to explore large N confining spectrum



Large N control parameter
To explore symmetries, need to find a control parameter “ϵ”

Want spectrum to become calculable as ϵ → 0.

Want ϵ to be a control parameter even in the ’t Hooft limit.

Want to stay in the confined phase for all ϵ.

Desires:



Key idea: if we lived in a box, QCD and its cousins would be easier

Space: T3

Once T3 is small, system becomes weakly-coupled

x

Most obvious type of box: a three-torus T3 = S1 x S1 x S1

But in Euclidean space, finite temperature T = 1/(circle size L)

Small-volume theory = high-temperature theory

Control by compactification



Key idea: if we lived in a box, QCD and its cousins would be easier

Space: T3

x

quark-gluon 
plasma

Source: CERN

Loss of confinement 
at small L !

Control by compactification

Most obvious type of box: a three-torus T3 = S1 x S1 x S1

Once T3 is small, system becomes weakly-coupled



Key idea: if we lived in a box, QCD and its cousins would be easier

Space: T3

x

quark-gluon 
plasma

Source: CERN

Loss of confinement 
at small L !

Control by compactification

Doesn’t 
work

Most obvious type of box: a three-torus T3 = S1 x S1 x S1

Once T3 is small, system becomes weakly-coupled



Sundborg 1999; 
Polyakov 2001; 

Aharony et al, 2003

A better box for studying large N confinement!

x

Space: S3

If RΛ >> 1, back to R4.  If RΛ << 1, weak coupling!

λ = λ(1/R) → 0λ(1/R) is not small

ϵ = RΛ is a control parameter for QCD.

R



Need order parameters that make sense in finite volume.

What about confinement?

(1) Realization of center symmetry

(2) N-scaling of the free energy

Both (1) and (2) require the large N limit to be well-defined!

confinement ≈ free energy F ~ N0 

confinement ≈ unbroken center symmetry

Fortunately, we want to work at large N anyway…

Sundborg 1999; 
Polyakov 2001; 

Aharony et al, 2003

Glueball masses and numbers don’t scale with N
Number of gluons scales like N2

deconfinement ≈ free energy F ~ N2 



Sundborg 1999; 
Polyakov 2001; 

Aharony et al, 2003

Unbroken/broken center 
symmetry for low/high T

O(N0) free energy for low T,    
O(N2) free energy for high T

Small RΛ behavior

Symmetry structure:

In principle small RΛ theories can be solved with any matter content.

So far, analytic results for theories with massless adjoint matter only
⟹  focus on theories with massless adjoint matter in this talk.

This is best illustrated by an illustration…



Large N phase diagram on S3
R×S1

L

Confined,

no χ-SB

Deconfined,
no χ-SB

Confined,

χ-SB

L/R ∼ 1/(Λ R)

0 (1)
Λ R

(1)

L/R



Large N confined-phase partition functions
Complete spectrum is exactly calculable when RΛ → 0, λ → 0

As λ → 0, microscopic fields Aμ, ψ, φ = matrix-valued harmonic oscillators

Gauss law ⟹ physical 
states are color singlets

With adjoint fields, color singlets are built from color traces

S3 is compact

+

-

single-particle state multi-particle state

Large N:



Large N confined-phase partition functions

(1) Get partition functions for microscopic fields, zV(q), zF(q), zS(q),  q = e-L/R.

(3) Build single-trace canonical partition function from zV(q), zF(q), zS(q)

(4) Build grand canonical partition function Z from ZST

+ + …ZST =

Z = + [ ] + …[ ]

+ + + …zv, zf, zs =
color 

Gauss law

large 
N



Large N confined-phase partition functions

Complete spectrum is exactly calculable when RΛ → 0, λ = 0

The (-1)F-twisted and thermal confined-phase 
grand-canonical partition functions are

Aharony et al
2003

These are the objects we’ll study in most of the talk.



Emergent symmetries
Will squeeze a lot of juice from RΛ → 0, λ → 0  expressions 

But free QFTs have more symmetries than interacting ones.

Can we really expect any large N emergent symmetries 
we find at small RΛ to extrapolate to large RΛ?

Consideration of large N volume independence and 
Hagedorn instabilities suggests that answer is yes.

First, a reminder of what large N volume independence is…

Basar, AC, 
Dorigoni, 

Unsal, 2013



How would glueballs find out they’re in a toroidal box?

Finite volume corrections to hadronic correlators vanish at N = ∞.

Implication: within the confined phase at large N, no phase transitions.

Large N volume independence

L

L

Discovered by Eguchi and Kawai in 1982, in YM theory

Technical argument uses center symmetry as proxy for confinement

Cartoon 
picture: 



Large N volume independence

… but the dream instantly got in trouble.

EK’s Jan. 1982 dream was for volume independence for all L…

At L ≲ 1/ΛQCD YM goes into a quark-gluon plasma phase!

Euclidean QFT on R3 x S1
L ⟺ system at temperature T = 1/L.

Volume independence only holds when L > Lc ≈ 1/ΛQCD

Bhanot, Heller, 
Neuberger 
Feb. 1982

Deconfinement transition kills volume independence



Large N volume independence

… but the dream instantly got in trouble.

EK’s Jan. 1982 dream was for volume independence for all L…

At L ≲ 1/ΛQCD YM goes into a quark-gluon plasma phase!

Euclidean QFT on R3 x S1
L ⟺ system at temperature T = 1/L.

Volume independence only holds when L > Lc ≈ 1/ΛQCD

Bhanot, Heller, 
Neuberger 
Feb. 1982

Deconfinement transition kills volume independence

Roadblock for ~25 years...



Kovtun, Unsal,  
Yaffe, 2007

Volume independence for any L
Consider adjoint QCD on R3 x S1, with periodic BCs on S1

QCD(Adj) = SU(N) YM theory + NF massless adjoint Majorana fermions

KUY’s observation: gluons drive center-symmetry 
breaking, while adjoint fermions try to prevent it.

Bringoltz+Sharpe
Hietanen, Narayanan,

Azeyanagi et al…

In QCD(Adj) center symmetry doesn’t break at small enough L; 
suggests volume independence may be valid at all L ~ N0.

Lattice simulations consistent with 
confinement for all L ~ N0.

Kovtun, Unsal,  
Yaffe, 2007

 On S3 x S1 with RL ≪ 1 and NF > 0, center symmetry 
in QCD(Adj) never breaks with periodic BCs Unsal 2007

All evidence so far: volume independence and confinement for all L ~ N0 



Must have phase transition at or below TH — deconfinement transition

Once L < LH = 1/TH, partition function become singular!

Hagedorn instability

Hagedorn 
scaling

Expected for any confining large N theory, and 
can be verified explicitly for RΛ << 1.

Sundborg 1999; 
Aharony et al, 2003

mass gap

Hagedorn instability and volume independence seem to conflict.

How can we have confinement for all L ?

Signature of a string theory



 Periodic BCs for fermions ⟹ working with twisted partition function

Compare this to the thermal partition function

There isn’t necessarily a conflict - but to avoid it we need a miracle.

Volume independence vs Hagedorn

‘All’ we need is enough cancellation between ρB and ρF

Basar, AC, 
Dorigoni, 

Unsal, 2013



Expect Hagedorn scaling for both ρB and ρF.  More precisely:

How much cancellation do we need?

ALL red terms must cancel EXACTLY to avoid an instability!

Basar, AC, 
Dorigoni, 

Unsal, 2013

This is a wildly-over-optimistic thing to expect…



Unless, of course, cancellations enforced by some sort of symmetry!

Is there some sort of emergent fermionic symmetry at large N?

Thinking along these lines, at NF = 1, we rediscover supersymmetry.

If NF > 1, emergent symmetry can’t be supersymmetry!

NF = 1 fermionic symmetry happens to work away from large N as well.

Emergent fermionic symmetries

NF (N2 - 1) microscopic fermions, only (N2 - 1) microscopic bosons.

Basar, AC, 
Dorigoni, 

Unsal, 2013

NB: At large N the QFT is free and S matrix is trivial.
No conflict with Coleman-Mandula-type no-go theorems.

Let’s see what happens at RΛ << 1!



Level degeneracies
We have the full partition functions for all adjoint-matter theories:

Basar, AC, McGady, 
2014

Can verify it by plotting log(dn) versus n

Hagedorn phenomenon: size of level-degeneracies dn grow exponentially!



Level degeneracies in adjoint QCD
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Log dn
NF = 2

Eyeball ⇒ leading exponential growth of B and F states identical

(Half-integral Bose-Fermi splitting due to S3 curvature couplings)



Expect the asymptotics of density of states to be described by an 
infinite series of exponentials, one for each ‘Regge trajectory’

Cancellation of Hagedorn instabilities

Can’t tell whether enough cancellations happen by eyeballing dn

Instead, look for poles of partition functions Z[q] in q ∈ [0,1]

No singularities in [0,1] ⟹ complete cancellation of Hagedorn.

Reason: if dn ~ an, then



x = e-L/R
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Singularities of pure YM partition function

Hagedorn 
singularities



Singularities of NF = 1 thermal QCD(Adj)

Hagedorn 
singularities



Singularities of NF = 2 thermal QCD(Adj)

Hagedorn 
singularities



Singularities of NF = 1 twisted QCD(Adj)

No Hagedorn 
singularities



Singularities of NF = 2 twisted QCD(Adj)

No Hagedorn 
singularities



In a theory with volume independence for all L, all Hagedorn 
instabilities cancel for NF ≥ 1, as expected from general arguments.

Cancellation of Hagedorn instabilities

Enormous cancellations in twisted partition function of QCD(Adj) 
testify to very tight relations between B and F states.

And it’s happening in QFTs which are manifestly not supersymmetric.



Look for inspiration in the string theory literature…

Who ordered that?

Similar Hagedorn cancellations seen in non-supersymmetric 
string spectra; called ‘asymptotic/misaligned supersymmetry’

Are there 2D modular symmetries controlling the 
spectrum of QCD(Adj) and other confining theories?

At least in the RΛ → 0 limit, yes.

Kutasov, 
Seiberg; 
Dienes, 
1990s

Basar, AC, 
McGady, 
Dienes, 

1507.08666

Implication of modular symmetries of the 2D worldsheet CFT.

Confession: despite our initial inspiration, relation of 
result to string theory expectations is not yet clear!

Confining gauge theories are believed to have a dual string description.



Modular structure in 4D large N YM
For simplicity, consider YM first.

Pairing of roots {z, 1/z} related to “T-reflection symmetry”
Basar, AC, 
McGady, 
Yamazaki

arXiv:1406.6329

Then ZYM is a finite product of modular forms in 𝝉.

Turning on Re 𝝉 may be related to twisting by total angular momentum

Analytically continue confined-phase 
partition function in L

Insiration: 
Polchinski 

1992

Basar, AC, 
McGady, 
Dienes, 

1507.08666



Modular structure in 4D large N YM

ZYM is a (vector-valued, meromorphic) modular form of weight +3/2

Fact that b is imaginary builds in the Hagedorn singularities

Irrationality of b means ZYM lives in an infinite-dimensional vector space

Basar, AC, 
McGady, 
Dienes, 

1507.08666

inverses



Modular structure with adjoint matter

(Valid for all ns, nf except for SUSY cases ns = 2nf - 2.
 SUSY theory Z’s are also modular, but look slightly different.)

Basar, AC, 
McGady, 
Dienes, 

to appear



So what?

Reason: extremely unusual Z4D be modular in a 
non-SUSY theory, for at least three reasons

(2) Small Im τ behavior

(3) Large Im τ behavior

(1) 4D-2D spectral equivalence

Basar, AC, 
McGady, 
Dienes, 

1507.08666

Implies 4D spectrum organized by 
symmetries of 2D theory

ZYM, ZQCD(Adj), … = nasty-looking functions, which turn 
out to be writable in terms of some special functions.

Specialness of these special functions implies some remarkable things

Focus here for 
time reasons



4D-2D spectral equivalence
a chiral partition function 
(character) of a 2D CFT

confined-phase large-N 4D 
partition function

Spectrum of certain 4D QFTs = spectrum of certain 2D QFTs, 
in their respective relevant sectors.

Reason: modular forms f(𝜏) are building blocks of 2D CFT 
partition functions on a torus                                           .

`Modular properties’ of f(𝜏) ⟺ large coordinate transforms in Z2D 
⟺ constraints of 2D conformal symmetry

Z2D CFT [ ] = f(𝜏)

No time to explain the modular group and action on f(𝜏)



4D-2D spectral equivalence
a chiral partition function 
(character) of a 2D CFT

confined-phase large-N 4D 
partition function

Spectrum of a 4D QFTs = spectrum of a 2D QFT, 
in their respective relevant sectors.

Reason: modular forms f(𝜏) are building blocks of 2D CFT 
partition functions on a torus                                           .

Important in view of original motivation concerning emergent symmetries!

Spectrum of 2D CFTs controlled by infinite-dimensional 
spectrum-generating algebras, which include Virasoro

So large N 4D spectrum should also be controlled by these symmetries!

So what are these magic 2D CFTs?



You can’t hear the shape of a drum

Spectra of two QFTs can be the same while correlators differ, so 
identification of 2D CFT based just on Z4D can’t be unique.

The remarkable thing is that concrete 2D CFTs with chiral 
partition functions coinciding with the large N Z4D’s exist.

This miracle definitely does not happen for  generic 4D theories.

Wikipedia



4D-2D spectral equivalence for YM

chiral (e.g. left-mover) partition 
function of c = 1 scalar CFT 

2 copies of chiral partition function 
of c = -26  bc-ghost CFT (with 

necessary zero mode insertions)

chiral partition function of 
c = 1 scalar with R-NS 
boundary conditions

chiral partition function of 
a c = 2 βγ-ghost CFT 

b sets fugacity z = e2 i π b for U(1) conserved charge in c = 2 βγ-ghost CFT 

The c = 2 βγ-ghost CFT is irrational and logarithmic

Similar story goes for theories with matter.

Large-N 4D YM is (spectrum) equivalent to a 2D direct-product irrational CFT.

Ridout, Wood 2014
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Partition functions of generic 4D QFTs on M3xS1L behave like 

Small |τ| behavior

Free massless scalar on S3

Vanishing of L-3 requires a symmetry;  for instance, SUSY does the job. 

But most of our examples manifestly lack SUSY.



Partition functions of generic 4D QFTs on M3xS1L behave like 

Finite value 
for L Log Z!

But large N confining-phase gauge theories are not generic QFTs.  

Small |τ| behavior of QCD(Adj)
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L Log[Z
˜
(L)]

NF = 2 QCD(Adj)



Small |τ| behavior of QCD(Adj)

QCD(Adj) behaves as if it were a 2D QFT, for any NF

Infinite sum over the particle species conspires to kills the L-3 term.

Vanishing of the L-3 term is due to modular symmetries.

Partition functions of generic 4D QFTs on M3xS1L behave like 

But large N confining-phase gauge theories are not generic QFTs.  

(Can be generalized for θ functions)



Small Im τ behavior of YM
For thermal partition functions like ZYM, correct statement is

Note: opposite order governed by deconfined phase, gives log Z ~ L-3

arg τ = 0.900 ⨯ π
2

arg τ = 0.970 ⨯ π
2

arg τ = 0.995 ⨯ π
2
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|τ|
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Large Im τ behavior: the vacuum energy
‘vacuum energy’ of modular forms fixed by modular 

symmetries in terms of the spectral data {cn}

Modularity of Z4D then fixes Evac, with result independent of NS, NF

Matches recent direct evaluations of large N spectral sums
Basar, AC, 
McGady, 

Yamazaki,
1408.3120

NB: Assumes N → ∞ before μuv → ∞.  

Given                                    , natural order for confining theories.  

In literature on e.g. 𝒩 = 4 SYM, opposite order used, giving a different result.

Modularity forbids finite counter-terms which could otherwise shift Evac.



The role of large N
To see why large N is vital, consider YM at finite N on S3 x S1.  

QFT in finite volume with finite-rank fields ⟹ smooth partition function Z(L)

At high temperature,  log Z ~ L-3

But any finite product of modular forms necessarily 
gives log Z ~ L-1 thanks to modular S transform

So for thermal partition functions, 4D-2D relations 
like ours are only conceivable in the large N limit.

In SUSY QFTs, log Z ~ L-1 , so 4D-2D equivalences akin to 
ours conceivable — and sometimes exist! — at finite N

Beem et al 2013 

The importance of large N and confinement ⟹ 
hope that results not just an accident of working at λ→0



Summary
Might expect some emergent symmetries at large N in confining theories

Interplay of volume independence and Hagedorn 
behavior suggests emergent fermionic symmetries

We explored these issues using RΛ → 0 as a control parameter

Saw behavior consistent with emergent fermionic symmetries

Found that spectrum of confining 4D large N coincides with spectrum 
of certain 2D CFTs, and hence is controlled by their symmetries

Many consequences for behavior of 4D partition functions



Open questions

What’s the explicit realization of e.g. Virasoro symmetry on 4D side?

What happens at finite λ (finite RΛ)? Mapping for correlation functions?

Relation to other 4D-2D relations?

Why is our 4D-2D relation possible at all?  Origin in string theory?

Thanks for listening!

There is a lot to do!

What do the other sectors of 2D CFT mean in the 4D theory?

Expect conserved higher spin currents at RΛ → 0 in 4D theories; 
do associated 2D CFTs have a W symmetry?



Backup: modularity in SUSY QFTs

κ is number of adjoint 𝒩 = 1 matter multiplets, so κ = 3 is 𝒩 = 4 SYM

Modular weight is +1/2 and -1/2, compared to +3/2 for non-SUSY cases



Backup: 4D-2D spectral equivalence for YM

Large-N 4D YM is (spectrum) equivalent to a 2D direct-product irrational CFT.

To get info on primary spectrum of 2D CFT, calculated the 
modular orbit of ZYM and the diagonal modular invariant

Eigenvalues of modular T: τ → τ + 1 operator give

m, l are integers, α ∈ [0,1), consistent with irrational CFT interpretation
Anderson+Moore, Vafa 1988



Backup: Simple QM example
An instructive ultra-simplified toy QM model

‘gluon’
bosonic 
oscillator

‘gluino’
fermionic 
oscillators

NF = 1

general NF

SUSY!

Not SUSY

How does the twisted partition function behave?

Finite number of degrees of freedom

Basar, AC, 
Dorigoni, 

Unsal, 2013



Twisted partition function
Compute NF = 1 twisted partition function of the toy model:

SUSY!



Twisted partition function
Compute NF = 1 twisted partition function of the toy model:

SUSY!
Compute NF = 2 twisted partition function:



Compute NF = 1 twisted partition function of the toy model:

SUSY!
Compute NF = 2 twisted partition function:

Not SUSY

Twisted partition function



All states contribute to thermal partition function

In twisted partition function, states in the box all cancel each other

Only states annihilated by Q (outside box) contribute to 

Level 0

Level 1

Level 2

Level 3

Level ...

| {z }
HB

| {z }
HF

|0i|0i

|1i|0i

|2i|0i

|3i|0i

|0i|1i

|1i|1i

|2i|1i

Cancellations at NF = 1

SUSY!



|0i|00i

|1i|00i

|2i|00i

|3i|00i

|0i|10i |0i|01i

|0i|11i|1i|10i |1i|01i

|1i|11i|2i|10i |2i|01i

| {z }
F

| {z }
B

| {z }
B

Level 0

Level 1

Level 2

Level 3

Level ...

Cancellations at NF = 2

All states contribute to thermal Z, and are related by Qi and Ji

In twisted partition function, states in the box all cancel each other

Only states annihilated by all Qi (outside box) contribute to 

Cancellations start at level NF

NotSUSY!


