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Stringy theory on AdS3 at tensionless point

In the context of the AdS3/CFT2 correspondence, the symmetric
product orbifold CFT of the D1-D5 system is dual to string theory
on AdS3 × S3 × T4 at the tensionless point.

[Gaberdiel & Gopakumar, ‘14]

The symmetric orbifold CFT has an infinite tower of massless
conserved higher spin (HS) currents, a closed subsector of which
are dual to the HS fields of the Vasiliev theory.

This work: we consider deformation of the symmetric orbifold CFT
which corresponds to switching on the string tension and study the
behaviour of symmetry generators of the theory.
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where M is T4 or K3.

In the limit where size of T4 � size of S1, worldvolume gauge
theory of D branes is a 2d field theory that lives on S1.

It flows in IR to a CFT described by a sigma model whose target
space is a resolution of symmetric product orbifold

[Vafa, ‘95]

SymN+1(T4) = (T4)N+1/SN+1, (N + 1 = N1N5).



D1-D5 system
0   1   2   3   4   5   6   7   8   9

where M is T4 or K3.

AdS3/CFT2

String theory on AdS3 × S3 × T4 is dual to symmetric product
orbifold CFT. [Maldacena, ‘97]

Free orbifold point is the analogue of free Yang Mills theory for the
case of D3 branes.



Symmetric product orbifold CFT

I 2d N = (4, 4) SCFT with SO(4)R ∼= SU(2)L × SU(2)R
R-symmetry.

I Generators of left-moving superconformal algebra: Ln, Gα
r ,

and J ln (similar for right-moving generators).

I At the orbifold point, we have a free CFT of 2(N + 1) complex
bosons and 2(N + 1) complex fermions and their conjugates:

∂φia, ∂φ̄ia, ψi
a, ψ̄i

a, i ∈ {1, 2}, a ∈ {1, · · · ,N + 1},

plus right-moving counterparts.

I SN+1 acts by permuting N + 1 copies of T4.



Twisted sector
I The orbifold group, SN+1, acts by permuting the N + 1 copies

(labelled by a). It defines states belonging to a new sector of the
Hilbert space: the twisted sector.

I Twist operators σ(12···n) define new boundary conditions of the

fundamental fields ∂φia and ψi
a and their conjugates:

∂φi1 → ∂φi2 → ∂φi3 → · · · → ∂φin → ∂φi1,

ψi
1 → ψi

2 → ψi
3 → · · · → ψi

n → ψi
1.

twist-2untwisted
1

2

3

4

N+1



Higher spin holography

Non-supersymmetric version:

Vasiliev HS theory on AdS3 ⇐⇒ 2dWN,k

along with a complex scalar minimal model CFTs

in the large-N ’t Hooft limit, where λ = N
N+k .

[Gaberdiel & Gopakumar, ‘10]

WN,k minimal model series are described in terms of cosets

su(N)k ⊕ su(N)1

su(N)k+1
.

Agreement in the ’t Hooft limit:

I symmetries, [Gaberdiel & Hartman, ’11; Gaberdiel & Gopakumar, ’13]

I spectra, [Gaberdiel, Hartman, Gopakumar, Raju, ’11]

I correlation functions. [Chang & Yin, ’11; Ammon, Kraus, Perlmutter, ’11]



Higher spin holography

Supersymmetric version:

Vasiliev HS theory on AdS3 ⇐⇒ a class 2d coset CFTs

[Gaberdiel & Gopakumar, ‘13]

The Wolf space coset CFTs are described by cosets

su(N + 2)
(1)
k+N+2

su(N)
(1)
k+N+2

∼=
su(N + 2)k ⊕ so(N + 4)1

su(N)k+2
.

[Sevrin et. al., ‘88; Spindel et. al., ’88; Van Proeyen, ’89]

I Both theories have large N = 4 symmetry: this is the symmetry
algebra of the CFT dual to string theory on AdS3 × S3 × S3 × S1

(with two su(2) affine algebras).

I The symmetries and spectra of the two theories agree in the large N,
k ’t Hooft limit, λ = N+1

N+k+2 .



Higher spin embedding

I Symmetry algebra of string theory on AdS3 × S3 × T4 is small N = 4:
take the limit where N = 4 contracts to N = 4.

I One su(2) becomes the R-symmetry algebra of N = 4 theory and the
other one becomes a global symmetry.

I In this limit, the coset CFT reduces to a U(N) group orbifold (a
continuous orbifold):

(T4)N+1/U(N).

I Embed continuous orbifold into the symmetric group orbifold:

SN+1 ⊂ U(N).



Higher spin embedding

I The perturbative part of the HS dual coset CFT forms a closed
subsector of the symmetric orbifold CFT.

[Gaberdiel & Gopakumar, ‘14]

I All states of the symmetric orbifold CFT (dual to string theory) are

organised in terms of representations of the HS W(N=4)
∞ symmetry of

the continuous orbifold.

I The chiral algebra of symmetric orbifold CFT is written as

Zvac,stringy (q, y) =
∑

Λ

n(Λ) χ(0;Λ)(q, y).



Original W N=4
∞ algebra

(
N = 4

)
⊕

∞⊕
s=1

R(s),

s : (1, 1)
s + 1

2 : (2, 2)
R(s) : s + 1 : (3, 1)⊕ (1, 3).

s + 3
2 : (2, 2)

s + 2 : (1, 1)

Free field realisation of HS fields dual to Vasiliev theory is in terms
of neutral bilinears:

N+1∑
a=1

P1
aP

2
a , P1

a ∈ {∂#φi , ∂#ψi}, P2
a ∈ {∂#φ̄i , ∂#ψ̄i}.



Stringy HS fields

HS fields of symmetric orbifold theory come from the untwisted
sector of orbifold. Their single particle symmetry generators are:

N+1∑
a=1

P1
a · · ·Pm

a ,

where P j
a is one of the 4 bosons/fermions or their derivatives in the

ath copy.

They fall into additional W N=4
∞ representations: hugely extend

coset W algebra

W N=4
∞ ⊕

⊕
n,n̄

(0; [n, 0, · · · , 0, n̄]), m = n + n̄.



Stringy HS fields

descendants

[Gaberdiel & Gopakumar, ‘15]



Example: cubic generators (m = 3)

P1
a ,P

2
a ,P

3
a ∈ {∂#φi , ∂#ψi} or P1

a ,P
2
a ,P

3
a ∈ {∂#φ̄i , ∂#ψ̄i},

lie in the multiplets

(0; [3, 0, · · · , 0, 0]), (0; [0, 0, · · · , 0, 3]) :
∞⊕
s=2

n(s)
[
R(s)(2, 1) ⊕ R(s+3/2)(1, 2)

]
,

where
q2

(1− q2)(1− q3)
=
∞∑
s=2

n(s)qs , and

s : (2, 1)
s + 1

2
: (3, 2)⊕ (1, 2)

R(s)(2, 1) : s + 1 : (4, 1)⊕ (2, 1)⊕ (2, 3),
s + 3

2
: (3, 2)⊕ (1, 2)

s + 2 : (2, 1)

s : (1, 2)
s + 1

2
: (2, 3)⊕ (2, 1)

R(s)(1, 2) : s + 1 : (1, 4)⊕ (1, 2)⊕ (3, 2).
s + 3

2
: (2, 3)⊕ (2, 1)

s + 2 : (1, 2)
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Higgsing of stringy symmetries

I Showing that CFT dual of HS theory forms a closed subsector of
symmetric orbifold CFT provides convincing evidence for the claim
that orbifold point corresponds to tensionless limit of string thoery.

I At the tensionless point, the symmetry algebra is much bigger than
N = 4 superconformal algebra + algebra of Vasiliev HS theory.

I As string tension is switched on, HS symmetries are broken. Expect
that Regge trajectories emerge: Vasiliev fields fall into the leading
trajectory. Higher trajectories correspond to additional HS fields —
which become massless at tensionless point.

I We examine this picture by switching on string tension and studying
behaviour of symmetry generators of symmetric orbifold CFT.



Higgsing of stringy symmetries

I Switching on tension corresponds to deforming CFT away from
orbifold point by an exactly marginal operator Φ, which belongs to
twist-2 sector.

X BH
X

CFT
orbifold

I Φ has (h, h̄) = (1, 1), and transforms as (1, 1) under the
SU(2)L × SU(2)R R-symmetry and the global SO(4). It is the
super-descendant of BPS ground state: ∝ G−1/2G̃−1/2|Ψ2〉



Symmetries broken?

First order deformation analysis: criterion for spin s field W (s) of
the chiral algebra to remain chiral under deformation by Φ

[Cardy, ’90; Fredenhagen, Gaberdiel, Keller, ’07;

Gaberdiel, Jin, Li, ‘13]

N (W (s)) ≡
bs+hΦc−1∑

l=0

(−1)l

l!
(L−1)l W

(s)
−s+1+l Φ = 0,

where

∂z̄W
(s)(z , z̄) = g πN (W (s)).

N = 4 superconformal algebra is preserved, while HS currents are
not conserved: gigantic symmetry algebra is broken down to the
N = 4 SCA.



Conformal perturbation theory

Compute relevant anomalous dimensions quantitatively and
determine masses of the corresponding fields.

Consider adding a small perturbation to the action of free CFT.
The normalised perturbed 2pf is:

〈
W (s)i (z1)W (s)j(z2)

〉
Φ

=

〈
W (s)i (z1)W (s)j(z2)eδS

〉
〈
eδS
〉 , δS = g

∫
d2w Φ(w , w̄) .

Upon expanding in powers of g , we have〈
W (s)i (z1)W (s)j(z2)

〉
Φ
−
〈
W (s)i (z1)W (s)j(z2)

〉
=

g 2

2

(∫
d2w1 d

2w2

〈
W (s)i (z1)W (s)j(z2) Φ(w1, w̄1) Φ(w2, w̄2)

〉
−
∫

d2w1 d
2w2

〈
W (s)i (z1)W (s)j(z2)

〉 〈
Φ(w1, w̄1) Φ(w2, w̄2)

〉)
+O(g 3) .



Anomalous dimensions

2pf of quasiprimary operators is of the form

〈
W (s)i (z1)W (s)j(z1)

〉
Φ
∼ c ij

(z1 − z2)2(s+γ ij ) (z̄1 − z̄2)2γ̄ ij
,

where for small γ ij reads

≈ c ij

(z1 − z2)2s

(
1−2γ ij ln(z1−z2)−2γ̄ ij ln(z̄1−z̄2)+· · ·

)
.

Read coefficient of the log term in perturbed 2pf.



Anomalous dimensions

To first order, γij is given by 3 point function〈
W (s)i (z1) Φ(w1, w̄1) W (s)j(z2)

〉
which vanishes: Φ has hΦ = h̄Φ = 1 while W ’s have h̄W = 0.

Leading correction to the 2pf appears at second order:

γ ij = g2π2
〈
N (W (s)i ) N (W (s)j)

〉
,

N (W (s)) ≡
bs+hΦc−1∑

l=0

(−1)l

l!
(L−1)l W

(s)
−s+1+l Φ.



Operator mixing

In general, matrix γij is not diagonal: need to diagonalise it to
extract anomalous dimensions.

I In general, fields within each family, m = 2, 3, · · · , mix (multiplicities
n(s) > 1).

I There is also mixing present between fields from different families.

descendants
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Vasiliev HS fields:

W (s) =
s−2∑
q=0

(−1)q
(
s − 1

q

)(
s − 1

q + 1

)
∂s−1−qφ̄1∂q+1φ2,

γ ij = g2π2
〈
N (W (s)i ) N (W (s)j)

〉
.



Vasiliev HS fields:

W (s) =
s−2∑
q=0

(−1)q
(
s − 1

q

)(
s − 1

q + 1

)
∂s−1−qφ̄1∂q+1φ2.

The diagonal elements γ ii can be computed analytically and in
closed form:

γ(s) =
g2π2

∑s
p=0(−1)s−p

(
2s
s−p
)
P2(s, p)

(N + 1)E2(s)
,

where

E2(s) =

s−1∑
q=0

s−1∑
p=0

(−1)s+1+p+q
(s
q

)( s

q + 1

)(s
p

)( s

p + 1

)
×
(
(−2)(q)(−2− q)(s−p−1)(−2)(s−q−1)(q − s − 1)(p)

)
,

P2(s, p) =

p−3/2∑
n=3/2

n(p − n)f (s, p, n)f (s,−p, n − p)

+ 3
2

(−1)s+1 Θ(p − 2)f (s, p, 1/2)f (s,−p,−1/2) (p − 1/2)

+ 1
2
δp,1 f (s, 1, 1/2)f (s,−1,−1/2) ,

f (s, p, n) =

s−1∑
q=0

(−1)q
(s
q

)( s

q + 1

)
(−1− p + n)(s−q−1) (−1− n)(q).



Regge trajectories
I Vasiliev HS generators correspond to the leading Regge trajectory

(blue diamonds); have lowest masses for a given spin.

I Cubic generators describe the first sub-leading Regge trajectory
(brown circles).
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Regge trajectories
I Diagonalisation of complete mixing matrix becomes complicated as

spin increases: we have solved it completely for low-lying fields (X ’s).

I For cubic generators, we perform partial diagonalisation at larger spin
where we only diagonalise γij among the fields of m = 3.
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Regge trajectories
I Diagonal entries of Regge trajectories behave as γ(s) ∼= a log s at large

spin, with dispersion relation E (s) ∼= s + a log s. This suggests that
symmetric orbifold CFT is dual to an AdS3 background with pure RR
flux. [Loewy, Oz, ’03; David, Sadhukhan, ‘14]
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Summary:
I Computed anomalous dimensions of the HS generators of symmetric

orbifold CFT as the string tension is switched on.

I HS fields of original W(N=4)
∞ algebra form a decoupled subsector at

tensionless point. As tension is switched on, they couple with stringy
symmetry generators.

Future directions:

I Solve for exact anomalous dimensions for higher spins and determine
shape of dispersion relations.

I Derive anomalous diemensions for symmetric product orbifold of K3.
[Baggio, Gaberdiel, and Peng, ‘15]

I Compute the anomalous dimensions from the dual AdS viewpoint.
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