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Outline:

Brief review: constructing lattice actions with exact supersymmetry
N = 4 Yang-Mills on the lattice (S.C, Poul Damgaard, Tom
DeGrand, Joel Giedt, David Schaich, arXiv:1410.6971,
arXiv:1411.0166, arXiv:1405.0644, arXiv:1505.03135)
Recent results: Konishi anomalous dimension and static potential
Applications: black hole thermodynamics (S.C Toby Wiseman,
Anosh Joseph, arXiv:1008.4964,arXiv:0803.4964)
Generalizations: lattice quivers and 2d super QCD. Dynamical
susy breaking (S.C, Aarti Veernala, arXiv:1505.00467)
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Motivations and difficulties of lattice supersymmetry

Lots of interesting physics in supersymmetric gauge theories:
dualities, holography, conformality, . . .

Lattice promises non-perturbative insights from first principles

Problem: Discrete spacetime breaks supersymmetry algebra{
QI
α,Q

J
α̇

}
= 2δIJσµαα̇Pµ where I, J = 1, · · · ,N

=⇒ Impractical fine-tuning generally required to restore susy,
especially for scalar fields (from matter multiplets or N > 1)

Solution: preserve subset of susy algebra on lattice
Possible for N = 4 supersymmetric Yang–Mills (SYM)
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Brief review of N = 4 SYM
N = 4 SYM is a particularly interesting theory
—AdS/CFT correspondence

—Testing ground for reformulations of scattering amplitudes

—Arguably simplest non-trivial field theory in four dimensions

Basic features:
SU(N) gauge theory with four fermions ΨI and six scalars ΦIJ,

all massless and in adjoint rep.

Action consists of kinetic, Yukawa and four-scalar terms
with coefficients related by symmetries

Supersymmetric: 16 supercharges QI
α and Q

I
α̇ with I = 1, · · · ,4

Fields and Q’s transform under global SU(4) ' SO(6) R symmetry

Conformal: β function is zero for any ’t Hooft coupling λ
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Topological twisting −→ exact susy on the lattice
What is special about N = 4 SYM ?
Global symmetries admit a “twisted rotation group":

SO(4)tw ≡ diag
[
SO(4)Lorentz ⊗ SO(4)R

]
SO(4)R ⊂ SO(6)R

eg. ΨI
α → LαβΨJ

β(RT )JI When R = L transforms like matrix ...

Ψ = ψI + ψµγµ + ψµνγµγν + . . .
repackage

= ηI + ψaγa + χabγaγb

with a,b = 1 . . . 5

Fermions appear as p-forms in twisted theory!

This change of variables gives a susy subalgebra {Q,Q} = 2Q2 = 0
This subalgebra can be exactly preserved on the lattice
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Twisted N = 4 SYM fields and Q
Everything transforms with integer spin under SO(4)tw — no spinors

QI
α and Q

I
α̇ −→ Q, Qa and Qab

ΨI and Ψ
I −→ η, ψa and χab

Aµ and ΦIJ −→ Aa = (Aµ, φ) + i(Bµ, φ) and Aa

The twisted-scalar supersymmetry Q acts as

Q Aa = ψa Q ψa = 0

Q χab = −Fab Q Aa = 0
Q η = d Q d = 0

↖ bosonic auxiliary field with e.o.m. d = DaAa

1 Scalars→ vectors under twisted group. Combine with gauge fields
2 The susy subalgebra Q2 · = 0 is manifest
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Twisted N = 4 action

Obtain by dimensional reduction of twisted N = 2 Yang-Mills in five
dimensions:

S =
N
2λ
Q
∫

M4×S1
Tr
(
χabFab + η[Da,Da]− 1

2
ηd
)

. − N
8λ

∫

M4×S1
εabcde TrχabDcχde

Q2 = 0 and Bianchi guarantee supersymmetry independent of
metric of M4

Marcus/GL twist of N = 4.
First obtained via orbifolding/deconstruction methods by Kaplan
and Unsal.

Simon Catterall (Syracuse) N = 4 Yang-Mills on a lattice: an update Toronto November 17 2015 7 / 34



Lattice N = 4 SYM fields and Q
The lattice theory is very nearly a direct transcription

Covariant derivatives −→ finite difference operators eg.

Daψb → Ua(x)ψb(x + a)− ψb(x)Ua(x + b)

Gauge fields Aa −→ gauge links Ua

Q Aa −→Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Aa −→Q Ua = 0
Q η = d Q d = 0

Geometrical formulation facilitates discretization
η live on lattice sites ψa live on links
χab face links
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Twisted fermions on lattice

Twisted fermions satisfy Kähler-Dirac equation
(D − D†)Ψ = 0, Ψ = (η, ψµ, . . .) - collection of p-forms
Can be discretized without inducing fermion doubling – map to
staggered quarks where 4 tastes yield 4 Majorana fermions of
N = 4 - no rooting ...
Link fermions + lattice gauge invariance protects lattice theory
from fermion masses ...
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A∗4 lattice with five links in four dimensions
Maximize global symmetries of lattice theory if treat all five Ua
symmetrically (S5 symmetry)

Requirement selects lattice!

—Start with hypercubic lattice
in 5d momentum space

—Symmetric constraint
∑

a ∂a = 0
projects to 4d momentum space

—Result is A4 lattice
−→ dual A∗4 lattice in real space
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Novel features of lattice construction
Fermions live on links not sites
To keep Q-susy (complex) gauge links Ua must also live in algebra
like the fermions.
Employ flat not Haar measure DUDU . Still gauge invariant!
Correct naive continuum limit forces use of complexified U(N)
theory. Allows for expansion Ua = I +Aa + . . .

Exact lattice symmetries strongly constrain renormalization
Single marginal coupling remains to be tuned to restore all SUSYs in

continuum limit

Not quite suitable for numerical calculations
Exact 0 modes/flat directions must be regulated especially the U(1)

Need soft scalar mass term coeff µ2 to regulate U(1) scalars but this is
not enough ....
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Lattice monopole instabilities
Flat directions in U(1) gauge field sector can induce transition to
confined phase at strong coupling

This lattice artifact is not present in continuum N = 4 SYM

Around λlat ≈ 2. . .
Left: Polyakov loop falls towards zero

Center: Plaquette determinant falls towards zero
Right: Density of U(1) monopole world lines becomes non-zero

One simple fix: add a susy breaking term δS = κ|det Pab − 1|2 to
action and take limit κ→ 0 at end
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Supersymmetric lifting of the U(1) flat directions
arXiv:1505.03135

Better: modify e.o.m for auxiliary field d to add new moduli space
condition det Pab = 1 GL(N,C)→ SL(N,C)

S =
N

2λlat
Q
(
χabFab + ↓ − 1

2
ηd
)
− N

8λlat
εabcde χabDc χde + µ2V

η

(
DaUa + G

∑

P
[detP − 1] IN

)

Scalar potential breaks Q softly. Ward
identity restored as 1/L→ 0
Improved action O(a) improved

since Q forbids all dim-5 operators
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Simulation results - preliminary

Use RHMC algorithm. Like lattice QCD. Public code available at

github.com/daschaich/susy

Evolved from MILC code, presented in arXiv:1410.6971

Results
Static potential.
Anomalous dimensions.
Latter rely in part on a recently formulated real space RG which
respects the lattice Q-symmetry (arXiv:1408.7067)
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Static potential
Fit to V (r) = C/r + σr using Wilson loops.

String tension σ ∼ 0 all λ
Single, deconfined phase !
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Coulomb fits

Coulomb coefficient

Left: Agreement with perturbation theory for N = 2, λ . 2

Right: Tantalizing
√
λ-like behavior for N = 3, λ & 1,

possibly approaching large-N AdS/CFT prediction C(λ) ∝
√
λ
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Konishi operator scaling dimension
N = 4 SYM is conformal at all λ

−→ power-law decay for all correlation functions

The Konishi operator is the simplest conformal primary operator

OK =
∑

I

Tr
[
ΦIΦI] CK (r) ≡ OK (x + r)OK (x) ∝ r−2∆K

There are many predictions for the scaling dim. ∆K (λ) = 2 + γK (λ)

From weak-coupling perturbation theory (2-4 loops). Planar limit.
From holography for N →∞ and λ→∞ but λ� N

Upper bounds from the conformal bootstrap
S duality: 4πN

λ ←→ λ
4πN

Only lattice gauge theory can access nonperturbative λ at moderate N
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Konishi correlator

Extract scalar fields from polar decomposition of complexified links

Ua ' Ua (IN + ϕa) ÔK =
∑

a

Tr [ϕaϕa] OK = ÔK −
〈
ÔK

〉

CK (r) = OK (x + r)OK (x) ∝ r−2∆K
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Konishi scaling dimension from Monte Carlo RG
∆K obtained by linearizing RG transformation at fixed point
Q preserving RG/blocking transformation can be used on Monte Carlo
ensemble.
Correlators of appropriate basis set of operators yield estimate of
linearized RG matrix
Eigenvalues yield scaling dimensions ..

RG blocking parameter ξ set by
matching plaquettes for L vs. L/2

Horizontally displaced points use
different auxiliary couplings µ & G

Currently running larger λlat
and larger N = 3, 4

Uncertainties reflect RG steps, volumes, number of operators
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Summary so far
Class of supersymmetric theories that may be discretized while
preserving some SUSY. Includes N = 4 Yang-Mills in 4D.
Lattice symmetries strongly constrain quantum effective action:
moduli space survives quantum correction, only a single marginal
coupling (may) need to be tuned to restore all SUSYs in
continuum limit.
Lattice simulations reveal single deconfined phase at all couplings.
Measurements of anomalous dims match perturbation theory at
weak coupling. Hint of large N scaling for Coulomb coeff ?

Much more remains to be done:
Go to stronger coupling, test bootstrap bounds, signs of S duality ?
Increase N - connect to holographic predictions
Check for restoration of full supersymmetry in continuum limit -
increased lattice volumes
Holographic applications, generalizations to eg super QCD
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Holographic applications

(with Toby Wiseman, Anosh Joseph)

Original AdSCFT correspondence:
N = 4 YM has dual description as strings in AdS5

SUGRA limit requires λ,N →∞ with λ << N

Applications: general holographic dualities
Maximally superymmetric YM in p + 1 dim dual to Dp-branes

At finite temperature T and in decoupling limit described by black holes
type II SUGRA

Decoupling limit: N →∞ and t = T/λ
1

3−p << 1
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Thermodynamics of D0 branes
YM on circle p = 0. Duality implies energy of black hole in IIA SUGRA
equal to energy of YM quantum mechanics:

Kadoh et al arXiv:1503.08499
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Yang-Mills on 2-torus: D1 branes

Two dimensionless parameters rx = R
√
λ, rτ = β

√
λ = 1/t

SUGRA requires large N and rx , rτ →∞

Depending on rx , rτ two types of black hole solution:
Black string: wraps the spatial direction uniformly
Black hole: localized on spatial circle

SUGRA predicts black string unstable rτ < cr 2
x

Gregory LaFlamme transition
Dual gauge theory: thermal deconfining phase transition

Order parameter: spatial Polyakov loop
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Black string black hole phase transition

Good agreement with SUGRA - blue curve rτ = cr2
x predict

c ∼ 3.5
Good agreement with high T reduction bosonic QM : red curve
rτ = ar3

x

Simon Catterall (Syracuse) N = 4 Yang-Mills on a lattice: an update Toronto November 17 2015 24 / 34



Further generalizations ...
(with Aarti Veernala)

Lattice quivers
Can construct (twisted) lattice quiver theories in D dims using same
tricks - again preserving (some) SUSY.

General idea:
Start from a theory in (D + 1) dims.
Gauge each slice in “extra" dimension independently.
Restore gauge invariance by replacing gauge fields in extra
dimension by scalar fields transforming as bi-fundamentals under
gauge groups on adjacent slices.
Remarkably the prescription for replacing derivatives by difference
operators generalizes simply to this case
Scalar SUSYs in the (D + 1) theory survive.
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Example: 2d quiver theory with (2,2) SUSY

Start from Q = 8 Yang-Mills in 3d.

Twisted lattice super YM action:

S = Q
∑

x

Tr
(
χabFab + ηDaUa +

1
2
ηd
)
−
∑

x

Tr θabcD[aχbc]

with (a,b = 1 . . . 3) and cubic lattice with face/body diagonals

Q Ua = ψa Q ψa = 0

Q χab = −Fab Q Ua = 0
Q η = d Q d = 0
Q θabc = 0
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Some more details ..
Take just 2 slices in the 3 direction with U(Nc) and U(Nf ) symmetries
and relabel fields

Nc-lattice bifundamental fields Nf -lattice
x (x , x) , (x , x) x

Uµ(x) U3 → φ(x , x) Ûµ(x)
η(x) ψ3 → λ(x , x) η̂(x)

ψµ(x) χ3µ → λµ(x + µ, x) ψ̂µ(x)
χµν(x) θ3µν → λµν(x , x + µ+ ν) χ̂µν(x)

Prescription for lattice derivatives generalizes:

Daψb(x)
3d
= χab(x) (Ua(x)ψb(x + a)− ψb(x)Ua(x + b))

b=3,a=µ→ λµ(x)
(
Uµ(x)λ(x + µ)− λ(x)Ûµ(x)

)
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Super QCD and F.I terms
Take limit gNf → 0

Û → INf×Nf

Consistent to set η̂, χ̂µν , ψ̂µ = 0
Fields λ, λµ, φ, . . . transform in fund of U(Nc) gauge symmetry
Carry additional U(Nf ) indices - global flavor symmetry

Can add a new Q exact term

∆S = rQ
∑

x

Tr η(x)INc×Nc

Yields new e.o.m for auxiliary d-field

d = DµUµ + φφ− rINc×Nc

after integrating d yields new term in action: 1
2

(
φφ− rI

)2
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Dynamical Q breaking
Spontaneous SUSY breaking indicated by < d >6= 0. Because of
F.I term depends on Nc ,Nf .
Consider

∑
x Tr d(x) =

∑
x Tr

(
φ(x)φ(x)− rINc

)

Setting r = 1 this depends on rank of Nc × Nc matrix
∑Nf

f =1 φ
fφ

f .

Nf ≥ Nc supersymmetric vacuum eg Nf = 3,Nc = 2
Nf < Nc supersymmetry broken eg Nf = 2,Nc = 3

16× 6 lattice ; λ = 1.0

Soft SUSY breaking mass, µ

1
Nc

Tr
�
φφ

�

16× 6 lattice ; λ = 1.0

Soft SUSY breaking mass, µ
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Goldstino
If susy breaks expect a massless fermion

Measure
C(t) =

∑

x ,y

〈
O′(y , t)O(x ,0)

〉

where

O(x ,0) = ψµ(x ,0)Uµ(x ,0)
[
φ(x ,0)φ(x ,0)− rINc

]

O′(y , t) = η(y , t)
[
φ(y , t)φ(y , t)− rINc

]

λ = 1.0 ; µ = 0.3
λ = 1.0 ; µ = 0.3

1
L
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Conclusions
First numerical simulations of super QCD
Can include lattice Q invariant F.I term.
See clear signals for spontaneous susy breaking depending on
Nc/Nf in accord with expectations.

16× 6 lattice ; λ = 1.0

Soft SUSY breaking mass, µ

Also < φφ >6= 0 implies Higgsing of gauge symmetries - see
signals in Polyakov lines - order parameter for confinement
Generalizations to models with antifundamentals and d=3
possible and underway ...
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Overall summary

Great progress in last decade in construction and study of
supersymmetric theories on lattice
Most of the work so far focused on formulations
Now emphasis turning to applications
Large scale simulations are possible using same tools/techniques as
lattice QCD

Lattice offers new tool to investigate strong coupling behavior away
from planar limit.
Prospects exciting !

Thank you!
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Backup: Failure of Leibnitz rule in discrete space-time

Given that
{

Qα,Qα̇

}
= 2σµαα̇Pµ = 2iσµαα̇∂µ is problematic,

why not try
{

Qα,Qα̇

}
= 2iσµαα̇∇µ for a discrete translation?

Here ∇µφ(x) = 1
a [φ(x + aµ̂)− φ(x)] = ∂µφ(x) + a

2∂
2
µφ(x) +O(a2)

Essential difference between ∂µ and ∇µ on the lattice, a > 0

∇µ [φ(x)χ(x)] = a−1 [φ(x + aµ̂)χ(x + aµ̂)− φ(x)χ(x)]

= [∇µφ(x)]χ(x) + φ(x)∇µχ(x) + a [∇µφ(x)]∇µχ(x)

We only recover the Leibnitz rule ∂µ(fg) = (∂µf )g + f∂µg when a→ 0
=⇒ “Discrete supersymmetry” breaks down on the lattice

(Dondi & Nicolai, “Lattice Supersymmetry”, 1977)
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Backup: Twisting←→ Kähler–Dirac fermions
The Kähler–Dirac representation is related to the spinor QI

α,Q
I
α̇ by




Q1
α Q2

α Q3
α Q4

α

Q
1
α̇ Q

2
α̇ Q

3
α̇ Q

4
α̇




= Q+Qµγµ +Qµνγµγν +Qµγµγ5 +Qγ5

−→ Q+ γaQa + γaγbQab

with a,b = 1, · · · ,5

The 4× 4 matrix involves R symmetry transformations along each row
and (euclidean) Lorentz transformations along each column

=⇒ Kähler–Dirac components transform under “twisted rotation group”

SO(4)tw ≡ diag
[
SO(4)euc ⊗ SO(4)R

]

↑
only SO(4)R ⊂ SO(6)R
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Backup: Revisiting the sign problem
Pfaffian can be complex for lattice N = 4 SYM, pfD = |pfD|eiα

Previously found 1− 〈cos(α)〉 � 1, independent of lattice volume

Now extending with improved action, which allows access to larger λ

Finding much larger phase fluctuations at stronger couplings

Parallel O(n3) algorithm

Typical 44 measurement
requires ∼60 hours,

∼4GB memory

Filling in more volumes & N
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Backup: Two puzzles posed by the sign problem
With periodic temporal boundary conditions for the fermions

we have an obvious sign problem,
〈
eiα〉 consistent with zero

With anti-periodic BCs and all else the same
〈
eiα〉 ≈ 1,

phase reweighting not even necessary

Why such sensitivity to the BCs?

Also, other observables
are nearly identical

for these two ensembles

Why doesn’t the sign problem
have observable effects?
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Backup: Hypercubic representation of A∗4 lattice

In the code it is very convenient to represent the A∗4 lattice
as a hypercube with a backwards diagonal
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Backup: More on flat directions
1 Complex gauge field =⇒ U(N) = SU(N) ⊗ U(1) gauge invariance

U(1) sector decouples only in continuum limit

2 Q Ua = ψa =⇒ gauge links must be elements of algebra
Resulting flat directions required by supersymmetric construction

but must be lifted to ensure Ua = IN +Aa in continuum limit

We need to add two deformations to regulate flat directions

SU(N) scalar potential ∝ µ2∑
a
(
Tr
[
UaUa

]
− N

)2

U(1) plaquette determinant ∼ G
∑

a 6=b (detPab − 1)

Scalar potential softly breaks Q supersymmetry
↖susy-violating operators vanish as µ2 → 0

Plaquette determinant can be made Q-invariant −→ improved action
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Backup: More on supersymmetric constraints
Improved action from arXiv:1505.03135

imposes Q-invariant plaquette determinant constraint

Basic idea: Modify the equations of motion −→ moduli space

d(n) = D(−)
a Ua(n) −→ D(−)

a Ua(n) + G
∑

a 6=b

[detPab(n)− 1]

Produces much smaller violations of QWard identity 〈sB〉 = 9N2/2
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Backup: Code performance—weak and strong scaling
Results from arXiv:1410.6971 using the unimproved action

Left: Strong scaling for U(2) and U(3) 163×32 RHMC

Right: Weak scaling for O(n3) pfaffian calculation (fixed local volume)
n ≡ 16N2L3NT is number of fermion degrees of freedom

Both plots on log–log axes with power-law fits
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Backup: Numerical costs for 2, 3 and 4 colors
Red: Find RHMC cost scaling ∼N5 (recall adjoint fermion d.o.f. ∝N2)

Blue: Pfaffian cost scaling consistent with expected N6

Additional factor of ∼2× from improved action, but same scaling
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Backup: N = 4 static potential from Wilson loops

Extract static potential V (r) from r × T Wilson loops

W (r ,T ) ∝ e−V (r) T V (r) = A− C/r + σr

Coulomb gauge trick from lattice QCD reduces A∗4 lattice complications
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Backup: Real space RG for susy lattices
Exact lattice symmetries (Q, S5, ghost number, gauge invariance) +
power counting lead to remarkable result: only a single marginal
coupling needs to be tuned for lattice theory to flow to continuum
N = 4 theory as L→∞, g = fixed. (arXiv:1408.7067)

However
This analysis implicitly assumes existence of RG that preserves Q

One simple blocking exists:

U ′a(x ′) a′=2a
= ξ Ua(x)Ua(x + a)

ψ′a = ξ (ψa(x)Ua(x + a) + Ua(x)ψa(x + a))

.....

ξ is free parameter obtained by matching vevs of observables
computed on initial and blocked lattices.

RG also yields a tool for extracting beta functions and anomalous
dimensions from Monte Carlo data
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Backup: Scaling dimensions from Monte Carlo RG
Write system as (infinite) sum of operators Oi with couplings ci

Couplings ci flow under RG blocking transformation Rb

n-times-blocked system is H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Consider linear expansion around fixed point H? with couplings c?i

c(n)
i − c?i =

∑

j

∂c(n)
i

∂c(n−1)
j

∣∣∣∣∣∣
H?

(
c(n−1)

j − c?j
)
≡
∑

j

T ?
ij

(
c(n−1)

j − c?j
)

T ?
ij is the stability matrix

Obtained from measured correlators of Oi
Eigenvalues of T ?

ij −→ scaling dimensions of corresponding operators
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Backup: The sign problem
In lattice gauge theory we compute operator expectation values

〈O〉 =
1
Z

∫
[dU ][dU ]O e−SB [U ,U ] pfD[U ,U ]

pfD = |pfD|eiα can be complex for lattice N = 4 SYM
−→ Complicates interpretation of

[
e−SB pfD

]
as Boltzmann weight

Instead absorb eiα into phase-quenched (pq) observables Oeiα

and reweight using Z =
∫

eiα e−SB |pfD| =
〈
eiα〉

pq

〈O〉pq =
1
Zpq

∫
[dU ][dU ]O e−SB |pfD| 〈O〉 =

〈
Oeiα〉

pq〈
eiα
〉

pq

Sign problem: This breaks down if
〈
eiα〉

pq is consistent with zero
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Backup: Pfaffian phase volume dependence
No indication of a sign problem at λlat = 1 with anti-periodic BCs

Results from arXiv:1411.0166 using the unimproved action
Fluctuations in pfaffian phase don’t grow with the lattice volume
Insensitive to number of colors N = 2, 3, 4
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Backup: Lattice quiver theory
Construction: Sugino, Matsuura via orbifolding

Simple derivation:
– Take a lattice with just 2 timeslices in z-direction and free bc.
– Choose gauge groups U(Nc) and U(Nf ) on the 2 timeslices.
– To retain gauge invariance fields on links between 2 slices must
transform as bifundamental fields under U(Nc)× U(Nf )
– Relabel fields as follows

Nc-lattice bifundamental fields Nf -lattice
x (x , x) , (x , x) x

Uµ(x) U3 → φ(x , x) Ûµ(x)
η(x) ψ3 → λ(x , x) η̂(x)

ψµ(x) χ3µ → λµ(x + µ, x) ψ̂µ(x)
χµν(x) θ3µν → λµν(x , x + µ+ ν) χ̂µν(x)
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