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Higgs-like Resonance

finally something really new!
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Ising Model

Low T High T
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X
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AdS/CFT/Un Dictionary
“Georgi” “string theorist”

unparticle state created by a CFT operator

moose quiver model

unparticle action Legendre transform of a 
holographic boundary action

mass term double trace perturbation



Why (broken) CFT’s 
are Interesting !

  pure unparticles are equivalent to RS2!

  IR cutoff at TeV turns RS2 into RS1!

  IR brane cutoff is one type of scale breaking!

  a new type of IR cutoff will lead to new!
     LHC phenomenology!



Soft-Wall

Karch, Katz, Son, Stephanov hep-ph/0602229!
Gherghetta, Batell hep-th/0801.4383

Soft wall
Karch, Katz, Son, Stephanov ’06
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Higher Dimension Operator

of AdS determines the spectrum - whether there is a discretum or a continuum, and the detailed

shape of the spectral density.

Via the AdS/CFT correspondence, this action, with a constant background field � = m2 and

neglecting Lint, encodes the physics of a large-N 4D strongly coupled CFT with scalar operators

with scaling dimensions given by

� = 2±
p

4 + m2R2 . (22)

The 5D gauge fields correspond to the global symmetries of the approximate CFT. At a minimum,

it must contain the global symmetries that are gauged in the SM, and phenomenological viability

typically forces invariance under custodial SU(2)L⇥ SU(2)R. Since we are interested in fields with

dimensions � < 2, we need to choose boundary conditions that project out the solution with larger

root in Eq. (22).

By integrating over the bulk, and using the solutions of the bulk equation of motion, we obtain a

4D boundary e↵ective theory for H. With the appropriate background field �(z) we can reproduce

Eq. (13). Di↵erent background fields will yield di↵erent spectral densities and di↵erent e↵ective

actions. To obtain the appropriate Higgs VEV a bulk potential V (H) must be included in Lint, and

other operators are allowed as well. Once the two-point function is known then gauge invariance

fixes the gauge interactions required by minimal coupling, i.e. the gauge interactions that saturate

the Ward-Takahashi identities. To obtain more general gauge form factors we can include gauge

invariant, higher dimension operators in Lint. For example if we include a higher dimension bulk

operator that couples two gauge field strengths to

H†F a
↵�F b↵�H (23)

then we will have the corresponding 4D interaction in the 1PI e↵ective action (a.k.a the boundary

e↵ective theory)

W � �(2⇡)4�4(p1 + p2 + p3 + p4)g
2c F ab

V V hh(pi; µ)Tr
⇥
F a

↵�(p1)F
b↵�(p2)

⇤
H†(p3)H(p4) . (24)

In the limit pi � µ, the form-factor F ab
V V hh(pi; µ) must become conformally invariant, and hence a

falling function of momentum. Also the coupling should vanish as µ ! 0. Setting one Higgs field

to its VEV (p = 0) yields an e↵ective 4D vertex with two gauge bosons and one Higss, that is a

form factor F ab
V V h(pi; µ) which can contribute to Vector Boson Fusion, (4). In a soft wall AdS model

with a conformally flat metric, taking zero-mode gauge bosons and with the boundary of AdS5 at

z = R, one finds that the e↵ective 4D vertex is

M = {T a, T b}
⇣
g↵�p1 · p2 � p�

1p
↵
2

⌘
F ab

V V h , (25)
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Figure 1: Form-factor for a higher dimension gauge coupling, F ab
V V h(pi; µ) in Eq. (26), as a function

of the Higgs four-momentum, for µ = 400, � = 1.5 (solid) and � = 1.1 (dashed) .

where

F ab
V V h / ṽ�g2

5

Z 1

R

dz z3 K2��(
p

µ2 � (p1 + p2)2 z)K2��(µ z)

K2��(
p

µ2 � (p1 + p2)2 R)K2��(µ R)
, (26)

which vanishes when p↵
1 or p�

2 are contracted into it. Some examples are shown in Fig. 1, as expected

the form-factor drops for p� µ.

Another example of the type of form-factor that can arise can be found in a generalized AdS

model with a bulk quartic interaction, which yield a cubic 4D interaction after setting one Higgs

fields to its VEV. With this setup one finds that the three Higgs amplitude is

Fhhh / ṽ�

Z 1

R

dz z3 K2��(
p

µ2 � p2
1 z)K2��(

p
µ2 � p2

2 z)K2��(
p

µ2 � p2
3 z)K2��(µ z)

K2��(
p

µ2 � p2
1 R)K2��(

p
µ2 � p2

2 R)K2��(
p

µ2 � p2
3 R)K2��(µ R)

, (27)

An example is shown in Fig. 2.

In both these examples we see that at low momentum the form factor is almost constant and

then peaks for momenta around µ. It would be very ine�cient to describe the form factor by

introducing higher dimension operators.

Appendix A

For the trilinear interaction H†(p + q)Aa
µ(q)H(p)�µ,a(p, q) in momentum space, one finds:

�⌫,a(p, q; µ) = gT a (2p⌫ + q⌫) �(p, q; µ) , (28)
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QC Higgs Model

G =
�i

(µ2 � p2)2�� +m4�2�

minimal parameterization requires !
two mass scales: pole and cut threshold

approach the SM in two limits:         or� ! 1 µ ! 1



QC Higgs and MW
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GB mixing 
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Gauge invariance is maintained

�

⇧ab↵�(q) = �g2hH†iT aT bhHi q
↵q�

q4

⇥
h�
µ2 � q2

�2�� � �
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GGB(q)

GGB(q) = � i
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WW Scattering

QC Higgs exchange is insufficient 
to unitarize WW scattering

at large s

Mh = �i
g4

4M2
W (2��)µ2�2�

(�s)2��



WW Scattering

QC Higgs 6 point vertex does 
unitarize WW scattering

Stancato JT, hep-ph/0807.3961

Mhh = �i
g2

4M2
W


s+

(�s)2��

(2��)µ2�2�

�
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Conclusions
The Electroweak Phase Transition is 

close to a Quantum Critical Point!
 !

The LHC can test whether the Higgs 

has a non-trivial critical exponent!


