The Quantum Critical Higgs

John Terning

Csaba Csáki, Brando Bellazzini, Jay Hubisz, Seung J. Lee, Javi Serra

hep-ph/1511.????

Outline

Higgs-like Resonance

finally something really new!

What's the problem?

Weisskopf Phys. Rev. 56 (1939) 72

What's the problem?

Weisskopf Phys. Rev. 56 (1939) 72

 $\begin{array}{r} 16419971512763993607881093447038089115 \\ -19402031160008016677277886179991476752 \\ +2441281099066559954943818225739637142 \\ +540778548177463114452974507213751495 \end{array}$

composite Higgs

SUSY

Technicolor

High T

T_c $\langle s(0)s(x)\rangle = e^{-|x|/\xi}$

at T=T_c $\xi
ightarrow \infty$

Critical Ising Model is Scale Invariant

http://bit.ly/2Dcrit

at T=T_c $\langle s(0)s(x)\rangle \propto rac{1}{|x|^{2\Delta-1}}$

Critical Ising Model is Scale Invariant

http://bit.ly/2Dcrit

at T=T_c
$$\langle s(0)s(x)\rangle \propto \frac{1}{|x|^{2\Delta-1}} = \int d^3p \, \frac{e^{ip \cdot x}}{|p|^{4-2\Delta}}$$

critical exponent

Quantum Phase Transition

Quantum Phase Transition

Quantum Critical Point

arbitrarily long RG flow

AdS/CFT

$$\langle e^{\int d^4 x \, \phi_0(x) \mathcal{O}(x)} \rangle_{\text{CFT}} \approx e^{-S_{5\text{Dgrav}}[\phi(x,z)|_{z=0} = \phi_0(x)]}$$

$$ds^2 = \frac{R^2}{z^2} \left(dx^2 - dz^2 \right)$$

 $\mathcal{O} \subset \operatorname{CFT} \leftrightarrow \phi \operatorname{AdS}_5$ field, $\phi_0(x)$ is boundary value

AdS/CFT

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(dx_{\mu}^{2} - dz^{2} \right)$$

 $z > \epsilon$

$$S_{bulk} = \frac{1}{2} \int d^4x \, dz \sqrt{g} (g^{\alpha\beta} \partial_\alpha \phi \partial_\beta \phi + m^2 \phi^2)$$
$$\phi(p, z) = az^2 J_\nu(pz) + bz^2 J_{-\nu}(pz)$$
$$\Delta[\mathcal{O}] = 2 \pm \nu = 2 \pm \sqrt{4 + m^2 R^2}$$

AdS/CFT/Unparticles

$$\phi(p,\epsilon) = \epsilon^{-\nu} R^{-3/2} \phi_0(p)$$

$$S = \frac{1}{2} \int d^4x \, dz \, \partial_z \left(\frac{R^3}{z^3} \phi \partial_z \phi\right) \qquad \text{surface}$$
term

AdS/CFT/Unparticles

$$\phi(p,\epsilon) = \epsilon^{-\nu}R^{-3/2}\phi_0(p)$$

$$S = \frac{1}{2}\int d^4x \, dz \, \partial_z \left(\frac{R^3}{z^3}\phi\partial_z\phi\right) \qquad \text{surface}$$

$$S = \frac{1}{2}\int \frac{d^4p}{(2\pi)^4}\phi_0(-p)\phi_0(p)K(p) \qquad \text{term}$$

 $K(p) = (2 - \nu)\epsilon^{-2\nu} + b p^{2\nu} + c p^2 \epsilon^{2-2\nu} + \dots$

 $K(p) = G(p) \qquad \Delta = 2 + \nu$

unparticle propagator

 $G(p) \equiv \int d^4x \, e^{ipx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle$

unparticle propagator

$$G(p) \equiv \int d^4x \, e^{ipx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle$$

= $\frac{A_d}{2\pi} \int_0^{\infty} (M^2)^{\Delta-2} \frac{i}{p^2 - M^2 + i\epsilon} dM^2$
spectral density

unparticle propagator

$$\begin{split} G(p) &\equiv \int d^4x \, e^{ipx} \langle 0|T\mathcal{O}(x)\mathcal{O}^{\dagger}(0)|0\rangle \\ &= \frac{A_d}{2\pi} \int_0^{\infty} (M^2)^{\Delta-2} \frac{i}{p^2 - M^2 + i\epsilon} dM^2 \\ &= i \frac{A_d}{2} \frac{\left(-p^2 - i\epsilon\right)^{\Delta-2}}{\sin d\pi} \quad \text{spectral density} \end{split}$$

$$A_d = \frac{16\pi^{5/2}}{(2\pi)^{2\Delta}} \frac{\Gamma(\Delta + 1/2)}{\Gamma(\Delta - 1)\Gamma(2\Delta)}$$

Legendre Transform

$$\Delta = 2 - \nu$$

$$S' = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \phi_0(-p) K \phi_0(p) + \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \phi_0(p) A(p)$$
$$S' = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} A(-p) K^{-1} A(p)$$

A is the source $K(p)^{-1} = G(p)$ ϕ_0 is the field

Klebanov, Witten hep-th/9905104

Legendre Transform

$$\Delta = 2 - \nu$$

$$S' = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \phi_0(-p) K \phi_0(p) + \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \phi_0(p) A(p)$$
$$S' = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} A(-p) K^{-1} A(p)$$
$$\langle \mathcal{O}(p') \mathcal{O}(p) \rangle \propto \frac{\delta^2 S'}{\delta A(p') \,\delta A(p)} \propto \frac{\delta^{(4)}(p+p')}{(2\pi)^4} \, (p^2)^{\Delta-2}$$

Klebanov, Witten hep-th/9905104

"Georgi"

"string theorist"

"Georgi"

"string theorist"

moose

"Georgi"

"string theorist" quiver model

moose

"Georgi"

"string theorist"

moose

"Georgi"

moose

"string theorist" quiver model double trace perturbation

"Georgi" "string theorist" moose quiver model mass term double trace perturbation

"Georgi"	"string theorist"
moose	quiver model
mass term	double trace perturbation
unparticle	state created by a CFT operator

"string theorist" "Georgi" quiver model moose double trace perturbation mass term unparticle state created by a CFT operator Legendre transform of a unparticle action holographic boundary action

Why (broken) CFT's are Interesting pure unparticles are equivalent to RS2

IR cutoff at TeV turns RS2 into RS1

IR brane cutoff is one type of scale breaking

a new type of IR cutoff will lead to new LHC phenomenology

Karch, Katz, Son, Stephanov hep-ph/0602229 Gherghetta, Batell hep-th/0801.4383

Effective Action

$$S = \int \frac{d^4 p}{(2\pi)^4} \,\mathcal{H}^{\dagger}(p) \left[\mu^2 - p^2\right]^{2-\Delta} \mathcal{H}(p)$$

$$S = \int d^4x d^4y \,\mathcal{H}^{\dagger}(x) F(x-y) \mathcal{H}(y)$$

$$F(x-y) = \left[\partial^2 - \mu^2\right]^{2-\Delta} \delta(x-y)$$

Minimal Gauge Coupling

cf Mandelstam Ann Phys 19 (1962) 1

Gauge Vertex
=
$$\frac{2p^{\alpha} + q^{\alpha}}{2p \cdot q + q^2} \left[(\mu^2 - (p+q)^2)^{2-\Delta} - (\mu^2 - p^2)^{2-\Delta} \right]$$

Ward-Takahashi Identity

 $ig\Gamma^{a\alpha}(p,q) = \frac{2p^{\alpha} + q^{\alpha}}{2p \cdot q + q^{2}} \left[\left(\mu^{2} - (p+q)^{2}\right)^{2-\Delta} - \left(\mu^{2} - p^{2}\right)^{2-\Delta} \right]$

$$iq_{\mu}\Gamma^{a\mu} = G^{-1}(p+q)T^{a} - T^{a}G^{-1}(p)$$

Higher Dimension Operator

 $H^{\dagger}F^{a}_{\alpha\beta}F^{b\alpha\beta}H$

$$\mathcal{M} = \{T^a, T^b\} \left(g^{\alpha\beta} p_1 \cdot p_2 - p_1^\beta p_2^\alpha \right) F_{VVh}^{ab} ,$$

 $F_{VVh}^{ab} \propto \tilde{v}^{\Delta} g_5^2 \int_R^\infty dz \, z^3 \, \frac{K_{2-\Delta}(\sqrt{\mu^2 - (p_1 + p_2)^2} \, z) K_{2-\Delta}(\mu \, z)}{K_{2-\Delta}(\sqrt{\mu^2 - (p_1 + p_2)^2} \, R) K_{2-\Delta}(\mu \, R)} \,,$

$$G = \frac{-i}{(\mu^2 - p^2)^{2-\Delta} + m^{4-2\Delta}}$$

minimal parameterization requires two mass scales: pole and cut threshold

approach the SM in two limits: $\Delta \to 1 \, {\rm or} \quad \mu \to \infty$

$$\begin{array}{l} \textbf{QC Higgs and M}_{W} \\ -g^{2}A_{\alpha}^{a}A_{\beta}^{b}\langle\mathcal{H}^{\dagger}\rangle T^{a}T^{b}\langle\mathcal{H}\rangle \left\{ \begin{array}{l} g^{\alpha\beta}(\Delta-2)\mu^{2-2\Delta} \\ g^{\alpha\beta}(\Delta-2)\mu^{2-2\Delta} \\ -\frac{q^{\alpha}q^{\beta}}{q^{2}} \left[(\Delta-2)\mu^{2-2\Delta} - \frac{(\mu^{2}-q^{2})^{2-\Delta} - (\mu^{2})^{2-\Delta}}{q^{2}} \right] \right\} \\ M_{W}^{2} = \frac{g^{2}(2-\Delta)\mu^{2-2\Delta}v^{2\Delta}}{4} \end{array}$$

$$g\left(\langle \mathcal{H}^{\dagger} \rangle A^{a}_{\alpha} T^{a} \Pi - \Pi^{\dagger} A^{a}_{\alpha} T^{a} \langle \mathcal{H} \rangle\right) \left[\left(\mu^{2} - q^{2}\right)^{2-\Delta} - \left(\mu^{2}\right)^{2-\Delta}\right] q^{\alpha}/q^{2}$$

Gauge invariance is maintained

$$\Pi^{ab\alpha\beta}(q) = -g^2 \langle \mathcal{H}^{\dagger} \rangle T^a T^b \langle \mathcal{H} \rangle \frac{q^{\alpha} q^{\beta}}{q^4} \\ \times \left[\left(\mu^2 - q^2 \right)^{2-\Delta} - \left(\mu^2 \right)^{2-\Delta} \right]^2 G_{GB}(q) \\ G_{GB}(q) = -\frac{i}{\left(\mu^2 - q^2 - i\epsilon \right)^{2-\Delta} - \mu^{4-2\Delta}}$$

QC Higgs exchange is insufficient to unitarize WW scattering

QC Higgs 6 point vertex does unitarize WW scattering

Stancato JT, hep-ph/0807.3961

LHC Interference

LHC Experiment

Bellazzini, Csáki, Hubisz, Lee, Serra, JT

LHC Experiment

Bellazzini, Csáki, Hubisz, Lee, Serra, JT

Conclusions

The Electroweak Phase Transition is close to a Quantum Critical Point

The LHC can test whether the Higgs has a non-trivial critical exponent