Discovering or Falsifying sub-GeV Dark Matter

Gordan Krnjaic Perimeter Institute

& Eder Izaguirre, Philip Schuster, Natalia Toro

University of Toronto Mar 23, 2015

Where Are We Now?

The LHC has found the Higgs

Questions remain: one, two, many? ... natural or not? etc.

Top question in particle physics "what triggers EWSB?" is *answered*

Where Are We Now?

The LHC has not the Higgs

Questions remain: one, two,

Top question in particle physic

tural or not? etc.

ggers EWSB?" is **answered**

Where Are We Now?

The LHC has not the Higgs

Questions remain: one, two,

Top question in particle physic

tural or not? etc.

ggers EWSB?" is answered

New priority: what is 85% of matter?

We Know Its Eqn. of State

• General Remarks

• Light Dark Matter

• Missing Momentum

• General Remarks

• Light Dark Matter

• Missing Momentum

Nightmare Scenario

Logical possibility: we may be very unlucky

Dark/visible coupling too weak for thermal equilibrium in the early universe

Mass range remains a mystery forever $10^{-33} \text{ eV} < m_{DM} < 10^{19} \text{ GeV}$

But this is not generic You have to work hard to avoid equilibrium!

Equilibrium Sharpens Focus

Number densities in equilibrium set by temp.

$$n_i(T) = \int \frac{d^3p}{(2\pi)^3} \frac{g_i}{e^{E/T} \pm 1} \sim T^3$$

For visible matter, annihilation is rapid

Antiparticles annihilate away, only the asymmetric part survives.

 $10^{-9} \times (\text{Original Abundance})$

For DM, if annihilation is too weak, too much survives at late times.

Equilibrium Sharpens Focus

1. Overclosure: Minimum Annihilation Rate $\sigma v \ge 3 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$ Symmetric DM (=) Asymmetric DM (>)

2. Perturbativity: Maximum DM Mass $\sigma v \sim g^4/M^2 \implies M \leq \text{fewTeV}$

3. Structure Formation: Minimum DM Mass $M \ge 100 \text{ keV}$

Existing experimental program covers the GeV-TeV half What about the MeV-GeV half?

1. Direct Detection: LUX XENON, CDMS...

Sensitive to dominant, (meta)stable species Large BG, tiny recoils for M < few GeV Astrophysical uncertainties

2. Indirect Detection: FGST, AMS, PAMELA...

Sensitive to dominant, (meta)stable species

Large BG for DM < few GeV (Astrophysical uncertainties)^2

Current Search Strategy

3. Colliders: LHC, Tevatron, LEP...

Weak sensitivity below ~ 10 GeV if not EFT

Why the focus on "heavy"?

 $\Omega_{DM} \implies \sigma v \simeq 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$ $\sim \frac{\alpha^2}{m_Z^2} \sim \frac{1}{(20 \,\text{TeV})^2}$

- -DM is heavy $\sim \text{TeV}$
- -DM is a thermal relic
- -DM carries SM quantum numbers
- -DM is particle/antiparticle symmetric $n_{\chi} = n_{\chi^*}$

Motivated by Supersymmetry Many DM experiments require this whole list!

LHC Assault

A	TLAS SUSY Se	arches	* - 9	5% (CL LO	ower Limits	ATLA	S Preliminary
Sta	atus: ICHEP 2014 Model	e,μ.τ.γ	.lets	Emiss	∫£ dtīfb	1) Mass limit		$\sqrt{s} = 7, 8 \text{ TeV}$
Inclusive Searches	$\begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{c} \text{ NLSP}) \\ \text{GMSB} (\tilde{c} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{array}{c} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ r, 0 - 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}\$ \$\vec{v}\$ \$\vec{v}\$ \$\vec{v}\$	$\begin{array}{c c} \textbf{1.7 TeV} & m(\tilde{q}) = m(\tilde{g}) \\ \hline \textbf{TeV} & any \ m(\tilde{q}) \\ \textbf{V} & any \ m(\tilde{q}) \\ \textbf{V} & m(\tilde{r}_1^0) = 0 \ \text{GeV}, \ m(1^n \ \text{gen.} \tilde{q}) = m(2^{nd} \ \text{gen.} \tilde{q}) \\ \hline \textbf{3 TeV} & m(\tilde{k}_1^0) = 0 \ \text{GeV}, \ m(\tilde{k}_1^0) = m(\tilde{k}_1^0) + m(\tilde{g})) \\ \hline \textbf{V} & m(\tilde{k}_1^0) = 0 \ \text{GeV} \\ \hline \textbf{W} & m(\tilde{k}_1^0) = 0 \ \text{GeV} \\ \hline \textbf{TeV} & tan\beta < 15 \\ \hline \textbf{1.6 TeV} & tan\beta > 20 \\ \hline \textbf{s TeV} & m(\tilde{k}_1^0) > 50 \ \text{GeV} \\ & m(\tilde{k}_1^0) > 50 \ \text{GeV} \\ & m(\tilde{k}_1^0) > 220 \ \text{GeV} \\ & m(\tilde{k}_1^0) > 220 \ \text{GeV} \\ & m(\tilde{k}_1^0) > 220 \ \text{GeV} \\ & m(\tilde{k}_1^0) > 10^{-d} \ \text{eV} \end{array}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2012-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. § med.	$\bar{g} \rightarrow b \bar{b} \bar{\tilde{\chi}}_{1}^{0}$ $\bar{g} \rightarrow t \bar{t} \bar{\tilde{\chi}}_{2}^{0}$ $\bar{g} \rightarrow t \bar{t} \bar{\tilde{\chi}}_{1}^{0}$ $\bar{g} \rightarrow b \bar{t} \bar{\tilde{\chi}}_{1}^{0}$	0 0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	k 1.25 \$\vec{k}\$ 1.1 Tel \$\vec{k}\$ 1.3 \$\vec{k}\$ 1.3	TeV m(k ₁ ⁰)<400 GeV Y m(k ₁ ⁰)<350 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$\begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (light), \tilde{i}_1 \rightarrow b \tilde{\chi}_1^+ \\ \tilde{i}_1 \tilde{i}_1 (light), \tilde{i}_1 \rightarrow b \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (medium), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (medium), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (heavy), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (heavy), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (heavy), \tilde{i}_1 \rightarrow t \tilde{\chi}_1^- \\ \tilde{i}_1 \tilde{i}_1 (huran GMSB) \\ \tilde{i}_2 \tilde{i}_2, \tilde{i}_2 \rightarrow \tilde{i}_1 + Z \end{array}$	0 2 e, μ (SS) 1-2 e, μ 2 e, μ 2 e, μ 0 1 e, μ 0 m 2 e, μ (Z) 3 e, μ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b 1 ono-jet/c-1 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes tag Yes Yes	20.1 20.3 4.7 20.3 20.1 20 20.1 20.3 20.3 20.3 20.3	b1 100-620 GeV b1 275-440 GeV i 110-167 GeV i 130-210 GeV i 130-210 GeV i 215-530 GeV i 210-640 GeV i 210-640 GeV i 250-640 GeV i 90-240 GeV i 90-240 GeV i 290-600 GeV	$\begin{split} m[\tilde{k}_{1}^{0}] <& 90 \ GeV \\ m[\tilde{k}_{1}^{0}] &=& m[\tilde{k}_{1}^{0}] \\ m[\tilde{k}_{1}^{0}] &=& 55 \ GeV \\ m[\tilde{k}_{1}^{0}] &=& m[\tilde{\ell}_{1}] \\ m[\tilde{k}_{1}^{0}] &=& m[\tilde{\ell}_{1}] \\ m[\tilde{k}_{1}^{0}] &=& 16 \ eV \\ m[\tilde{k}_{1}^{0}] &=& 06 \ V \\ m[\tilde{k}_{1}^{0}] &=& 150 \ GeV \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$\begin{array}{c} \tilde{\ell}_{L,\mathbf{R}}\tilde{\ell}_{L,\mathbf{R}},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}\nu(\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\chi}_{L}^{0}(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{0}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{\chi}_{0}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{0}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{3}^{*}\tilde{\chi}_{3}^{0} \rightarrow \tilde{W}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{3}^{0}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R}\ell \end{array}$	2 e, μ 2 e, μ 2 τ 3 e, μ 2 · 3 e, μ 1 e, μ 4 e, μ	0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{k}_{1}^{0}){=}0~\text{GeV} \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{0}){*}m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}){=}0~\text{GeV}, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{0}){*}m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, m(\tilde{k},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{0}){*}m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, sleptons~decoupled \\ m(\tilde{k}_{2}^{0}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{k}_{2}^{0}){*}m(\tilde{k}_{1}^{0})) \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{+}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{\tau}, \tilde{\mu}) + \tau(\epsilon$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{\sigma}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qgr$ (RPV)	Disapp. trk 0 (μ) 1-2 μ 2 γ 1 μ, displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	x̂1 270 GeV 832 GeV k̂ 832 GeV 832 GeV x̂1 230 GeV 475 GeV ŷ 1.0 TeV	$\begin{split} m[\tilde{\tau}_1^n] \cdot m[\tilde{\tau}_1^n] = &160 \text{ MeV}, \ r(\tilde{\tau}_1^n) = &0.2 \text{ ns} \\ m[\tilde{\tau}_1^n] \cdot &100 \text{ GeV}, \ 10 \ \mu \text{s} < &r(\tilde{\chi}) < &1000 \text{ s} \\ &10 < &tan \beta < &50 \\ &0.4 < r(\tilde{\tau}_1^n) < &2 \text{ ns} \\ &1.5 < &cr < &156 \text{ mm}, \ BR(\mu) = &1, \ m(\tilde{\tau}_1^n) = &108 \text{ GeV} \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X_{\tau} \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X_{\tau} \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Blinear RPV CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu \tilde{v}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\kappa}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow qqq \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	\$\vec{v}\$, 1.1 Te' \$\vec{v}\$, 1.3 Te' \$\vec{v}\$, 1.3 \$\vec{x}\$_1^1 750 GeV \$\vec{x}\$_1^1 450 GeV \$\vec{v}\$_2 916 GeV \$\vec{x}\$_2 850 GeV	1.61 TeV $\lambda'_{511} = 0.10, \lambda_{132} = 0.05$ V $\lambda'_{511} = 0.10, \lambda_{1(233)} = 0.05$ 15 TeV $m(\tilde{q}) = m(\tilde{q}), cT_{LSP} < 1 mm$ $m(\tilde{t}_{1}^{0}) > 0.2 xm(\tilde{t}_{1}^{0}), \lambda_{123} \neq 0$ $m(\tilde{t}_{1}^{0}) > 0.2 xm(\tilde{t}_{1}^{0}), \lambda_{133} \neq 0$ BR(t) = BR(t) = BR(c) = 0%	1212.1272 1212.1272 1404.2500 1405.5085 1405.5085 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow r\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 ε,μ (SS) 0	4 jets 2 b mono-jet	- Yes I Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi){<}80~{\rm GeV}, limit of {<}687~{\rm GeV} ~{\rm for}~{\rm D8}$	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8 \text{ TeV}$	$\sqrt{s} = full$	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

Null LHC SUSY results, strong bounds weak-charged DM No evidence for connection to the weak scale

Direct Detection: The End Is Near

Direct Detection: The End Is Near

Direct Detection: The End Is Near

Half of viable range remains to be explored

• General Remarks

• Light Dark Matter

• Missing Momentum

Q: Does sub-GeV DM Make Sense?

Naive concern: You "overclose" the universe

$$\langle \sigma v \rangle \sim \frac{g_V^2 g_D^2 m_\chi^2}{M_{med}^4} \implies \Omega_\chi \gg (\Omega_{DM})_{obs.}$$

Actually: Just need a lighter "mediator"

$$m_{\chi} \sim M_{med} \ , \ \langle \sigma v \rangle \sim \frac{\alpha \alpha_D}{m_{\chi}^2} \implies \frac{\Omega_{\chi}}{\Omega_{DM}} \sim 10^{-3} \left(\frac{\alpha}{\alpha_D}\right)^2 \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)^2$$

Any relic abundance can be generated

Motivates richer dark sector

<u>Q: Does sub-GeV DM Make Sense?</u> A: Yes! (too) many possibilities

CMB Constraints on MeV-GeV DM

Late time annihilation of dark matter into charged particles increases ionization of IGM near recombination

Wednesday, 4 February, 15

CMB Constraints on MeV-GeV DM

$$f \frac{\langle \sigma v \rangle_{\rm CMB}}{m_X} < \frac{2.42 \times 10^{-27} \ {\rm cm}^3/{\rm s}}{{\rm GeV}}.$$

But be careful, this assumes:

- 0. Pure annihilation (not co-annihilation)
- 1. Dark particle-antiparticle symmetry
- 2. Dirac fermion DM, s-wave annihilation (scalar, p-wave ok!)
- 3. Annihilating species is all of the DM

Model Dependent, easy to evade...

<u>CMB Constraints on MeV-GeV DM</u>

Case Study: Light, Inelastic DM

$$\Delta \equiv m_{\psi} - m_{\chi} \gg \mathrm{eV}$$

- 1. Off-diagonal coupling to mediator in mass eigenbasis
- 2. Scattering and decays depopulate excited state as universe cools

$$n_{\psi} \sim e^{-\Delta/T}$$

3. Annihilation requires both; shuts off before CMB forms

Collider Constraints on MeV-GeV DM

Beam Dump Constraints

<u>What kind of mediator interaction?</u>

Higgs Portal $(H^{\dagger}H)|\phi^{\dagger}\phi|$

Scalar mediator ϕ , SM couplings mass proportional

"Axion" Portal

$${m_f\over f_a}\, a \bar f \gamma^5 f$$

Pseudoscalar mediator a, SM couplings mass proportional

Vector Portal $\epsilon F_{\mu\nu}F'_{\mu\nu}$ Spin-1 mediatorA', SM couplings charge proportional
(Holdom, Okun)

What kind of mediator interaction?

We will always assume the harder case

 $m_{\rm MED} > 2m_{\rm DM}$

Otherwise, visible decay constraints are generally more powerful

But this also gives a clear target

If mediatory decays visibly, DM annihilation is t-channel

doesn't depend on visible mediator coupling!

CMB & Direct Detection

Late-time annihilation (CMB) and DM scattering with matter (Direct Detection):

$$\sigma v \sim g_D^2 g_{SM}^2 \left(\frac{m_{\rm DM}}{m_{\rm MED}}\right)^4 \frac{1}{m_{\rm DM}^2}$$

Same scaling as thermal cross-section! Again motivates:

$$y \equiv g_{SM}^2 g_D^2 \left(\frac{m_{\rm DM}}{m_{\rm MED}}\right)^4$$
 vs. $m_{\rm DM}$

Scaling is not as intuitive:

It's easy to overstate existing bounds by choosing *small* DM/mediator coupling! Conservative to choose *large*!

Thermal Targets

Computed using vector mediator, but qualitatively similar for others

Already ruled out < GeV! Even worse for Symm. DM

Scalar/pseudoscalar mediators robustly ruled out < GeV Dont have to split hairs about the details of the dark sector

For vector mediators, we have to be careful

DM can be **scalar / fermion**

DM can be particle-antiparticle **symmetric / asymmetric**

DM can couple to mediator **elastically / inelastically**

Simple starting point: "dark massive QED"

SM millicharged under dark QED

Simple starting point: "dark massive QED"

Elastic vs. Inelastic Coupling

Either can arise with identical field content

Elastic Models(no mass splitting)

May be constrained by CMB or Direct Detection

Inelastic Models (mass splitting)

Generically no CMB or Direct Detection constraints

Symmetric vs. Asymmetric DM

Symmetric thermal relics: $\sigma v \sim 10^{-26} \text{cm}^3 \text{s}^{-1}$ CMB imposes upper bound

Asymmetric models: $\sigma v > 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$

CMB imposes *lower* bound larger cross section = fewer antiparticles, less annihilation

If DM *ever* achieved equilibrium in the early universe There is a clear target for both scenarios

Fermion Symmetric Elastic x

Fermion Asymmetric Elastic

• General Remarks

Mediators and Portals

• Missing Momentum

New Approach: Missing Momentum

ECAL/HCAL

- 1. Prepare *low current* electrons < 100 pA
- 2. Measure incident e^{-m} momentum ~ 10 GeV
- 3. Pass through thin target $T \sim 0.1-0.01$ Rad. Length
- 4. Measure outgoing $e^- E \& PT < 1 \text{ GeV}$

Signal: a low energy electron & no other activity

Production Scaling

 $m_{A'} > 2m_{\chi} \implies$ on-shell A'-strahlung

Kinematics of DM Production (simple generalization to off-shell mediator)

Kinematics of DM Production

Signal Events:

1) Characteristic low E_e , broad spread in p_T

2) No additional deposited energy or tracks

Kinematics of DM Production

Kinematically, these are **quite** different from typical backgrounds

Irreducible Backgrounds

Other sources can carry away missing momentum

Real Missing Energy	Magnitude (10^{16}	\mathbf{EOT}_{eff})	
Brem+CCQE	$< 1 \ (T \lesssim 0.1)$		
$CCQE + \pi^0$	$< 1 \ (T \lesssim 0.1)$	$\mathbf{EOT}_{eff} = \mathbf{EOT} \times (T/X)$	
Moller+CCQE	$\ll 1 \ (T \lesssim 0.1)$		
$eN \to eN \nu \bar{\nu}$	$\sim 10^{-2}$		

Hadron photo-production

Fail to detect pion (or it backscatters)

Need fail probability below

$$\sim 10^{-2} - 10^{-3}$$

for low BG experiment

Reducible Backgrounds(Fakes)

Fail to detect SM particles

Reducible with sufficiently hermitic setup Still work in progress, need to optimize

 $\mathbf{EOT}_{eff} = \mathbf{EOT} \times (T/X_0)$

Reducible Backgrounds(Fakes)

Fermion Symmetric Inelastic

Fermion Symmetric Inelastic

 χ

Fermion Asymmetric Elastic,

Fermion Asymmetric Elastic

 χ

Light DM remains viable over thermal window

Bulk of existing program is insensitive, lots of territory left! Billion \$ program misses lower *half* of thermal range (MeV-TeV)

Missing Momentum Offers Powerful Handle

- Exploits distinctive production kinematics
- Irreducible BG negligible
- BG from "fakes" challenging but reducible
- Alongside Belle II can cover "worst case" thermal DM targets
- Dedicated experiment covers almost all territory for thermal

(scalar/fermion) x (symm/asymm) x (elastic/inelastic)

Thank You!