Signs of Analyticity in Single-Field Inflation

> Daniel Green CITA

arXiv:1502.07304 with Baumann, Lee and Porto

The Nature of Inflation

Analyticity and EFT

EFT of Inflation

Sum Rules and Observations

The Nature of Inflation

We are in the era of precision cosmology

Data appears to have a single causal origin

Only compelling model is inflation

The conventional picture of inflation is slow-roll.

All cosmological data is compatible with this picture

Inflation is a more general framework:

e.g.
$$\mathcal{L} = P(X, \phi) - V(\phi)$$
 where $X \equiv \partial_{\mu} \phi \partial^{\mu} \phi$
Armendariz-Picon et al.

This is very closely related to a superfluid with.

$$X \rightarrow \mu$$
 chemical potential

$$\delta\phi
ightarrow \pi$$
 superfluid phonon

 $P(\mu) \rightarrow$ equation of state

Can inflation have a more exotic origin?

A definition:

1. A period of quasi-dS expansion

2. A physical clock

Needed to define the end of inflation Cheung et al.

In slow roll, the clock is defined by $\phi(t)$

Raises the question: what was the clock?

We have lots of ways to make clocks

Slow-roll inflation is easiest to construct, because it is weakly coupled (like Higgs versus technicolor)

How can we tell from observations?

Current approach is to constrain EFT of clock

$$\mathcal{L} = \mathcal{L}_0 + \frac{1}{\Lambda_1^2} \mathcal{O}_1 + \frac{1}{\Lambda_2^2} \mathcal{O}_2 + \dots$$

Interactions produce non-gaussian fluctuations

Planck constrains many possible bispectra

Consistent with gaussanity at 10^{-3} level

Roughly implies that $\Lambda_i \gtrsim (5-10) \times H$

EFT tests are great when you have lots of models

Inflation doesn't require a scalar field but there are no working examples of alternatives

We have only vague guesses for what a strongly coupled model might predict

Is there more we can learn from measurements?

Problem common to any low(er) energy probe

Non-trivial relations between IR observables and UV physics have been found in a number of examples

E.g. Weinberg / QCD sum rules, Roy equations, etc.

Have been very valuable in pion physics where calculations and measurements are difficult

E.g. Application of Weinberg sum rules Das et al.

$$m_{\pi^+}^2 - m_{\pi^0}^2 = -\frac{3e^2}{16\pi^2 F_{\pi}^2} \int_0^\infty ds \, s \log s \left[\rho_V(s) - \rho_A(s)\right]$$

Uses asymptotic freedom (and analyticity in s)

Both sides are very difficult to calculate in QCD

We can measure the masses

Gives new (UV) meaning to the mass splitting

Analyticity and EFT

Causality is a basic property of physics

The response to a source is always delayed:

$$G_{\text{response}}(t,t') = \theta(t-t')\langle [\mathcal{O}(t),\mathcal{O}(t')] \rangle$$

In frequency space, this implies analyticity in UHP

Analyticity connects physics at different scales

$$\operatorname{Re} G(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} d\omega' \frac{\operatorname{Im} G(\omega)}{\omega' - \omega}$$

Each side is a different manifestation of the system

E.g. for light propagating in a medium

$$(n-1) = \frac{c}{\pi} P \int_0^\infty d\omega' \frac{\beta(\omega')}{\omega'^2 - \omega^2}$$

Refractive index / speed of propagation

Analyticity connects physics at different scales

$$\operatorname{Re} G(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} d\omega' \frac{\operatorname{Im} G(\omega)}{\omega' - \omega}$$

Each side is a different manifestation of the system

E.g. for light propagating in a medium

$$n-1 = \frac{c}{\pi} P \int_0^\infty d\omega' \frac{\beta(\omega')}{\omega'^2 - \omega^2}$$

Extinction coefficient / attenuation

Similar logic applies to forward scattering amplitude

$$\mathcal{A}(s) \equiv \mathcal{M}(p_1, p_2 \to p_1, p_2)$$

Lorentz invariance: function only of $s = (p_1 + p_2)^2$

Locations of poles and cuts given by optical theorem

For an analytic function $Im \mathcal{A}(s) = 0$ on the real line

Poles and cuts on positive axis from new states

Same appear on negative axis from crossing $s \rightarrow -s$

Analyticity allows us to derive "dispersion relations"

Analyticity allows us to derive "dispersion relations"

$$\frac{1}{2}A''(s)|_{s=0} = \frac{1}{\pi} \int_0^\infty ds' \frac{\mathrm{Im}A(s')}{s'^3}$$

Froissart bound $|A(s)| \le s \log^2 s$ lets us drop contour at infinity

Dispersion relation can be useful in two ways:

(1) Positivity : $\operatorname{Im} \mathcal{A}(s) \propto |\mathcal{M}|^2 > 0$

(2) As a "sum-rule" - Connects UV and IR behavior

Positivity is a non-trivial constraint on EFTs Adams et al.

Suppose we have some EFT

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{c}{\Lambda^4} (\partial_{\mu} \phi \partial^{\mu} \phi)^4 + \dots$$

At low energies $\mathcal{A}(s) = 8 \frac{c}{\Lambda^4} (s^2 + t^2 + u^2) + \dots$

Dispersion relation + **optical theorem**: $c \ge 0$

Inequality can only be saturated by a free theory

Why didn't Lorentz invariance imply causality?

Around a non-trivial background $\phi = \alpha t + \delta \phi$

$$c_s^2 \simeq 1 - 4 \frac{\alpha^2}{\Lambda^4} c + \mathcal{O}(\alpha^4)$$

For c < 0 we have superluminal propagation

That c = 0 is a free theory is more mysterious

In other situations, either constraint may be stronger

The EFT of Inflation

"Clock" spontaneously breaks time translations

Operator gets time dependent vev – $\langle \phi
angle \simeq \phi_0 imes t$

In the absence of gravity, write an EFT for goldstone

Define field that transforms linearly: $U \equiv t + \pi$

Inflation requires (approx.) symmetry $U \rightarrow U + c$

Now we write most general action Creminelli et al.;

$$\mathcal{L} = \sum_n \frac{M_n^4}{n!} (\partial_\mu U \partial^\mu U + 1)^n + \text{ higher derivatives}$$

For "slow-roll inflation" :
$$M_1^4 = \frac{1}{2}\dot{\phi}_0^2$$
 $M_{n>1}^4 = 0$

Theory is free & fluctuations travel at speed of light

$$\mathcal{L} = \frac{1}{2} \dot{\phi}_0^2 \partial_\mu \pi \partial^\mu \pi$$

Natural to define "decay constant" : $f_{\pi}^4 = \dot{\phi}_0^2$

Now we write most general action Creminelli et al.;

$$\mathcal{L} = \sum_n \frac{M_n^4}{n!} (\partial_\mu U \partial^\mu U + 1)^n + \text{ higher derivatives}$$

Small 'sound speed':
$$M_1^4 \neq 0$$
 $M_2^4 = \frac{M_1^4}{2c_s^2}(1-c_s^2)$

Speed of propagations introduces interactions

$$\mathcal{L} = \frac{M_1^4}{c_s^2} (\dot{\pi}^2 - c_s^2 \partial_i \pi^2) + \frac{M_1^4 (1 - c_s^2)}{c_s^2} [\dot{\pi} \partial_\mu \pi \partial^\mu \pi + \frac{1}{4} (\partial_\mu \pi)^4]$$

Natural to define "decay constant" : $f_{\pi}^4 \equiv M_1^4 c_s$

What does this have to do with inflation?

Coupling to gravity "gauges" the time translations

Imposing that there is no tadpole for π fixes

$$M_1^4 = M_{\rm pl}^2 \dot{H}$$

Goldstone boson equivalence from decoupling limit

$$M_{\rm pl}^2 \to \infty, \, \dot{H} \to 0 \qquad M_{\rm pl}^2 \dot{H} = M_1^4$$

There is a wide range of energies where we can use:

$$\tilde{\mathcal{L}} = -\frac{1}{2} (\tilde{\partial}\pi_c)^2 + \frac{1}{\Lambda^2} \left[\alpha_1 \dot{\pi}_c^3 - \alpha_2 \dot{\pi}_c (\tilde{\partial}\pi_c)^2 \right] + \frac{1}{\Lambda^4} \left[\beta_1 \dot{\pi}_c^4 - \beta_2 \dot{\pi}_c^2 (\tilde{\partial}\pi_c)^2 + \beta_3 (\tilde{\partial}\pi_c)^4 \right]$$

where $\tilde{x}^i = c_s x^i$ and $\Lambda = f_\pi \times c_s$

The α_i, β_i are determined by M_{2-4}^4

These parameters will be constrained by analyticity

This action determines cosmological observables

Adiabatic fluctuation : $\zeta \simeq -H\pi$

Interactions lead to non-gaussanity correlations

E.g. Absence of 3-point correlation in Planck

 $c_s > 0.02 \ (95\% \text{ C.I.})$

Planck just released constraint on quartic terms

Sum Rules and Positivity

The EFT is non-relativistic - revisit analyticity

Work in center of mass frame with $s = 4\omega^2$

At high energies, $s \gg \rho^2$, becomes relativistic (previous results apply)

On positive axis, optical theorem applies

$$2\operatorname{Im}[\mathcal{A}(s)] = \sum_{I} \int d\Pi_{I} |\mathcal{M}(p_{1}, p_{2} \to I)|^{2} \ge 0$$

Positivity is not guaranteed in general

Analyticity and Froissart bound allow us to write

$$\mathcal{A}''(s \to 0) = \frac{2}{\pi} \left(2\int_{\rho^2}^{\infty} + \int_{0}^{\rho^2} \right) ds \, \frac{\mathrm{Im}[\mathcal{A}(s)]}{s^3} + \int_{-\rho^2}^{0} ds \frac{\mathrm{Disc}[\mathcal{A}(s)]}{s^3}$$

First term is manifestly positive by optical theorem

Normally the second term is positive by crossing

Even without positivity this is a useful sum rule

Negative axis not determined by $s \rightarrow -s$

trivially, but typically enforces positivity

Now let us assumption positivity of the residues What does this tell us about the EFT of Inflation

Define $M_n^4 \equiv c_n \frac{f_\pi^4}{c_s^{2n-1}}$ (motivated by naturalness) $\mathcal{A}(s) = \left(c_4 + 1 - \left((2c_3 + 1) - a(c_s)\right)^2 - b(c_s)\right) \frac{s^2}{\Lambda^2}$

where $b(c_s) \ge 0$

Positivity requires that $c_4 + 1 \ge 0$ for any c_3, c_s

Naturally large 4-point function Senatore & Zaldarriaga

 $c_4 \gg c_3^2 \gg 1$

Stable under radiative corrections

These positivity bounds imply that $c_4 > 0$

Fixes the sign of the trispectrum amplitude

Also implies analogue of Suyama-Yamaguchi

 $c_4 \ge 4c_3^2 \gg 1$

Consistent with size of radiative corrections

We cannot tune the trispectrum to vanish

Difficult to measure $c_4 \sim c_3^2$ in practice (given current constraints on the bispectrum)

Planck reports first limits on c_4 :

$$-8.3 \times 10^7 < \frac{c_4}{c_s^4} < 7.4 \times 10^7 \quad (95\% \,\mathrm{C.I.})$$

Half of this parameter space violates positivity

When $c_s = 1$, positivity requires that

$$c_4 > (2c_3 + 1)^2$$

Compare with speed around $\pi = \alpha t + \delta \pi$

- Linear order: $c_s^2 = 1 \alpha c_3$ $c_3 = 0$
- Quadratic order: $c_s^2 = 1 \alpha^2 c_4$ $c_4 \ge 0$

Superluminality gives a stronger constraint

Ignoring angular dependence may weaken bound Nicolis, Rattazzi & Trincherini

D-wave amplitude :
$$a_2 = \frac{1}{960\pi} \frac{1 - c_s^2}{c_s^4} \frac{s^2}{f_\pi^4}$$

Natural conjecture is that theory is free, $c_{n>1} = 0$

Hope for proof via non-forward dispersion relation

Would imply <u>only</u> slow-roll inflation gives $c_s = 1$

Weakly coupled example: Tolly & Wyman; Baumann & DG; Achucarro et al.

$$-\frac{1}{2}(\partial\bar{\pi})^2 - \frac{1}{2}(\partial\sigma)^2 - \frac{1}{2}m^2\sigma^2 - \rho\sigma\dot{\bar{\pi}} \rightarrow \frac{\sigma(\partial\bar{\pi})^2}{2M}$$

At low energies leads to $c_s = \frac{m}{\rho} \ll 1$

Integrate out σ

Mixing term generates

$$\frac{\rho^2}{k^2 + m^2} \dot{\pi}^2$$

Weakly coupled example: Tolly & Wyman; Baumann & DG; Achucarro et al.

$$-\frac{1}{2}(\partial\bar{\pi})^2 - \frac{1}{2}(\partial\sigma)^2 - \frac{1}{2}m^2\sigma^2 - \rho\sigma\dot{\pi} - \frac{\sigma(\partial\bar{\pi})^2}{2M}$$

Non-linear realization of mixing gives interactions

Weakly coupled example: Tolly & Wyman; Baumann & DG; Achucarro et al.

$$-\frac{1}{2}(\partial\bar{\pi})^2 - \frac{1}{2}(\partial\sigma)^2 - \frac{1}{2}m^2\sigma^2 - \rho\sigma\dot{\bar{\pi}} - \frac{\sigma(\partial\bar{\pi})^2}{2M}$$

Forward amplitude for gapless mode

$$\mathcal{A} = \frac{i^2}{M^2} Z^4(\omega) \left\{ (\omega^2 + k^2)^2 \left[\frac{1}{4\omega^2 - m^2 - \rho^2} - \frac{1}{4k^2 + m^2} \right] - (\omega^2 - k^2)^2 \frac{1}{m^2} \right\}$$

See shift in s- and u- channel poles

Sum-rule dominated by u-channel pole

Sum-rule dominated by u-channel pole

Sum-rule dominated by u-channel pole

Residues on negative axis are all positive Positivity can be proven for all generalizations

Conclusions

Analyticity has non-trivial implications for EFTs

Studied the implications for Single-Field Inflation

Positivity restricts the sign of 4-point function

Relates 3- and 4-point amplitudes

Sum Rule connects UV with values of parameters

Hope to find sum rules for individual terms

One approach is to look at non-forward scattering

Spectral functions might also be useful (easier to understand analytic structure)

Want to know if $c_s = 1$ requires slow-roll inflation