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Introduction: Higgs couplings in the Standard Model

A one-line theory:

'CHz'ggs — |DMH|2 - [_,LLQHTH + )\(HTH)Q] - [yffTRHTFL + h.c]
Most general, renormalizable, gauge-invariant theory involving a single spin-

zero (scalar) field with isospin 1/2, hypercharge 1.

—u? term: electroweak symmetry spontaneously broken; Gold-
stone bosons can be gauged away leaving 1 physical particle h.

H= GT
- ( (v—l—h—l—iGO)/\/§>

Mass and vacuum expectation value of h are fixed by minimizing
the Higgs potential:

’U2=,u2/>\ M}%=2)\v2=2,u2
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Introduction: Higgs couplings in the Standard Model

SM Higgs couplings to SM particles are fixed by the mass-generation
mechanism.

W and Z: g7 =\ g%+ g%, v=246 GeV

L=|DuH? = (g%/4)(h+v)°WTW™ + (62/8)(h + v)22Z
MI%V — 92’02/4 hWW i(ngv/Q)g"W
M% = g%v2/4 hZZ - i(g%v/Q)g“V

Fermions:

L=—yfrRHQL+ -+ — —(yp/V2)(h+v)frfL + h.c.
mfzyfv/\/i hff - im /v

Gluon pairs and photon pairs:

induced at 1-loop by fermions, W-boson.
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Introduction: Higgs couplings beyond the Standard Model

W and Z:

- EWSB can come from more than one Higgs doublet, which
then mix to give h mass eigenstate. v = /v + 03, ¢ = Lhy + 2ho
L = |DuHq|? + |DuHo|?
M7 = g%v?/4  hRWW : i(h|du)(g2v/2)g" = iry (g%v/2)g"
M% = g3v?/4  hZZ: i(h|ou)(g3v/2)g" = irz(g%v/2)g"

Note kw = kz. AlsO, kwz = 1 when h = ¢,: “decoupling limit" .

- Part of EWSB from larger representation of SU(2). Q=T7T3+Y/2
LODudP = (¢?/A)[T(T+ 1) = Y?/2](¢ + v)*WTW™
+(97/8)Y? (¢ +v)°2Z

Can get ky # kz and/or ky, z > 1 after mixing to form h.
Tightly constrained by p parameter, p = M3,/Mz cos?60y = 1 in SM.
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Introduction: Higgs couplings beyond the Standard Model

Fermions:

Masses of different fermions can come from different Higgs dou-
blets, which then mix to give h mass eigenstate:

L= —yffRCD}FL + (other fermions) + h.c.

mfzyfvf/\/a hff : z(h|q§f>(v/vf)mf/vEszmf/v
In general k; # Ky # kr;, €.9. MSSM with large tan 8 (4Qy).

Note (h|ér)(v/vy) = (h|dyr)/{Pv|dy)

= kKky =1 when h = ¢,: “decoupling limit".
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Introduction: Higgs couplings beyond the Standard Model
Gluon pairs and photon pairs:
- k¢ and wy change the normalization of top quark and W loops.

- New coloured or charged particles give new |loop contributions.
e.g. top squark, charginos, charged Higgs in MSSM

New particles in the loop can affect h <+ gg and h — v even if h
is otherwise SM-like.

= Treat x4 and k~ as add’l independent coupling parameters.

Heather Logan (Carleton U.) LHC flat direction UofT Dec 2014

7



Coupling extraction at the LHC

Measure event rates at LHC: sensitive to production and decay
couplings. Narrow width approximation:

¥

[ tot
Coupling dependence (at leading order):

Rateij = 0; BRj = 03

o; = K7 x (SM coupling)? x (kinematic factors)
;= x5 x (SM coupling)® x (kinematic factors)

Mot = M= wil M

Each rate depends on multiple couplings. — correlations
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Coupling extraction at the LHC

Measure event rates at LHC: sensitive to production and decay
couplings. Narrow width approximation:

¥

[tot

Coupling dependence (at leading order):

Rateij = 0; BRj = 03

o; = /4%2 x (SM coupling)? x (kinematic factors)

M, = /sz- x (SM coupling)? x (kinematic factors)

Ftot =D =D kil 2"+ > v
SM

new

Each rate depends on multiple couplings. — correlations

Non-SM decays could also be present:
- invisible final state (can look for this with dedicated searches)

- "unobserved” final state (e.g., h — jets)
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Unobserved final states cause a ‘“flat direction” in the fit

Allow an unobserved decay mode while simultaneously increasing
all couplings to SM particles by a factor x; = k.

RQF?M

,{2 rgol\él + [Mhew

Rateij = RQO'Z-SM

All measured Higgs production and decay rates will be equal to
their SM values if:

1 r
2 > 1 BRnew = Hew

- 1 — BRneW o /‘le—tsol\{l —I_ I—ﬂeW

Coupling enhancement hides presence of new decays!
New decays hide presence of coupling enhancement!

(ILC gets around this using decay-mode-independent measurement of ete —

Zh cross section from recoil-mass method.)
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Ways to deal with this:

- assume no unobserved decays
(ok for checking consistency with SM, but highly model-dependent)

- assume hWW and hZZ couplings are no larger than in SM
(valid if only SU(2)-doublets/singlets are present)

- include direct measurement of Higgs width
(only works for heavier Higgs so that Mot > expt. resolution;
oM ~ 4 MeV for 125 GeV Higgs)

- include indirect measurement of Higgs width in gg (— h*) — ZZ
(model dependent if new stuff runs in ggh loop
or add’l light scalars are exchanged in s-channel)

- include indirect measurement of Higgs width in m~, peak shift
(not enough sensitivity at LHC)

No known model-independent way around this at LHC.

—= study particular explicit models to try to get some insight!
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Realizing the flat direction: enhanced AVV couplings

Models with isospin doublets or singlets have AVV couplings
smaller than or equal to those of the SM.

720
SM AWW: i%2g,1 (v~ 246 Gev)

2
- SM + singlet: i%g’uy COS o (h=¢cosa—ssina)

2
SM + some multiplet X: i45%g,,-2 |T(T 4+ 1) — YTQI (Q =T3+Y/2)

197fb (8 TeV) + 51fb (7 TeV)
o 20— ]

Enhanced AV'V couplings require a 15 CMS -
. 1.6 =
scalar multiplet that: cak 1
1.2] / - \l VS
H . 1.0 § -
- Has isospin > 1 os| é_.s{’,‘{; ]
. . 0.6F \._,/ i
- Has a non-negligible vev o - ;
- Mixes with the doublet to make h L o o E
0.0 0.5 1.0 1(1.5
V)

Heather Logan (Carleton U.) LHC flat direction UofT Dec 2014

12



Another way to see this: unitarity of longitudinal V'V scattering

SM: bad EZ/v2 behaviour cancelled by hgp exchange.

Wy Wi Wi wi w; w;
Zyy
Zyxy
WL Wo Wi Wi W, wo
() (b) ©

(d) (e) Lee, Quigg & Thacker 1977
(graphics: Chivukula, LHC4ILC 2007)

2HDM, SM+4singlet: hgpy — RO 4+ HO sin? 4+ cos? = 1
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Another way to see this: unitarity of longitudinal V'V scattering

SM: bad E?/v? behaviour cancelled by hgy exchange.
+ +

Wi Wi Wi‘_ W_g_ Wil‘ W}_L‘_
Zyy
Z,y
WL WL Wi W Wy Wy
(a) ) ©

Graphics: Chivukula, LHC4ILC 2007
When hPVV coupling > SM, including H° only makes it worse!

= Unitarization requires custodial 5-plet (Hg'"", H+, HQ,H‘, Hg ™).
Need multiplet with isospin > 1! and vev %= 0 for HsV'V coupling!

2
o a— . 2]\41/[/' h,max 5 5 —
Hg "W W ! g5 Juv, ( ) _695_ 1
Falkowski, Rychkov & Urbano, 1202.1532
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How big can scalar multiplets be?

Consider an electroweak scalar multiplet of isospin T" and hyper-
charge Y

(XT> XT—15 -+ X—T) " (complex)
(€Q7"'7§O7"°7§_Q)T (rea|>

X

LLarge isospin — large weak charges: at some point perturbativity
breaks down.

Compute 2 — 2 scattering amplitudes for scalars to transverse
gauge bosons and impose |Reag| < 1/2:

7/2 (complex)
TS{ 4 (real)

Hally, HEL & Pilkington, 1202.5073
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Problems with larger scalar multiplets

The main phenomenological constraint on scalar multiplets with
T > 1 comes from the p parameter:
. Mg, Sp2(Tp(Tp + 1) — Y72 /4]vg
M2 cos? Oy >k Y22

(Q =T34 Y/2, vevs defined as (¢9) = v;,/v/2 for complex reps and (¢?) = vy for real reps)

Global fits: p = 1.00040 £ 0.000 24 PDG 2014

But we want non-negligible vevs!
Only two approaches using symmetry: (could also tune p by hand, but ick)

- p=1 "by accident” for isospin septet with ¥ =4
Hisano & Tsumura, 1301.6455; Kanemura, Kikuchi & Yagyu, 1301.7303

- Preserve p = 1 using custodial symmetry: impose SU(2);,xSU(2)g
global sym on scalar potential. Georgi & Machacek, NPB262, 463 (1985)
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Detail:
SM + real triplet & p> 1
SM 4 complex triplet x v=2): p<1

Combine them both: (x° =uv,, (€9 = v¢; doublet (¢°) = v,y/v/2

2 2 2

vg + 41}g + 4vg
Uqu —+ 81192<

p = = 1 when vg = vy

To avoid this being fine-tuned, enforce Vg = vy using a symmetry.

SU(2),xSU(2)g global symmetry on scalar potential:
- present by accident in SM Higgs sector
- breaks to diagonal subgroup SU(2)custodial UPON EWSB
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Georgi-Machacek model Georgi & Machacek, NPB262, 463 (1985)
Chanowitz & Golden, PLB165, 105 (1985)

Assemble the real 4+ complex triplets into a bitriplet (analogous
to the SM Higgs bidoublet) under SU(2);,xSU(2)kg:

xXO* gt xTT

O +
P = < _Q;Jr* fbo ) X=| —xt & Xt
Xt —et* X0
Vevs: (preserves the diagonal SU(2). subgroup)
1 OO0
Vv (1 O
<¢>=—< ) (X)=wv,[ 0 1 0
v2\0 1 “Lo o1

W and Z boson masses constrain

v?b + 8v>2< = 2 ~ (246 GeV)?

Gauging hypercharge breaks the SU(2) p: divergent radiative cor-
rection to p at 1-loop (need a relatively low cutoff scale)
Gunion, Vega & Wudka, PRD43, 2322 (1991)
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Physical spectrum: Custodial symmetry sets almost everything!
Bidoublet: 2 x2 —+3+1 Bitriplet: 3 x3 54341

Custodial 5-plet (H;'+,H;',H8,H5_,H5__), common mass ms
HEt = xt+, B = (xT - €1)/V2, HQ = \/2/36° — \/1/3X°"

Custodial triplet (Hg',Hg,Hg), common mass ms
HF = —sin0y¢T 4+ cosOu(xt + 1) /V2, HY = —sin0p¢®’ + cos0px%; tan 0y = 2v/2v, /v,

(orthogonal triplet is the Goldstones)

Two custodial singlets h?, HO, masses my, my, mixing angle o

RO = COSa¢O’T—Siﬂa(\/1/3§O+ 2/3XO’T)
HO = Sinaqu’T—I-COSoz(\/l/?)fO-F 2/3XO’T)

Free parameters: my, my, ms, ms, Uy, Q. (m, or my = 125 GeV)
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Most general scalar potential: Aoki & Kanemura, 0712.4053
Chiang & Yagyu, 1211.2658; Chiang, Kuo & Yagyu, 1307.7526
Hartling, Kumar & HEL, 1404.2640

V(P, X)

2 2
%Tr(cbfcb) + %TF(X‘LX) + M [Tr(oTo)]?

FATr(DTD)Tr(XTX) + A3 Tr(XTXXTX)

A4 [Tr(XTX)]? = AsTr(DT %) Tr(X Tt X t%)

— M Tr(dT e (UXUT),, — Mo Tr(XTte Xt (U XU,
9 parameters, 2 fixed by My and m;, — free parameters are my, mz, ms, vy, o plus two

triple-scalar couplings.

Dimension-3 terms usually omitted by imposing Z> sym. on X.
These dim-3 terms are essential for the model to possess a de-
coupling limit!

(UXU'), is just the matrix X in the Cartesian basis of SU(2), found using

-1 o L
v V3
U‘(()ﬁ 0 E)
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Theory constraints

Perturbative unitarity: impose |Reag| < 1/2 on eigenvalues of
coupled-channel matrix of 2 — 2 scalar scattering processes.
Constrain ranges of A\1_5.

Aoki & Kanemura, 0712.4053

Bounded-from-belowness of the scalar potential: consider all
combinations of fields nonzero. Further constraints on A\;_s.
Hartling, Kumar & HEL, 1404.2640

Absence of deeper custodial SU(2)-breaking minima: numerical

check that desired minimum is the deepest (1-dim scan over

finite parameter range). Constraints involve all 9 parameters.
Hartling, Kumar & HEL, 1404.2640

(we do not consider situations in which the desired vacuum is metastable)
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Decoupling limit

Fix u3 using W mass:
— Scalar potential has 3 dimensionful parameters: u%, My, M>.

Decoupling limit is u3 > v?
Perturbativity and absence of bad minima constrain |Mi|/4/p2 < 3.3 and |Ma|/+/p2 < 1.2,

mpy ~ m3 ~ ms =~ \/u3 up to relative O(v?/u3) corrections.

2\/_1)X

SIHQH_ y

~ \/—— = Triplet contribution to My, Mz goes away as u3z — large.
2p3

vV3Mqv

5 > = Triplet admixture in h® goes away as us — large.
H3

Sina ~ —

2.2
o . Vg 8 - 3 Miv
hVV coupling: Ky = COSa-—- — \/§S|n TX ~ 143 i > 11

. M2 2
hff coupling: Kf = COS a% ~ 1 — %T deviation related to sy!
3
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Numerical results: AVV coupling enhancement can be quite large!

+

e
o
+
L 1 L | L | 1 | L | L 1
200 400 600 800 1000 1200 1400
Mpew [GEV]

Mnew = mass of lightest new state. Hartling, Kumar & HEL, 1404.2640
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Numerical results: hff coupling typically < 1; k; > 1 possible at low Mnew

Ve
+7 ! : ! : ! : ! . ! : !
200 400 600 800 1000 1200 1400
Mpew [GEV]
Mnew = mass of lightest new state. Hartling, Kumar & HEL, 1404.2640
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Numerical results: hvyy & hZ~ couplings incl charged scalars in loop

5 h
g o+ ! I I 1 I . 1 . L R I R I R 1 . 1

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Mpew [GEV] Mpew [GeV]
Mnhew = mass of lightest new state. Hartling, Kumar & HEL, 1404.2640
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Indirect constraints Hartling, Kumar & HEL, 1410.5538

Key observations: (tan Oy = 2v/2v, /vy)
1) Fermion masses generated by a single SU(2);, Higgs doublet.
_ m ¢ COS _ mys Sin
hFf IV Baadaly Hff: —i— L2272
v COSOpy v COSOp
Hgﬂu : @tan 05, chfd : —@tan 05,
(¥ v
2
Hél_ﬂd : —iivud tanOgy (muPL — mdPR) ,
(9
2 _
H;‘DE ; iitan OgmyPr (all Hsff couplings = 0)
(9

(b, T Yukawas not enhanced: nonoblique/b-phys effects involve couplings ~ m;tanfg)

2) H;'H,OTZ coupling is identical to HTH-Z coupling in 2HDMs
due to custodial symmetry.

= Leading nonoblique Z-pole and b-physics constraints are the

same as those in the Type-I 2HDM, with cot3 — tanfy and

M+ — m3!
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Indirect constraints

Ry: known a long time in GM model; same form as Type-I 2HDM
HEL & Haber, hep-ph/9909335; Chiang & Yagyu, 0902.4665; Type-I. Grant, hep-ph/9410267

Bs—Bs mixing: adapted from Type-I 2HDM
Mahmoudi & Stal, 0907.1791

b — sv. adapted from Type-I1 2HDM
Barger, Hewett & Phillips, PRD41, 3421 (1990)

F. Mahmoudi, Superlso

Bs — M+M_i adapted from new calculation for Alignhed 2HDM
Li, Lu & Pich, 1404.5865

Strongest constraint is from b — s7.

We'll show two versions:

- “tight” constraint, 20 from expt central value

- “loose” constraint, 20 from SM value (already 1.30 from expt)
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Indirect constraints

We also implement the S-parameter constraint, marginalizing
over the T-parameter.

Rationale:

T-parameter is (notoriously) divergent at 1-loop in GM model;
to cancel the divergence one must introduce a global-SU(2) p—
violating counterterm. Gunion, Vega & Wudka, PRD43, 2322 (1991)

Introduces a small tree-level breaking of custodial SU(2)
— small tree-level contribution to p parameter
— use to cancel a finite piece of the 1-loop contribution to T.
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b — sy constraint: interplay with theory constraints
‘Together they give an upper bound on vy

80 f

60 |

50 |

v, [GeV]

40

30

10 f

0 200 400 600 800 1000
m5 [GeV]
Hartling, Kumar & HEL, 1410.5538
excluded by b — sv
dark green: "“loose" constraint, <20 from SM limit (already 1.30 from expt)
black: *“tight” constraint, <2c from expt central value
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v, [GeV]

Comparison to direct search for T+ - wtwt:

Theorists’ recasting of ATLAS measurement of like-sign WEW =
cross section to constrain VBF H** — WEWw=;

Allowed

\ \ \
500 600 700 800

| \ |
2?00 200 300 400
m__ [GeV]

0 200 400 600 800 1000
ms [GeV]

Hartling, Kumar & HEL, 1410.5538 Chiang, Kanemura & Yagyu, 1407.5053

(red points are excluded by S parameter)

Like-sign W W35 will eliminate a large fraction of the dark green
points allowed by the “loose” b — sy constraint.
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h(125) couplings: predictions for ky and K f

— Yo 8 Vx — v
K,V_COSOAU \/§Slnoz Rf—COSaU¢

Ky
Kf

0.4 | x '

02}

v, [GeV]

Hartling, Kumar & HEL, 1410.5538

Upper bound on vy, imposed by b — sy constrains
ky < 1.36 and K f < 1.51. (“loose” constraint)

Direct search for Ht71 in like-sign WWjj will tighten this.
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h(125) couplings: correlation of ky and «y

1.6 % T o T

[ 19.7 " (8 TeV) + 5.1 16" (7 TeV

1-4 | ] g 2,0_ ||||||||| [T T \(I |e| |)|+| ||||| (I |e| |)_

- . gl CMS E

1.2 + . " " F Preliminary -

I 1.6 =

1r X i 1.4f e, -

s 08¢t : — 1.2 SNY

| 1.0f AN

0l I 0.8[ il /i ]

— i Pl 7~ |

0.4 g 0.6 N7 -

0o | | 0.45— —

: & 0.2 —

0 . . . i : . . 0 O: ||||||||| I A R A | |||||||||
0 0.2 04 0.6 0.8 1 1.2 14 1.6 0.0 0.5 1.0 15

KV KV

Hartling, Kumar & HEL, 1410.5538

Along the line ky = K the “loose” b — sy measurement con-
strains ky = k¢ < 1.18. (like-sign WWjj will tighten this)

All LHC Higgs cross sections can be simultaneously enhanced by
up to ~39% < enhancement can be hidden by an unobserved
non-SM Higgs decay BRpew Up to ~28%. (LHC flat direction!)
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Simultaneous enhancement of xy and Kf = light new particles!

1.4 . | . ; : : . . :
135 | | loose | b- — 8y
g constraint imposed
1.25 |
12 F K within 10% or
Z 115} 5% of ky
1.1}
1.05 | (rest of allowed
L points in green)
0.95 | + T
0.9 — - e -
0 200 400 600 800 1000
Mpew [GeV]
Hartling, Kumar & HEL, 1410.5538 Mnew = mass of lightest new state.

K f < 1 when new particles are heavy: significant enhancement
to match ky requires Mpew < 400 GeV.
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How to tame the LHC flat direction

Realizing the flat direction implies that new scalars are light.

- non-decoupled scenario; Mnpew < 400 GeV in Georgi-Machacek model

Y

Enhanced hVV coups require an H1T1 with couplings to W+tw .

- needed to unitarize VV - VV 60\\

S o

- search in VBF HTT - wWtw+ %”\\
- direct relationship between ><4°\k/ g R
/

H*TW~-W~ coupling and «:

h,max
v

mf‘?max)z =14 4_30%2(/112 in GM Chiang, Kanemura & Yagyu, 1407.5053

! ! ! ! ! ! !
2(‘1)00 200 300 400 500 600 700 800

2 5 2 __ : [GeV]
)° — 295 = 1 in general s [0€

Same conclusion applies to septet model and higher-isospin gen-
eralizations of Georgi-Machacek model.

- can get a lot of traction using only VV — V'V unitarity sum rules.

- but, need detailed studies of explicit models to understand correlations.
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Conclusions

Flat direction is an annoying loophole in LHC Higgs coupling fits.

- ILC is immune to this problem!

To make progress: study explicit models where enhanced AVV
couplings are realized.

- Georgi-Machacek model with scalar triplets

- SM 4 septet

- generalizations of Georgi-Machacek to higher isospin rep’'ns

Nontrivial relationships among params due to theory constraints:
— design searches for the additional light scalars
— interpret search results to constrain the flat-direction scenario

This is still model-dependent, but we start to learn about the
universal features of models that realize the LHC flat direction.
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