Taming the LHC flat direction in Higgs coupling measurements

Heather Logan
Carleton University

University of Toronto theory seminar December 8, 2014

```
K. Hartling, K. Kumar & H.E.L., 1404.2640, 1410.5538, & work in progress
+ work in progress with M.-J. Harris, B. Keeshan, T. Pilkington, & V. Rentala
```


Outline

Introduction: what we learn from Higgs couplings

LHC Higgs coupling fit and the flat direction

Realizing the flat direction: enhanced $h V V$ couplings

The Georgi-Machacek model

- Theoretical constraints
- Decoupling limit
- Indirect constraints
- Direct searches

How to tame the LHC flat direction

Conclusions

Introduction: Higgs couplings in the Standard Model

A one-line theory:

$$
\mathcal{L}_{\text {Higgs }}=\left|\mathcal{D}_{\mu} H\right|^{2}-\left[-\mu^{2} H^{\dagger} H+\lambda\left(H^{\dagger} H\right)^{2}\right]-\left[y_{f} \bar{f}_{R} H^{\dagger} F_{L}+\text { h.c. }\right]
$$

Most general, renormalizable, gauge-invariant theory involving a single spinzero (scalar) field with isospin $1 / 2$, hypercharge 1 .
$-\mu^{2}$ term: electroweak symmetry spontaneously broken; Goldstone bosons can be gauged away leaving 1 physical particle h.

$$
H=\binom{G^{+}}{\left(v+h+i G^{0}\right) / \sqrt{2}}
$$

Mass and vacuum expectation value of h are fixed by minimizing the Higgs potential:

$$
v^{2}=\mu^{2} / \lambda \quad M_{h}^{2}=2 \lambda v^{2}=2 \mu^{2}
$$

Introduction: Higgs couplings in the Standard Model

SM Higgs couplings to SM particles are fixed by the mass-generation mechanism.
W and $Z: \quad g_{Z} \equiv \sqrt{g^{2}+g^{\prime 2}}, v=246 \mathrm{GeV}$

$$
\begin{array}{lc}
\mathcal{L}=\left|\mathcal{D}_{\mu} H\right|^{2} \rightarrow & \left(g^{2} / 4\right)(h+v)^{2} W^{+} W^{-}+\left(g_{Z}^{2} / 8\right)(h+v)^{2} Z Z \\
M_{W}^{2}=g^{2} v^{2} / 4 & h W W: i\left(g^{2} v / 2\right) g^{\mu \nu} \\
M_{Z}^{2}=g_{Z}^{2} v^{2} / 4 & h Z Z: i\left(g_{Z}^{2} v / 2\right) g^{\mu \nu}
\end{array}
$$

Fermions:

$$
\begin{aligned}
& \mathcal{L}=-y_{f} \bar{f}_{R} H^{\dagger} Q_{L}+\cdots \rightarrow-\left(y_{f} / \sqrt{2}\right)(h+v) \bar{f}_{R} f_{L}+\text { h.c. } \\
& m_{f}=y_{f} v / \sqrt{2} \quad h \bar{f} f: i m_{f} / v
\end{aligned}
$$

Gluon pairs and photon pairs:
induced at 1-loop by fermions, W-boson.

Introduction: Higgs couplings beyond the Standard Model

W and Z :

- EWSB can come from more than one Higgs doublet, which then mix to give h mass eigenstate. $v \equiv \sqrt{v_{1}^{2}+v_{2}^{2}}, \phi_{v}=\frac{v_{1}}{v} h_{1}+\frac{v_{2}}{v} h_{2}$

$$
\begin{array}{ll}
\mathcal{L}=\left|\mathcal{D}_{\mu} H_{1}\right|^{2}+\left|\mathcal{D}_{\mu} H_{2}\right|^{2} \\
M_{W}^{2}=g^{2} v^{2} / 4 & h W W: i\left\langle h \mid \phi_{\phi}\right\rangle\left(g^{2} v / 2\right) g^{\mu \nu} \equiv i \kappa_{W}\left(g^{2} v / 2\right) g^{\mu \nu} \\
M_{Z}^{2}=g_{Z}^{2} v^{2} / 4 & h Z Z: i\left\langle h \mid \phi_{v}\right\rangle\left(g_{Z}^{2} v / 2\right) g^{\mu \nu} \equiv i \kappa_{Z}\left(g^{2} v / 2\right) g^{\mu \nu}
\end{array}
$$

Note $\kappa_{W}=\kappa_{Z}$. Also, $\kappa_{W, Z}=1$ when $h=\phi_{v}$: "decoupling limit".

- Part of EWSB from larger representation of SU(2). $\quad Q=T^{3}+Y / 2$

$$
\begin{aligned}
\mathcal{L} \supset\left|\mathcal{D}_{\mu} \Phi\right|^{2} \rightarrow & \left(g^{2} / 4\right)\left[2 T(T+1)-Y^{2} / 2\right](\phi+v)^{2} W^{+} W^{-} \\
& +\left(g_{Z}^{2} / 8\right) Y^{2}(\phi+v)^{2} Z Z
\end{aligned}
$$

Can get $\kappa_{W} \neq \kappa_{Z}$ and/or $\kappa_{W, Z}>1$ after mixing to form h. Tightly constrained by ρ parameter, $\rho \equiv M_{W}^{2} / M_{Z}^{2} \cos ^{2} \theta_{W}=1$ in SM.

Introduction: Higgs couplings beyond the Standard Model

Fermions:

Masses of different fermions can come from different Higgs doublets, which then mix to give h mass eigenstate:

$$
\begin{aligned}
& \mathcal{L}=-y_{f} \bar{f}_{R} \Phi_{f}^{\dagger} F_{L}+(\text { other fermions })+\text { h.c. } \\
& m_{f}=y_{f} v_{f} / \sqrt{2} \quad h \bar{f} f: i\left\langle h \mid \phi_{f}\right\rangle\left(v / v_{f}\right) m_{f} / v \equiv i \kappa_{f} m_{f} / v
\end{aligned}
$$

In general $\kappa_{t} \neq \kappa_{b} \neq \kappa_{\tau}$; e.g. MSSM with large $\tan \beta\left(\Delta_{b}\right)$.

Note $\left\langle h \mid \phi_{f}\right\rangle\left(v / v_{f}\right)=\left\langle h \mid \phi_{f}\right\rangle /\left\langle\phi_{v} \mid \phi_{f}\right\rangle$
$\Rightarrow \kappa_{f}=1$ when $h=\phi_{v}$: "decoupling limit".

Introduction: Higgs couplings beyond the Standard Model

Gluon pairs and photon pairs:

- κ_{t} and κ_{W} change the normalization of top quark and W loops.
- New coloured or charged particles give new loop contributions.
e.g. top squark, charginos, charged Higgs in MSSM

New particles in the loop can affect $h \leftrightarrow g g$ and $h \rightarrow \gamma \gamma$ even if h is otherwise SM-like.
\Rightarrow Treat κ_{g} and κ_{γ} as add'I independent coupling parameters.

Coupling extraction at the LHC

Measure event rates at LHC: sensitive to production and decay couplings. Narrow width approximation:

$$
\operatorname{Rate}_{i j}=\sigma_{i} \mathrm{BR}_{j}=\sigma_{i} \frac{\Gamma_{j}}{\Gamma_{\text {tot }}}
$$

Coupling dependence (at leading order):

$$
\begin{aligned}
& \sigma_{i}=\kappa_{i}^{2} \times(\mathrm{SM} \text { coupling })^{2} \times(\text { kinematic factors }) \\
& \Gamma_{j}=\kappa_{j}^{2} \times(\mathrm{SM} \text { coupling })^{2} \times(\text { kinematic factors }) \\
& \Gamma_{\text {tot }}=\sum \Gamma_{k}=\sum \kappa_{k}^{2} \Gamma_{k}^{\text {SM }}
\end{aligned}
$$

Each rate depends on multiple couplings. \rightarrow correlations

Coupling extraction at the LHC

Measure event rates at LHC: sensitive to production and decay couplings. Narrow width approximation:

$$
\operatorname{Rate}_{i j}=\sigma_{i} \mathrm{BR}_{j}=\sigma_{i} \frac{\Gamma_{j}}{\Gamma_{\mathrm{tot}}}
$$

Coupling dependence (at leading order):

$$
\begin{aligned}
& \sigma_{i}=\kappa_{i}^{2} \times(\mathrm{SM} \text { coupling })^{2} \times(\text { kinematic factors }) \\
& \Gamma_{j}=\kappa_{j}^{2} \times(\mathrm{SM} \text { coupling })^{2} \times(\text { kinematic factors }) \\
& \Gamma_{\text {tot }}=\sum \Gamma_{k}=\sum_{\text {SM }} \kappa_{k}^{2} \Gamma_{k}^{\mathrm{SM}}+\sum_{\text {new }} \Gamma_{k}^{\text {new }}
\end{aligned}
$$

Each rate depends on multiple couplings. \rightarrow correlations
Non-SM decays could also be present:

- invisible final state (can look for this with dedicated searches)
- "unobserved" final state (e.g., $h \rightarrow$ jets)

Allow an unobserved decay mode while simultaneously increasing all couplings to SM particles by a factor $\kappa_{i} \equiv \kappa$:

$$
\operatorname{Rate}_{i j}=\kappa^{2} \sigma_{i}^{\mathrm{SM}} \frac{\kappa^{2} \Gamma_{j}^{\mathrm{SM}}}{\kappa^{2} \Gamma_{\text {tot }}^{S M}+\Gamma_{\text {new }}}
$$

All measured Higgs production and decay rates will be equal to their SM values if:

$$
\kappa^{2}=\frac{1}{1-B R_{\text {new }}} \geq 1 \quad B R_{\text {new }} \equiv \frac{\Gamma_{\text {new }}}{\kappa^{2} \Gamma_{\text {tot }}^{S M}+\Gamma_{\text {new }}}
$$

Coupling enhancement hides presence of new decays! New decays hide presence of coupling enhancement!
(ILC gets around this using decay-mode-independent measurement of $e^{+} e^{-} \rightarrow$ $Z h$ cross section from recoil-mass method.)

Ways to deal with this:

- assume no unobserved decays
(ok for checking consistency with SM, but highly model-dependent)
- assume $h W W$ and $h Z Z$ couplings are no larger than in SM
(valid if only $\operatorname{SU}(2)$-doublets/singlets are present)
- include direct measurement of Higgs width
(only works for heavier Higgs so that $\Gamma_{\text {tot }}>$ expt. resolution;
$\Gamma_{\text {tot }}^{S M} \simeq 4 \mathrm{MeV}$ for 125 GeV Higgs)
- include indirect measurement of Higgs width in $g g\left(\rightarrow h^{*}\right) \rightarrow Z Z$
(model dependent if new stuff runs in ggh loop
or add'l light scalars are exchanged in s-channel)
- include indirect measurement of Higgs width in $m_{\gamma \gamma}$ peak shift (not enough sensitivity at LHC)

No known model-independent way around this at LHC.
\Longrightarrow study particular explicit models to try to get some insight!

Realizing the flat direction: enhanced $h V V$ couplings

Models with isospin doublets or singlets have $h V V$ couplings smaller than or equal to those of the SM.
$-\mathrm{SM} h W W: i \frac{g^{2} v}{2} g_{\mu \nu}(v \simeq 246 \mathrm{GeV})$

- 2HDM: $i \frac{g^{2} v}{2} g_{\mu \nu} \sin (\beta-\alpha)$
- SM + singlet: $i \frac{g^{2} v}{2} g_{\mu \nu} \cos \alpha(h=\phi \cos \alpha-s \sin \alpha)$
- SM + some multiplet $X: i \frac{g^{2} v_{X}}{2} g_{\mu \nu} \cdot 2\left[T(T+1)-\frac{Y^{2}}{4}\right] \quad\left(Q=T^{3}+Y / 2\right)$

Enhanced $h V V$ couplings require a scalar multiplet that:

- Has isospin ≥ 1
- Has a non-negligible vev
- Mixes with the doublet to make h

Another way to see this: unitarity of Iongitudinal $V V$ scattering
SM: bad E^{2} / v^{2} behaviour cancelled by h_{SM} exchange.

(a)

(b)

(c)

(d)

(e)

Lee, Quigg \& Thacker 1977
(graphics: Chivukula, LHC4ILC 2007)
2HDM, SM + singlet: $h_{\mathrm{SM}} \rightarrow h^{0}+H^{0} \quad \sin ^{2}+\cos ^{2}=1$

Another way to see this: unitarity of Iongitudinal $V V$ scattering SM: bad E^{2} / v^{2} behaviour cancelled by h_{SM} exchange.

(a)

(b)

(c)

(d)

(e)

Graphics: Chivukula, LHC4ILC 2007
When $h^{0} V V$ coupling $>\mathrm{SM}$, including H^{0} only makes it worse!
\Rightarrow Unitarization requires custodial 5-plet $\left(H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}\right)$. Need multiplet with isospin ≥ 1 ! and vev $\neq 0$ for $H_{5} V V$ coupling!

$$
H_{5}^{++} W^{-} W^{-}: i g_{5} \frac{2 M_{W}^{2}}{v} g_{\mu \nu}
$$

$$
\left(\kappa_{V}^{h, \max }\right)^{2}-\frac{5}{6} g_{5}^{2}=1
$$

Falkowski, Rychkov \& Urbano, 1202.1532

How big can scalar multiplets be?

Consider an electroweak scalar multiplet of isospin T and hypercharge Y :

$$
\begin{align*}
X & =\left(\chi_{T}, \chi_{T-1}, \ldots, \chi_{-T}\right)^{T} \\
\equiv & =\left(\xi^{Q}, \ldots, \xi^{0}, \ldots, \xi^{-Q}\right)^{T} \tag{real}
\end{align*}
$$

Large isospin \rightarrow large weak charges: at some point perturbativity breaks down.

Compute $2 \rightarrow 2$ scattering amplitudes for scalars to transverse gauge bosons and impose $\left|\operatorname{Re} a_{0}\right|<1 / 2$:

$$
T \leq\left\{\begin{array}{cl}
7 / 2 & (\text { complex }) \\
4 & (\text { real })
\end{array}\right.
$$

Hally, HEL \& Pilkington, 1202.5073

Problems with larger scalar multiplets

The main phenomenological constraint on scalar multiplets with $T \geq 1$ comes from the ρ parameter:

$$
\rho=\frac{M_{W}^{2}}{M_{Z}^{2} \cos ^{2} \theta_{W}}=\frac{\sum_{k} 2\left[T_{k}\left(T_{k}+1\right)-Y_{k}^{2} / 4\right] v_{k}^{2}}{\sum_{k} Y_{k}^{2} v_{k}^{2}}
$$

($Q=T^{3}+Y / 2$, vevs defined as $\left\langle\phi_{k}^{0}\right\rangle=v_{k} / \sqrt{2}$ for complex reps and $\left\langle\phi_{k}^{0}\right\rangle=v_{k}$ for real reps)
Global fits: $\rho=1.00040 \pm 0.00024$ PDG 2014
But we want non-negligible vevs!
Only two approaches using symmetry: (could also tune ρ by hand, but ick)

- $\rho=1$ "by accident" for isospin septet with $Y=4$

Hisano \& Tsumura, 1301.6455; Kanemura, Kikuchi \& Yagyu, 1301.7303

- Preserve $\rho=1$ using custodial symmetry: impose $\operatorname{SU}(2)_{L} \times \mathrm{SU}(2)_{R}$ global sym on scalar potential. Georgi \& Machacek, NPB262, 463 (1985)

Detail:

SM + real triplet $\xi: \rho>1$

SM + complex triplet $\chi(Y=2): \rho<1$

Combine them both: $\left\langle\chi^{0}\right\rangle=v_{\chi},\left\langle\xi^{0}\right\rangle=v_{\xi} ;$ doublet $\left\langle\phi^{0}\right\rangle=v_{\phi} / \sqrt{2}$

$$
\rho=\frac{v_{\phi}^{2}+4 v_{\xi}^{2}+4 v_{\chi}^{2}}{v_{\phi}^{2}+8 v_{\chi}^{2}}=1 \text { when } v_{\xi}=v_{\chi}
$$

To avoid this being fine-tuned, enforce $v_{\xi}=v_{\chi}$ using a symmetry.
$\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$ global symmetry on scalar potential:

- present by accident in SM Higgs sector
- breaks to diagonal subgroup SU(2)custodial upon EWSB

Assemble the real + complex triplets into a bitriplet (analogous to the SM Higgs bidoublet) under $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R}$:

$$
\Phi=\left(\begin{array}{cc}
\phi^{0 *} & \phi^{+} \\
-\phi^{+*} & \phi^{0}
\end{array}\right) \quad X=\left(\begin{array}{ccc}
\chi^{0 *} & \xi^{+} & \chi^{++} \\
-\chi^{+*} & \xi^{0} & \chi^{+} \\
\chi^{++*} & -\xi^{+*} & \chi^{0}
\end{array}\right)
$$

Vevs: (preserves the diagonal $\operatorname{SU}(2)_{c}$ subgroup)

$$
\langle\Phi\rangle=\frac{v_{\phi}}{\sqrt{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\langle X\rangle=v_{\chi}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

W and Z boson masses constrain

$$
v_{\phi}^{2}+8 v_{\chi}^{2} \equiv v^{2} \simeq(246 \mathrm{GeV})^{2}
$$

Gauging hypercharge breaks the $\mathrm{SU}(2)_{R}$: divergent radiative correction to ρ at 1-loop (need a relatively low cutoff scale)

Physical spectrum: Custodial symmetry sets almost everything!

Bidoublet: $2 \times 2 \rightarrow 3+1$
Bitriplet: $3 \times 3 \rightarrow 5+3+1$

Custodial 5-plet ($H_{5}^{++}, H_{5}^{+}, H_{5}^{0}, H_{5}^{-}, H_{5}^{--}$), common mass m_{5} $H_{5}^{++}=\chi^{++}, H_{5}^{+}=\left(\chi^{+}-\xi^{+}\right) / \sqrt{2}, H_{5}^{0}=\sqrt{2 / 3} \xi^{0}-\sqrt{1 / 3} \chi^{0, r}$

Custodial triplet ($H_{3}^{+}, H_{3}^{0}, H_{3}^{-}$), common mass m_{3} $H_{3}^{+}=-\sin \theta_{H} \phi^{+}+\cos \theta_{H}\left(\chi^{+}+\xi^{+}\right) / \sqrt{2}, H_{3}^{0}=-\sin \theta_{H} \phi^{0, i}+\cos \theta_{H} \chi^{0, i} ; \tan \theta_{H}=2 \sqrt{2} v_{\chi} / v_{\phi}$ (orthogonal triplet is the Goldstones)

Two custodial singlets h^{0}, H^{0}, masses m_{h}, m_{H}, mixing angle α

$$
\begin{aligned}
h^{0} & =\cos \alpha \phi^{0, r}-\sin \alpha\left(\sqrt{1 / 3} \xi^{0}+\sqrt{2 / 3} \chi^{0, r}\right) \\
H^{0} & =\sin \alpha \phi^{0, r}+\cos \alpha\left(\sqrt{1 / 3} \xi^{0}+\sqrt{2 / 3} \chi^{0, r}\right)
\end{aligned}
$$

Free parameters: $m_{h}, m_{H}, m_{3}, m_{5}, v_{\chi}, \alpha .\left(m_{h}\right.$ or $\left.m_{H}=125 \mathrm{GeV}\right)$

$$
\begin{aligned}
V(\Phi, X)= & \frac{\mu_{2}^{2}}{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)+\frac{\mu_{3}^{2}}{2} \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)\right]^{2} \\
& +\lambda_{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right) \operatorname{Tr}\left(X^{\dagger} X\right)+\lambda_{3} \operatorname{Tr}\left(X^{\dagger} X X^{\dagger} X\right) \\
& +\lambda_{4}\left[\operatorname{Tr}\left(X^{\dagger} X\right)\right]^{2}-\lambda_{5} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right) \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right) \\
& -M_{1} \operatorname{Tr}\left(\Phi^{\dagger} \tau^{a} \Phi \tau^{b}\right)\left(U X U^{\dagger}\right)_{a b}-M_{2} \operatorname{Tr}\left(X^{\dagger} t^{a} X t^{b}\right)\left(U X U^{\dagger}\right)_{a b}
\end{aligned}
$$

9 parameters, 2 fixed by M_{W} and $m_{h} \rightarrow$ free parameters are $m_{H}, m_{3}, m_{5}, v_{\chi}, \alpha$ plus two triple-scalar couplings.

Dimension-3 terms usually omitted by imposing Z_{2} sym. on X. These dim-3 terms are essential for the model to possess a decoupling limit!
$\left(U X U^{\dagger}\right)_{a b}$ is just the matrix X in the Cartesian basis of $\operatorname{SU}(2)$, found using

$$
U=\left(\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\
0^{2} & 1 & 0^{2}
\end{array}\right)
$$

Theory constraints

Perturbative unitarity: impose $\left|\operatorname{Re} a_{0}\right|<1 / 2$ on eigenvalues of coupled-channel matrix of $2 \rightarrow 2$ scalar scattering processes. Constrain ranges of λ_{1-5}.

Aoki \& Kanemura, 0712.4053

Bounded-from-belowness of the scalar potential: consider all combinations of fields nonzero. Further constraints on λ_{1-5}.

Hartling, Kumar \& HEL, 1404.2640

Absence of deeper custodial $\operatorname{SU}(2)$-breaking minima: numerical check that desired minimum is the deepest (1-dim scan over finite parameter range). Constraints involve all 9 parameters.

Hartling, Kumar \& HEL, 1404.2640
(we do not consider situations in which the desired vacuum is metastable)

Decoupling limit

Fix μ_{2}^{2} using W mass:
\rightarrow Scalar potential has 3 dimensionful parameters: $\mu_{3}^{2}, M_{1}, M_{2}$.
Decoupling limit is $\mu_{3}^{2} \gg v^{2}$.
Perturbativity and absence of bad minima constrain $\left|M_{1}\right| / \sqrt{\mu_{3}^{2}} \lesssim 3.3$ and $\left|M_{2}\right| / \sqrt{\mu_{3}^{2}} \lesssim 1.2$.
$m_{H} \simeq m_{3} \simeq m_{5} \simeq \sqrt{\mu_{3}^{2}}$ up to relative $\mathcal{O}\left(v^{2} / \mu_{3}^{2}\right)$ corrections.
$\sin \theta_{H} \equiv \frac{2 \sqrt{2} v_{\chi}}{v} \simeq \frac{M_{1} v}{\sqrt{2} \mu_{3}^{2}} \Rightarrow$ Triplet contribution to M_{W}, M_{Z} goes away as $\mu_{3} \rightarrow$ large.
$\sin \alpha \simeq-\frac{\sqrt{3} M_{1} v}{2 \mu_{3}^{2}} \Rightarrow$ Triplet admixture in h^{0} goes away as $\mu_{3} \rightarrow$ large.
$h V V$ coupling: $\kappa_{V}=\cos \alpha \frac{v_{\phi}}{v}-\frac{8}{\sqrt{3}} \sin \alpha \frac{v_{\chi}}{v} \simeq 1+\frac{3}{8} \frac{M_{1}^{2} v^{2}}{\mu_{3}^{4}} \geq 1!$
hff coupling: $\kappa_{f}=\cos \alpha \frac{v}{v_{\phi}} \simeq 1-\frac{1}{8} \frac{M_{1}^{2} v^{2}}{\mu_{3}^{4}}$ deviation related to κ_{v} !

Numerical results: $h V V$ coupling enhancement can be quite large!

$M_{\text {new }} \equiv$ mass of lightest new state.
Hartling, Kumar \& HEL, 1404.2640

Numerical results: hff coupling typically $<1 ; \kappa_{f}>1$ possible at low $M_{\text {new }}$

$M_{\text {new }} \equiv$ mass of lightest new state.
Heather Logan (Carleton U.)

Numerical results: $h \gamma \gamma \& h Z \gamma$ couplings incl charged scalars in loop

$M_{\text {new }} \equiv$ mass of lightest new state.
Hartling, Kumar \& HEL, 1404.2640

Key observations:

$$
\left(\tan \theta_{H}=2 \sqrt{2} v_{\chi} / v_{\phi}\right)
$$

1) Fermion masses generated by a single $\mathrm{SU}(2)_{L}$ Higgs doublet.

$$
\begin{array}{rlll}
h \bar{f} f: & -i \frac{m_{f}}{v} \frac{\cos \alpha}{\cos \theta_{H}}, & H \bar{f} f: & -i \frac{m_{f}}{v} \frac{\sin \alpha}{\cos \theta_{H}}, \\
H_{3}^{0} \bar{u} u: & \frac{m_{u}}{v} \tan \theta_{H} \gamma_{5}, & H_{3}^{0} \bar{d} d: & -\frac{m_{d}}{v} \tan \theta_{H} \gamma_{5}, \\
H_{3}^{+} \bar{u} d: & -i \frac{\sqrt{2}}{v} V_{u d} \tan \theta_{H}\left(m_{u} P_{L}-m_{d} P_{R}\right), \\
H_{3}^{+} \bar{\nu} \ell: & i \frac{\sqrt{2}}{v} \tan \theta_{H} m_{\ell} P_{R} & \text { (all } H_{5} f \bar{f} \text { couplings }=0 \text {) }
\end{array}
$$

(b, τ Yukawas not enhanced: nonoblique/b-phys effects involve couplings $\sim m_{t} \tan \theta_{H}$)
2) $H_{3}^{+} H_{3}^{-} Z$ coupling is identical to $H^{+} H^{-} Z$ coupling in 2 HDMs due to custodial symmetry.
\Rightarrow Leading nonoblique Z-pole and b-physics constraints are the same as those in the Type-I 2HDM, with $\cot \beta \rightarrow \tan \theta_{H}$ and $m_{H^{+}} \rightarrow m_{3}$!

Indirect constraints

R_{b} : known a long time in GM model; same form as Type-I 2HDM
HEL \& Haber, hep-ph/9909335; Chiang \& Yagyu, 0902.4665; Type-I: Grant, hep-ph/9410267
$B_{s}-\bar{B}_{s}$ mixing: adapted from Type-I 2HDM
Mahmoudi \& Stal, 0907.1791
$b \rightarrow s \gamma$: adapted from Type-I 2HDM
Barger, Hewett \& Phillips, PRD41, 3421 (1990)
F. Mahmoudi, SuperIso
$B_{s} \rightarrow \mu^{+} \mu^{-}$: adapted from new calculation for Aligned 2HDM
Li, Lu \& Pich, 1404.5865

Strongest constraint is from $b \rightarrow s \gamma$.
We'll show two versions:

- "tight" constraint, 2σ from expt central value
- "loose" constraint, 2σ from SM value (already 1.3σ from expt)

Indirect constraints

We also implement the S-parameter constraint, marginalizing over the T-parameter.

Rationale:
T-parameter is (notoriously) divergent at 1-loop in GM model; to cancel the divergence one must introduce a global-SU(2) R^{-} violating counterterm.

Introduces a small tree-level breaking of custodial SU(2)
\rightarrow small tree-level contribution to ρ parameter
\rightarrow use to cancel a finite piece of the 1-loop contribution to T.

$b \rightarrow s \gamma$ constraint: interplay with theory constraints

Together they give an upper bound on v_{χ}

Hartling, Kumar \& HEL, 1410.5538
light green: excluded by $b \rightarrow s \gamma$
dark green: "loose" constraint, $<2 \sigma$ from SM limit (already 1.3σ from expt) black: "tight" constraint, $<2 \sigma$ from expt central value

Comparison to direct search for $H^{++} \rightarrow W^{+} W^{+}$:
Theorists' recasting of ATLAS measurement of like-sign $W^{ \pm} W^{ \pm} j j$ cross section to constrain VBF $H^{ \pm \pm} \rightarrow W^{ \pm} W^{ \pm}$:

Hartling, Kumar \& HEL, 1410.5538

Chiang, Kanemura \& Yagyu, 1407.5053
(red points are excluded by S parameter)
Like-sign $W W j j$ will eliminate a large fraction of the dark green points allowed by the "loose" $b \rightarrow s \gamma$ constraint.
$h(125)$ couplings: predictions for κ_{V} and κ_{f} $\kappa_{V}=\cos \alpha \frac{v_{\phi}}{v}-\frac{8}{\sqrt{3}} \sin \alpha \frac{v_{\chi}}{v}$

$$
\kappa_{f}=\cos \alpha \frac{v}{v_{\phi}}
$$

Hartling, Kumar \& HEL, 1410.5538
Upper bound on v_{χ} imposed by $b \rightarrow s \gamma$ constrains $\kappa_{V} \lesssim 1.36$ and $\kappa_{f} \lesssim 1.51$. ("loose" constraint)

Direct search for H^{++}in like-sign $W W j j$ will tighten this.
$h(125)$ couplings: correlation of κ_{V} and κ_{f}

Hartling, Kumar \& HEL, 1410.5538
Along the line $\kappa_{V}=\kappa_{f}$, the "loose" $b \rightarrow s \gamma$ measurement constrains $\kappa_{V}=\kappa_{f} \lesssim 1.18$. (like-sign $W W j j$ will tighten this)

All LHC Higgs cross sections can be simultaneously enhanced by up to $\sim 39 \% \Leftrightarrow$ enhancement can be hidden by an unobserved non-SM Higgs decay $B R_{\text {new }}$ up to $\sim 28 \%$. (LHC flat direction!)

Simultaneous enhancement of κ_{V} and $\kappa_{f} \Rightarrow$ light new particles!

$\kappa_{f} \lesssim 1$ when new particles are heavy: significant enhancement to match κ_{V} requires $M_{\text {new }} \lesssim 400 \mathrm{GeV}$.

How to tame the LHC flat direction

Realizing the flat direction implies that new scalars are light.

- non-decoupled scenario; $M_{\text {new }} \lesssim 400 \mathrm{GeV}$ in Georgi-Machacek model

Enhanced $h V V$ coups require an H^{++}with couplings to $W^{+} W^{+}$.

- needed to unitarize $V V \rightarrow V V$
- search in VBF $H^{++} \rightarrow W^{+} W^{+}$
- direct relationship between $H^{++} W^{-} W^{-}$coupling and κ_{V}^{h} :

$$
\begin{aligned}
& \left(\kappa_{V}^{h, \max }\right)^{2}-\frac{5}{6} g_{5}^{2}=1 \text { in general } \\
& \left(\kappa_{V}^{h, \max }\right)^{2}=1+\frac{40}{3} v_{\chi}^{2} / v^{2} \text { in GM }
\end{aligned}
$$

Chiang, Kanemura \& Yagyu, 1407.5053

Same conclusion applies to septet model and higher-isospin generalizations of Georgi-Machacek model.

- can get a lot of traction using only $V V \rightarrow V V$ unitarity sum rules.
- but, need detailed studies of explicit models to understand correlations.

Conclusions

Flat direction is an annoying loophole in LHC Higgs coupling fits.

- ILC is immune to this problem!

To make progress: study explicit models where enhanced $h V V$ couplings are realized.

- Georgi-Machacek model with scalar triplets
- SM + septet
- generalizations of Georgi-Machacek to higher isospin rep'ns

Nontrivial relationships among params due to theory constraints:
\rightarrow design searches for the additional light scalars
\rightarrow interpret search results to constrain the flat-direction scenario

This is still model-dependent, but we start to learn about the universal features of models that realize the LHC flat direction.

