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Combined
u=1.00+0.13

Untagged
n=087+0.16

VBF tagged
n=1.14+0.27

VH tagged
1=0.89+0.38

ttH tagged
n=276+0.99
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Looking forward to Runs I+

e Given that we haven’t seen any new physics at Run I, what are the
prospects moving forward?

* Scenario #1: New states at > 1 TeV
* DProspects are very good

 Not much to say about this: scale up cuts and look for spectacular
signatures!




Looking forward to Runs I+

e Scenario #2: New states at the electroweak scale
e We haven't seen the new physics because it looks a lot like the SM...
* Typically large backgrounds from QCD, V+jets, VV, tops, etc.
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e Signal rates may be large but final states are much softer even at 13 TeV
e Suffer from higher trigger thresholds
e Suffer from higher pile-up



Looking forward to Runs I+

e Cutting out the SM background cuts out most of the signal, too

e Want to exploit any differences between signal and background
kinematics

e Study BSM physics via precision SM physics



Looking forward to Runs I+

e Cutting out the SM background cuts out most of the signal, too

e Want to exploit any differences between signal and background
kinematics

e Study BSM physics via precision SM physics

e Requires dedicated strategies to ensure we don’t miss anything



Looking forward to Runs I+

e Cutting out the SM background cuts out most of the signal, too

e Want to exploit any differences between signal and background
kinematics

e Study BSM physics via precision SM physics

e Requires dedicated strategies to ensure we don’t miss anything

* I'll focus on hadronic resonances
e Most challenging final states due to enormous QCD backgrounds

o Jet substructure studies have shown that large improvements in signal
identification are possible (at least in one kinematic regime)
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Hadronic resonances

Ubiquitous in the Standard Model
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SM resonances can also decay leptonically, but suffer from smaller
branching fractions

Want as many handles as possible on SM rates

(Possible) discrepancy in fully leptonic WW cross section

But see:
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Meade, Ramani, Zeng
120/ L arXiv:1407.4481

Jaiswal, Okui
arXiv:1407.4537
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Taken from Curtin, Jaiswal, Meade, arXiv:1206.6888
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Hadronic resonances

e Also ubiquitous beyond the Standard Model
* Extended Higgs sectors
* R-parity-violating supersymmetry
* Supersymmetric cascade decays
* Extra dimensions

e New gauge interactions
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Hadronic resonances

e Also ubiquitous beyond the Standard Model
* Extended Higgs sectors
* R-parity-violating supersymmetry
* Supersymmetric cascade decays
* Extra dimensions

e New gauge interactions

* Different signal kinematics depending on production mode:

A AN
/ N\
X

(threshold) (boosted)



Hadronic resonances

25—
* We are not guaranteed to do better :
20
at the LHC :
15+
* Extreme example: baryonic Z’ s
10+ ;
(taken from Dobrescu, Yu 05 cMs 20
arXiv:1306.2629) Y T
0 500 1000 1500 2000 2500
My, (GeV)



Hadronic resonances

2.8 [

* We are not guaranteed to do better ? W _
20 1 )

at the LHC A

150

* Extreme example: baryonic Z’ s
10 g

(taken from Dobrescu, Yu 05 cMs 207
arXiv:1306.2629) 00 e
0 500 1000 1500 2000 2500

My, (GeV)

e Current approaches:

e Some searches highly optimized, using sophisticated multivariable
techniques (H to bb searches)

e Others place simple cuts on jet kinematics and do a bump hunt (Z’—=WW
semileptonic, SM WW+WZ semileptonic,...)

e (Can we do better?



Hadronic resonances

e Take alesson from jet substructure studies of boosted hadronic objects

Signal QCD background

1

2

J

Seymour, 1994; Butterworth, Cox, Forshaw, 2002; Butterworth, Davison, Rubin, Salam, 2008
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Hadronic resonances

e Take alesson from jet substructure studies of boosted hadronic objects

Signal QCD background

1

2

J

Seymour, 1994; Butterworth, Cox, Forshaw, 2002; Butterworth, Davison, Rubin, Salam, 2008

e Generalize the differences between signal / QCD kinematics & radiation
outside of the highly boosted regime

e Useful for states typically produced near threshold

* We define a new observable that generalizes the mass drop criterion of
BDRS tagger

e Gives factor of 2-6 gain in S/B, involves only resolved small-R jets

* Qutperforms other possible cuts we investigated

10



Outline

1. Jet substructure and the highly boosted regime

2. Resonance tagging in the mildly boosted regime

3. Examples
SM: WW+WZ
SM: V(H—bb)
BSM: 2" - WW

4. Future directions

il



Jet substructure at high boost

 When an object is highly boosted, its decay products are collimated

e (Can be clustered together into a single, “fat” jet

PT Z (feW) X Myresonance

2



Jet substructure at high boost

 When an object is highly boosted, its decay products are collimated

e (Can be clustered together into a single, “fat” jet

pPT Z (feW) X Myresonance

Signal QCD background

* Dominant background originates from a single QCD parton

2



Jet substructure at high boost

e The signal typically gives two hard subjets from the decay of a resonance,
while the QCD subjets typically come from parton shower

e (Can take either a decomposition approach or energy-flow approach

* We focus on decomposition approach as it is more readily generalized to
resolved jet analyses

Signal QCD background

i3



Mass drop tagger

e (Canonical example: BDRS mass-drop tagger (arXiv:0802.2470)

e Exploits the structure of parton splitting in QCD

dt o Ey
dO-n_|_]_ ~ dO'n dZ 7 %P(Z)a—wc A= E—a

14



Mass drop tagger

e (Canonical example: BDRS mass-drop tagger (arXiv:0802.2470)

e Exploits the structure of parton splitting in QCD

dt o Ey
dO-n_|_]_ ~ dO'n dZ 7 %P(Z)a—ﬂm A= E—a

1. Asymmetric splittings
Both q — q g and g — q q splittings tend to give asymmetric configurations
i.e. P(z) peaked towards z=0and z =1

By contrast, partons from a resonance decay tend to have momentum divided
symmetrically among them

14



Mass drop tagger

dt Olg Eb
dO-n_|_1 ~ dO'n dZ ? %P(Z)CL—H)C i E—a

15



Mass drop tagger

dt o Ey
dO-n_|_1 ~ dUn dZ ? %P(Z)a—%c I E—a
2. Origin of jet mass
te g4/
* There is a Sudakov suppression of evolution A(t) = exp [— / CZ dz ;‘S P(z)
to {5

from a hard scale down to massless partons

 If a parton has virtuality ¢t = m?, the transition to massless partons happens
gradually

 i.e. the mass of a jet initiated by a QCD parton comes from a large number of
splittings

* By contrast, when a resonance decays, it comes from a heavy mass m to
massless partons in a single step

5



Mass drop tagger

dt o Ey
dO-n_|_1 ~ dUn dZ ? %’P(Z)a—ﬂ)c I E—a

2. Origin of jet mass

ts /
There is a Sudakov suppression of evolution A(t) = exp [— / o dz = P(z)
t

b 2
from a hard scale down to massless partons . L

If a parton has virtuality ¢ = m?, the transition to massless partons happens
gradually

i.e. the mass of a jet initiated by a QCD parton comes from a large number of
splittings

By contrast, when a resonance decays, it comes from a heavy mass m to
massless partons in a single step

signal QCD

mass)

.
oy D

5



Jet primer

e Use sequential jet recombination algorithms to get cluster sequence (jet
radius R is input parameter)

1. For all particles/ calo cells, compute the distance d;; in rapidity-azimuth
space

2. For the shortest distance, combine the 4-vectors for i and j

3. Continue until the distance between the closest pair is > R

e This gives a collection of jets, and a cluster sequence for each jet

16



Mass drop tagger

e Basicidea of mass drop tagger: keep only jets that have symmetric
splittings with a large mass drop at one step

* Mass drop procedure:

1%



Mass drop tagger

e Basicidea of mass drop tagger: keep only jets that have symmetric
splittings with a large mass drop at one step

* Mass drop procedure:

1. Undo the last clustering step, splitting j into subjets ji, j» with mj; > mjp

2. Discard j», setj =ji, and continue de-clustering until both:

L < 0.67 (single-step mass drop)
Wiy

. 2 2
mm(p,:é 7PT2) A R%2 >~ 0.09 (symmetric Splitﬁng)

1%



Mass Drop Tagger

Diyjet Resonance QCD background

18



Moderately boosted resonances

19



Tagging at moderate boosts

e Often, resonances are produced near threshold, paying a high penalty in
signal acceptance for going to the boosted regime

e Direct tt, diboson, ...

20



Tagging at moderate boosts

Often, resonances are produced near threshold, paying a high penalty in
signal acceptance for going to the boosted regime

e Direct tt, diboson, ...

In this scenario, the resonance decay products are reconstructed as
separately resolved jets

* Automatically eliminates soft,
asymmetric QCD splittings

: ARlQ
 (Can we expand on the mass-drop J1
idea to include distinguishing signal :

from relatively hard splittings?

20



Tagging at moderate boosts

* Analogy of mass drop

e The lax cut on mass drop from the boosted regime (<0.67) does not veto a
hard QCD splitting

* Asjets become more widely separated, the mass drop becomes smaller

* Heuristic argument for background scaling:

AR

24
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Tagging at moderate boosts

* Analogy of mass drop

The lax cut on mass drop from the boosted regime (<0.67) does not veto a
hard QCD splitting

As jets become more widely separated, the mass drop becomes smaller

Heuristic argument for background scaling:

(m2) ~ C =2 R%p2,

ARlQ v

2 2
Mo ~ PT1PT2 Ang
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Tagging at moderate boosts

* Analogy of mass drop

The lax cut on mass drop from the boosted regime (<0.67) does not veto a
hard QCD splitting

As jets become more widely separated, the mass drop becomes smaller

Heuristic argument for background scaling:

(m2) ~ C =2 R%p2,

ARlQ v

2 2
Mo ~ PT1PT2 Ang

mq 1
e O

T2 AR
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Tagging at moderate boosts

* Analogy of mass drop

e The lax cut on mass drop from the boosted regime (<0.67) does not veto a
hard QCD splitting

* Asjets become more widely separated, the mass drop becomes smaller

* Heuristic argument for background scaling:

(m}) ~ C = Rph,

AR

2 2
Mo ~ PT1PT2 ARlQ

mq 1
v (OF

T2 AR

* A scaled mass drop cut interpolates between boosted and unboosted
regimes
i



Tagging at moderate boosts

e Comparing mass drops (a heuristic argument):

Signal has a mass drop that is constant in rest frame of decaying resonance

QCD prefers asymmetric splittings/sheds virtuality more slowly, giving
rise to larger my

For most QCD backgrounds, one of the radiated partons is a gluon (Ca >

Cr), giving rise to larger m; for more symmetric splittings (close to
threshold)

Rio

22



Tagging at moderate boosts

e Comparing mass drops (a heuristic argument):
e Signal has a mass drop that is constant in rest frame of decaying resonance

 QCD prefers asymmetric splittings/sheds virtuality more slowly, giving
rise to larger my

e For most QCD backgrounds, one of the radiated partons is a gluon (Ca >

Cr), giving rise to larger m; for more symmetric splittings (close to
threshold)

Rqo e All of these bias the mass drop higher
for bkd

e This motivates a new cut:

G= - ARio < (e

mi2

22



Tagging at moderate boosts

e Other functional forms could accomplish a similar scaling

For example:

25



Tagging at moderate boosts

e Other functional forms could accomplish a similar scaling

& Forexample:

e These types of observables can be very effective at enhancing S/B when
added on top of existing searches

* Discrimination comes from relatively subtle effects, so usually no
enhancement of statistical significance

* Qutperform other observables we studied

* Uses simple, small-R jet properties
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Tagging at moderate boosts

e Other functional forms could accomplish a similar scaling

& Forexample:

e These types of observables can be very effective at enhancing S/B when
added on top of existing searches

* Discrimination comes from relatively subtle effects, so usually no
enhancement of statistical significance

* Qutperform other observables we studied

* Uses simple, small-R jet properties

e Relatively robust under simple smearing, different shower MC, pile-up
e Should validate in data (hadronic W from top?)

* Work for more rigorous analytic result ongoing
23



Examples
SM: WW+WZ
SM: V(H—bb)
BSM: 72/ — WW

24



WW+WZ Analysis

e Semileptonic channel is an independent check of the (possible) excess in
the fully leptonic channel and an important SM measurement

v

N
L),

J1j2

25



WW+WZ Analysis

e Semileptonic channel is an independent check of the (possible) excess in
the fully leptonic channel and an important SM measurement

e Simulate WW+WZ, W+jets events with Madgraph 5 NN\/:

.
Match matrix element to Pythia 6 parton shower \\

using shower-k, scheme p\% B
Cluster and analyze events with Fastjet 3 i ) Mg,

Validated MC with CMS analysis

Include UE but no pile-up (more on this later)

25



WW+WZ Analysis

e Semileptonic channel is an independent check of the (possible) excess in
the fully leptonic channel and an important SM measurement

e Simulate WW+WZ, W+jets events with Madgraph 5 M\j\/:

-
Match matrix element to Pythia 6 parton shower \

using shower-k, scheme M B
Cluster and analyze events with Fastjet 3 i ) Mg,

Validated MC with CMS analysis

Include UE but no pile-up (more on this later)

e Use similar cuts as CMS 7 TeV (arXiv: 1210.7544), re-scaled to 13 TeV

Two jets with pt > 50 GeV
One lepton with pr > 25 GeV
MET > 50 GeV

Mt > 50 GeV
25



WW+WZ Analysis

After CMS selection cuts:

000+
Vs =13TeV [Ldt=5.0 fb! -
800 WW+WZ -
% : W+jets
O 600
o L
£ 400
LE |
200
40 30

60 . 100 120
Mj1j2 (GQV)

26



WW+WZ Analysis D

After CMS selection cuts: After CMS selection AND cut on C < Cg:
1000, B T I
Vs =13TeV [Ldt=50 fo! ] Vs =13 TeV [Ldt=50 fb! =01 °
800 WW+WZ el 25" WW+WZ
> : W+ jets | % W+ jets
(05 600 - O 20¢
R I = % 15 — 1
z i = i | | I
i S =
™ 200 5
' w0 o m
40 60 100 120

26



WW+WZ Analysis

e Gains for different choices of the cut

6! _,_ £.=0.08
g4
52 1 _|_,—'_ GS(C<CC)%3%

4r | _,' | £.=0.1

3!
i: 27—1_'1 —|_|_,— GS(C < Cc) ~ 10%
w 17 —

£.=0.12

) 24,_.—'_‘— h_ﬁ_ esii@E =251
G 1

oL ‘ ‘ ‘ ‘

40 60 80 100 120
MJJ(GeV)

27



WW+WZ Analysis D
N

e QGains for different choices of the cut /OVV\T j'b .

6 £.=0.08
S 4t
47 | | £.=0.1 |
3,
i: 2 | — es(C < () = 10%
\\D) 17 —
£.=0.12
) 24,_.—'_‘— h_ﬁ_ esii@E =251
G 1
oL | | | | 0.20 5w
40 60 80 100 120 r WW+WZ
My;(GeV) 0.15 W jets
S 0.10 " B
Q, ,
0.05 B
(00 e et
0.0 0.1 0.2 0.3 04
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WW+WZ Analysis ﬂ
Ve

e How does this compare to other possible cuts we could M‘j
have used? o)

* Lookin M, window between 70-100 GeV

e For jet substructure observables that require a single large-R jet, we take as
constituents of the jet the union of the constituents of the two small-R jets

5“". Se b
e, (ZTLa
N my [ myy |
QQ I R ]
V) S . ]
<30 T pr2/pr1
v L
200 e, ]
P2, . | L ————
U T ARlQ 1‘}3‘.‘—'-1'“::::3::::::: i T PPl
Mz, !
Og s s ! s s s s ! s s s s ! s s s s ! s s s s ]
0.0 0.1 0.2 0.3 0.4 0.5
€s
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WW+WZ Analysis

e Would this be included in a BDT analysis?
* Not currently used for SM WW+WZ

e Seems there is substantial gain that comes from using resolved jet masses,
which are not included in most BDT analyses

e Possible worry: jet masses are subject to uncertainties in shower
mechanism & reconstruction

No smearing
10% smearing
Al 20% smearing
| 50% smearing

02 04 06 08 10
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WW+WZ Analysis

Possible worry: jet masses are subject to uncertainties in shower
mechanism & reconstruction

10F

Pythia 8

i Pythia 6
\ Herwig++

02

04 06

08
[ )

Zeta performs well and is robust against various uncertainties except at
very small signal acceptance
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Limitations and Caveats

e Qur observable gives a significant enhancement in S/B at the cost of a mild
reduction in statistical significance

e Most applicable to searches dominated by systematic uncertainties

* Will become more relevant for later LHC running
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Limitations and Caveats

e Qur observable gives a significant enhancement in S/B at the cost of a mild
reduction in statistical significance

e Most applicable to searches dominated by systematic uncertainties

* Will become more relevant for later LHC running

e What about pile-up?
e Serious challenge facing high-luminosity running

e  We simulated WW+WZ search with <Npy> = 50, found that a more
aggressive form of jet grooming recovered S/B gains to within 10-20%

* Ongoing work needed for pile-up mitigation of small-R jet masses

* Our observable only involves small-R jets
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Examples
SM: WW+WZ
SM: V(H—bb)
BSM: Z/ — WW
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P
W(H-bb) Analysis

e ATLAS and CMS have both dijet-mass and multivariate analyses
e We follow the ATLAS 7+8 TeV analysis (now arXiv:1409.6212)
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W(H-bb) Analysis

e ATLAS and CMS have both dijet-mass and multivariate analyses
e We follow the ATLAS 7+8 TeV analysis (now arXiv:1409.6212)

e Focus on dijet search, associated leptonic W

* Dominant backgrounds are W+b+jets, tt
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W(H-bb) Analysis

e ATLAS and CMS have both dijet-mass and multivariate analyses
e We follow the ATLAS 7+8 TeV analysis (now arXiv:1409.6212)

e Focus on dijet search, associated leptonic W

* Dominant backgrounds are W+b+jets, tt

* Use same selection cuts as ATLAS
* One tight lepton, pr > 25 GeV
e Exactly 2 b-tagged jets, pr > 20 GeV (leading jet pr > 45 GeV)
& 'NMET > 25 GeV
e 120 GeV > Mr >40 GeV
* Loose selections on ARy as a function of pr

* Associate muons with adjacent b-jets to improve mass reconstruction

33



W(H—bb) Analysis

After ATLAS selection cuts:

cvents

10000 - 1 lep., 2‘ jets,2 tags, pr">90 GeV
8000 Vs =13 TeV [Ldt=300 fb~!
6000 -

: m vz
4000 o
7 U WHjets
20001} ;

1NNN

50 100 150 200
Mbb (GGV)
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W(H—bb) Analysis

After ATLAS selection and a cut on the shifted version of C:

e Better at balancing preserving statistics and S/B gain

M

C(Rc) = (AR12 = Rc) < Cc
U r
LUUU [ T
: 11lep., 2 jets,2 tags, pr’ >90 GeV-
- ;.=0.11,R.=0.2
800 - |
; Vs =13 TeV JLdt=300 fb~*
s 600 Bl WH(b)
S ; m vz
5 400 - o

T Wjets
200 ]

50 100 150 200 250
Mbb (GGV)
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W(H—bb) Analysis

e Gains for different choices of the cut:

05 - pr’>90 GeV
04 ?‘:0'11 110 <my;, <130 GeV
A — (=0. o
i e

0.2

pr’>90 GeV — (=0.11

o1 0.0 0.1 02 03
R,



W(H—bb) Analysis

e Is our gain just coming from the highly boosted region?
g BIDRS5 requires prv > 200 GeV

e If we restrict ourselves to the moderately boosted regime,
90 GeV < prv < 200 GeV:

e Westill find an S/B gain of ~ 2-3 (reduction of ~25%)

* Qur observable is effective in a boost range complementary to BDRS and
other substructure methods

e Consider inclusion of jet masses in more sophisticated BDT as well
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Examples
SM: WW+WZ
SM: V(H—bb)
BSM: 72" — WW
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L > WW Analysis

e ATLAS has a search for resonant semileptonic WW /WZ production for
masses up to 1 TeV (arXiv:1305.0125)

e Athigher masses, use jet substructure techniques
* We consider a sequential SM Z’ decaying to WW

* Dominant background is W+ets
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L > WW Analysis

e ATLAS has a search for resonant semileptonic WW /WZ production for
masses up to 1 TeV (arXiv:1305.0125)

e Athigher masses, use jet substructure techniques
* We consider a sequential SM 7’ decaying to WW

* Dominant background is W+ets

* Use same selection cuts as ATLAS
e Twojets, at least one with pr > 100 GeV
* One tight lepton, pr > 35 GeV
e MET >40 GeV
* prv>200GeV for each candidate gauge boson
g boGeY = my = 115 GeV

e Various cuts on Agey
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L > WW Analysis

After ATLAS selection cuts:

1000
5()0' Vs =7 TeV [Ldt=4.7fb""! W/Z+ jets
= » top
8 100* B Z-ww -
= 0 Mz=800 GeV
2 |
= 107 L
L | 7

Myj; (GeV)

e Note: large systematic uncertainties (~30%)
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L > WW Analysis

After ATLAS selection cuts: After ATLAS selection AND cut on C < (.:
000——”—+————+———— LUU ;
500 Vs =7 TeV [Ldt=4.7fb"! W/Z+jets 50" Vs =7 TeV [Ldt=4.7fb" W/Z+jets |
> : top ’ > | After cut £, = 0.09 top |
& 100° B Z-WwW - & 20 M Z-oww
= 50! M7=800 GeV 1 o 10f Mz=800 GeV'
2 O § s
=  10: ] |
g ‘ ) ] D)
2 3 Coa 2
L | , 1
1. .
600 800 1000 1200 1400
Mywj; (GeV) M55 (GeV)

e Note: large systematic uncertainties (~30%)
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L > WW Analysis

e S/B gains and efficiency change:

05 == M,=800 GeV
cme= M;=1000 GeV
— My=600 GeV

g 03 |
0.2 ;
0.1, ]

8\\ -—= M,=800GeV
N === Mz=1000 GeV -
6‘ o= — Mp=600GeV
§°
\i? 4.;—"--.-'~ ———
2T I
0
007 008 0.09 0.10 0.11 0.12 0.13 0.14

{c
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Future directions
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Direct resonance production

Best bounds come from UA2/ Tevatron

At LHC, hard to pass triggers
and discriminate from backgrounds

43
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Direct resonance production

25 p g

Best bounds come from UA2/ Tevatron

At LHC, hard to pass triggers
and discriminate from backgrounds

Consider associated production
e Provides handle for trigger

e Gives resonance a (mild) boost

v/l
W/Zz
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Direct resonance production

Best bounds come from UA2/ Tevatron |

At LHC, hard to pass triggers
and discriminate from backgrounds

20 ¢

c
>
€

1.5¢

8B

10

CMS 20 fb!

0.5

Consider associated production

ool—

. Pr ovides handle fOI' trigger 0 500 1000 1500 2000 2500
My, (GeV)

e Gives resonance a (mild) boost

; g e Recast of ATLAS techni-rho W+dijet search
v/t can beat Tevatron by a factor of a few in
e Cross section

e Can we do better with an optimized search?

/ %< j e What about {/some similar observable?

e Decays to higher jet multiplicities?
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Multijet resonances

e Jet substructure can also be useful for three-jet resonances, but come at a
cost of producing them well above threshold (ex. RPV gluinos in Curtin,

Essig, BS arXiv:1210.5523)
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Multijet resonances

e Jet substructure can also be useful for three-jet resonances, but come at a
cost of producing them well above threshold (ex. RPV gluinos in Curtin,
Essig, BS arXiv:1210.5523)

e There are already good resolved 3-jet resonance searches (ex. Rutgers gp.,
CMS analysis arXiv:1311.1799)

e Already in somewhat boosted regime

C \s =7 TeV
1000 . 400 GeV gluino model l160
- 20 triplets/event
i —140
800
L —120
S
B QCD Simulation —
O 600 i 500 100
(D -
= I 400|560
= 400 300 1gp
: 200
- 100 |40
200 I 7 n 1 0
- 3
; Triplet sc%?gr P ((gg\%) 20

0

1 1 l 1 1 1 I 1 1 1 I 1 1 1 [ 1 1 1 l 1 1 1 I 1
900 400 600 800 1000 1200 1400
Triplet scalar P, (GeV)
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Conclusions

Jet-substructure-inspired observables can improve identification of dijet
resonances, even in the moderate boost regime/ resolved limit

* Interpolate between different kinematic regimes

mq B
¢ = AR15 (and variations)
12

Works well for two important examples of SM hadronic resonances
* WW+WZ
e V+(H—=bb)

Also useful in beyond-SM physics searches
e > WW
e

Uses standard-radius jets, no optimization for different R

Let’s find out what LHC13 has in store!
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