## The Radiative Origin of the Electro-Weak and Dark Matter Scale

Wolfgang Altmannshofer waltmannshofer@perimeterinstitute.ca

#### **P**I PERIMETER INSTITUTE

High Energy Physics Seminar University of Toronto

November 3, 2014

#### WA, Bardeen, Bauer, Carena and Lykken

"Light Dark Matter, Naturalness, and the Radiative Origin of the Electroweak Scale" arXiv:1408.3429 [hep-ph]

- 1 The Hierarchy Problem and Naturalness
- 2 A No-Scale Model with Radiative Symmetry Breaking
- 3 Higgs Phenomenology
- 4 Dark Matter Phenomenology

#### 5 Conclusions

## The LHC Discovered the Higgs



coupling, spin and parity measurements are (so far) compatible with predictions for the elementary SM Higgs

### The Hierarchy Problem

the mass of an elementary higgs is quadratically sensitive to the UV

$$(m_h^0)^2 + rac{1}{16\pi^2} (\Lambda_{\rm UV})^2 \simeq (125\,{
m GeV})^2$$

#### The Hierarchy Problem

the mass of an elementary higgs is quadratically sensitive to the UV

CanadaOnlied States $9,984,670 \text{ km}^2$ - $9,826,675 \text{ km}^2$ = $157,995 \text{ km}^2$ 

## The Hierarchy Problem

the mass of an elementary higgs is quadratically sensitive to the UV

$$(m_h^0)^2 + \frac{1}{16\pi^2}(\Lambda_{UV})^2 \simeq (125 \text{ GeV})^2$$

$$- 4 = 1 \text{ Å}^2$$
Canada United States

 $9,984,670 \text{ km}^2 \qquad - \qquad 9,826,675 \text{ km}^2 \qquad = \ 157,995 \text{ km}^2$ 

for  $\Lambda_{UV} = M_{Planck}$ , tuning of the Higgs mass would correspond to the surface area of Canada and the United States differing by approximately the size of an atom! In the absence of a symmetry (or some form of conspiracy) enforcing cancellations, the observed electro-weak scale can only be obtained by finetuning the bare Higgs mass against the radiative corrections.





In the absence of a symmetry (or some form of conspiracy) enforcing cancellations, the observed electro-weak scale can only be obtained by finetuning the bare Higgs mass against the radiative corrections.

naturalness principle:

light fundamental scalars are accompanied by new physics that cancels the quadratically divergent part of the radiative corrections



still most popular candidate: supersymmetry

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: ICHEP 2014

|                                                   | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $e, \mu, \tau, \gamma$                                                                                                                                                                                                      | Jets                                                                                                              | E <sup>miss</sup><br>T                                             | ∫£ dt[fb                                                                                  | Mass limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference                                                                                                                                                                                                            |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                                | MSUGRACMSSM<br>MSUGRACMSSM<br>MSUGRACMSSM<br>49, 494 <sup>2</sup><br>83, 294 <sup>2</sup><br>83, 294 <sup>2</sup><br>83, 294 <sup>2</sup><br>83, 294 <sup>2</sup><br>64<br>83, 294 <sup>2</sup><br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1 \ 2 \ e, \mu \\ 1 \ 2 \ r, \mu - 10 \ 1 \ \ell \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ Z \\ 0 \end{matrix}$ | 2-6 jets<br>3-6 jets<br>7-10 jets<br>2-6 jets<br>2-6 jets<br>3-6 jets<br>0-3 jets<br>0-3 jets<br>mono-jet         | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                              | 2. 12<br>3. 12<br>4. 15<br>5. 10<br>5. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1405.7875<br>ATLAS-CONF-2013-082<br>1908.1841<br>1405.7875<br>1405.7875<br>ATLAS-CONF-2013-082<br>1208.4888<br>1407.0803<br>ATLAS-CONF-2012-400<br>ATLAS-CONF-2012-401<br>ATLAS-CONF-2012-147<br>ATLAS-CONF-2012-147 |
| 3 <sup>rd</sup> gen.<br><u>§</u> med.             | $\overline{s} \rightarrow b\overline{b}\overline{k}_{1}^{p}$<br>$\overline{s} \rightarrow a\overline{k}_{1}^{p}$<br>$\overline{s} \rightarrow a\overline{k}_{1}^{p}$<br>$\overline{s} \rightarrow b\overline{k}\overline{k}_{1}^{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0-1 e, µ<br>0-1 e, µ                                                                                                                                                                                              | 3 b<br>7-10 jets<br>3 b<br>3 b                                                                                    | Yes<br>Yes<br>Yes<br>Yes                                           | 20.1<br>20.3<br>20.1<br>20.1                                                              | 2 1.25<br>2 1.1 Te<br>2 1.1 Te<br>2 1.2<br>2 1.2<br>2 1.2<br>2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TeV         m(ξ <sup>2</sup> <sub>1</sub> )<400 GeV           V         m(ξ <sup>2</sup> <sub>1</sub> )<450 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1407.0600<br>1308.1841<br>1407.0600<br>1407.0600                                                                                                                                                                     |
| 3 <sup>rd</sup> gen. squarks<br>direct production | $ \begin{split} & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (light), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (light), \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 (modum), \tilde{c}_1 \rightarrow b \tilde{k}_1^0 \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 + \tilde{c}_1 \tilde{c}_1 \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 + \tilde{c}_1 \tilde{c}_1 \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 + \tilde{c}_1 \\ & \tilde{c}_1 \tilde{c}_1 \\ & \tilde{c}_1 \tilde{c}_1 \tilde{c}_1 \\ & \tilde{c}_1$ | $\begin{array}{c} 0 \\ 2 e, \mu (SS) \\ 1-2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 3 e, \mu (Z) \end{array}$                                                                              | 2 b<br>0.3 b<br>1.2 b<br>0.2 jets<br>2 jets<br>2 b<br>1 b<br>2 b<br>1 b<br>2 b<br>1 b<br>1 b<br>1 b<br>1 b<br>1 b | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.1<br>20.3<br>4.7<br>20.3<br>20.3<br>20.1<br>20<br>20.1<br>20.3<br>20.3<br>20.3<br>20.3 | 100-800 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | າດຖື 3450 GaV<br>າດຖື 2-24 ກິດີກາ<br>າດຖື 3-25 GaV<br>າດຖື 1-10 GaV<br>າດຖື 1-10 GaV<br>າດຖື 1-20 GaV<br>າດຖື 1-20 GaV<br>າດຖື 1-20 GaV<br>າດຖື 1-25 GaV<br>າດຖື 1-550 GaV<br>າດຖື 1-550 GaV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1308.2831<br>1404.2500<br>1208.4805, 1209.2102<br>1403.4853<br>1403.4853<br>1308.2831<br>1407.0583<br>1406, 1122<br>1407.0608<br>1403.5222<br>1403.5222                                                              |
| EW<br>direct                                      | $ \begin{array}{l} \tilde{\ell}_{1,R}\tilde{\ell}_{1,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell} \gamma (\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{r} \gamma (r) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{\ell}_{1} \sqrt{\ell}_{1} \ell (\tilde{r}) , \ell \tilde{\chi}_{L}^{*} \ell (\tilde{r}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{1}^{*} \tilde{\chi}_{2}^{*} - W \tilde{\chi}_{1}^{*} \delta \tilde{\chi}_{1}^{b} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow W \tilde{\chi}_{1}^{*} \delta \tilde{\chi}_{1}^{b} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*} \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{*} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 e, µ<br>2 e, µ<br>2 T<br>3 e, µ<br>2 3 e, µ<br>1 e, µ<br>4 e, µ                                                                                                                                                           | 0<br>0<br>0<br>2 b<br>0                                                                                           | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes                             | 20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                              | 2         90-325 GeV           3 <sup>+</sup> 160-865 GeV           3 <sup>+</sup> 100-350 GeV           3 <sup>+</sup> 100-350 GeV           3 <sup>+</sup> 100-350 GeV           3 <sup>+</sup> 20 GeV           3 <sup>+</sup> 225 GeV           3 <sup>+</sup> 285 GeV           3 <sup>+</sup> 285 GeV           3 <sup>+</sup> 285 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m( <sup>2</sup> <sub>1</sub> )=0 GeV<br>m( <sup>2</sup> <sub>1</sub> )=0 GeV m( <sup>2</sup> , 7)=0.5(m( <sup>2</sup> <sub>1</sub> )+m( <sup>2</sup> <sub>1</sub> ))<br>m( <sup>2</sup> <sub>1</sub> )=0 GeV m( <sup>2</sup> , 7)=0.5(m( <sup>2</sup> <sub>1</sub> )+m( <sup>2</sup> <sub>1</sub> ))<br>m( <sup>2</sup> <sub>1</sub> )=m( <sup>2</sup> <sub>1</sub> ), m( <sup>2</sup> <sub>1</sub> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> <sub>1</sub> ))<br>m( <sup>2</sup> <sub>1</sub> )=m( <sup>2</sup> <sub>1</sub> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> <sub>1</sub> )=m( <sup>2</sup> <sub>1</sub> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> )=0, d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), d.5(m( <sup>2</sup> )+m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ), m( <sup>2</sup> ))m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> )=m( <sup>2</sup> ))m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> ))m( <sup>2</sup> ))m( <sup>2</sup> ))<br>m( <sup>2</sup> ))m( <sup>2</sup> ))m( <sup>2</sup> | 1403.5294<br>1403.5294<br>1407.0350<br>1402.7029<br>1403.5294, 1402.7029<br>ATLAS-CONF-2013.093<br>1405.5086                                                                                                         |
| Long-lived<br>particles                           | $\begin{array}{l} \text{Direct} \tilde{\mathcal{K}}_{1}^{+} \tilde{\mathcal{K}}_{1}^{-} \text{ prod., long-lived } \tilde{\mathcal{K}}_{1}^{+} \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{\mathcal{K}}_{1}^{0} {\rightarrow} \tilde{\tau}(\tilde{c}, \tilde{\mu}) {+} \tau(e, \\ \text{GMSB, } \tilde{\mathcal{K}}_{1}^{0} {\rightarrow} \tilde{\gamma}\tilde{G}, \text{ long-lived } \tilde{\mathcal{K}}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{\mathcal{K}}_{1}^{0} {\rightarrow} qq\mu \text{ (RPV)} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Disapp. trk<br>0<br>.µ) 1.2 µ<br>2 γ<br>1 µ, displ. vtx                                                                                                                                                                     | 1 jet<br>1-5 jets                                                                                                 | Yes<br>Yes<br>Yes                                                  | 20.3<br>27.9<br>15.9<br>4.7<br>20.3                                                       | X1         270 GeV         532 GeV           Z         532 GeV         532 GeV           Z1         230 GeV         475 GeV           I         230 GeV         1.0 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m( $\tilde{t}_{1}^{*}$ )-m( $\tilde{t}_{1}^{*}$ )=160 MeV, $\tau(\tilde{t}_{1}^{*})$ =0.2 ns<br>m( $\tilde{t}_{1}^{*}$ )=100 GeV, 10 µs< $\tau(\tilde{p})$ <1000 s<br>10 <sangle-50<br>0.4&lt;<math>\tau(\tilde{t}_{1}^{*})</math>&gt;2 ns<br/>1.5&lt;<math>\tau</math>=&lt;156 mm, BR(<math>\mu</math>)=1, m(<math>\tilde{t}_{1}^{*}</math>)=108 GeV</sangle-50<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATLAS-CONF-2013-069<br>1310.6584<br>ATLAS-CONF-2013-058<br>1304.6310<br>ATLAS-CONF-2013-092                                                                                                                          |
| RPV                                               | $ \begin{array}{l} \mathbb{L} \mathbb{F} \mathbb{V} \; p p \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow c + \mu \\ \mathbb{L} \mathbb{F} \mathbb{V} \; p p \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow c(\mu) + \tau \\ \mathbb{B} (\operatorname{inpar} \mathbb{F} \mathbb{P} \mathbb{V} \operatorname{CMSSM} \\ \tilde{K}_1^+ \tilde{k}_1^-, \tilde{K}_1^+ \rightarrow W \tilde{K}_1^0, \tilde{K}_1^0 \rightarrow e c \tilde{v}_{\mu}, e \mu \tilde{v}_{\nu} \\ \tilde{K}_1^+ \tilde{k}_1^-, \tilde{K}_1^+ \rightarrow W \tilde{K}_1^0, \tilde{K}_1^0 \rightarrow \tau \tau \tilde{v}_{\nu}, e \tau \tilde{v}_{\tau} \\ \tilde{K}_2^+ \tilde{k}_1^-, \tilde{K}_1^+ \rightarrow W \tilde{K}_1^0, \tilde{k}_1^0 \rightarrow \tau \tau \tilde{v}_{\nu}, e \tau \tilde{v}_{\tau} \\ \tilde{K}_2^- \tilde{v}_1^0, \tilde{k}_1^- \rightarrow b s \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (SS) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$                                                                            | 0-3 b<br>6-7 jets<br>0-3 b                                                                                        | Yes<br>Yes<br>Yes<br>Yes                                           | 4.6<br>4.6<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3                                | 1, 1,1<br>2, 1,1<br>4,2<br>1,1<br>4,2<br>1,1<br>1,1<br>1,1<br>1,1<br>1,1<br>1,1<br>1,1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{1.61 TeV} & \lambda_{11}^{2} = 0.05, \lambda_{112} = 0.05\\ \textbf{V} & \lambda_{11}^{2} = 0.10, \lambda_{122} = 0.05\\ \textbf{STeV} & \textbf{m}(h) = (\lambda_{122}) = 0.05\\ \textbf{m}(\boldsymbol{\pi}_{1}^{2}) = 0.2 - \textbf{m}(\boldsymbol{\pi}_{1}^{2}), \lambda_{122} = 0\\ \textbf{m}(\boldsymbol{\pi}_{1}^{2}) = 0.2 - \textbf{m}(\boldsymbol{\pi}_{1}^{2}), \lambda_{122} = 0\\ \textbf{m}(\boldsymbol{\pi}_{1}^{2}) = 0.2 - \textbf{m}(\boldsymbol{\pi}_{1}^{2}), \lambda_{122} = 0\\ \textbf{BR}(y = BR(y) = BR(y) = 05. \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1212.1272<br>1212.1272<br>1404.2500<br>1405.5088<br>1405.5088<br>ATLAS-CONF-2013.091<br>1404.250                                                                                                                     |
| Other                                             | Scalar gluon pair, sgluon $\rightarrow q\bar{q}$<br>Scalar gluon pair, sgluon $\rightarrow t\bar{t}$<br>WIMP interaction (D5, Dirac $\chi$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 e, µ (SS)<br>0                                                                                                                                                                                                            | 4 jets<br>2 b<br>mono-jet                                                                                         | Yes<br>Yes                                                         | 4.6<br>14.3<br>10.5                                                                       | sglutn 100-287 GeV<br>Sglutn 350-800 GeV<br>M* scale 704 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | incl. limit from 1110.2893<br>m(χ)<80 GeV, limit of <687 GeV for D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1210.4826<br>ATLAS-CONF-2013-051<br>ATLAS-CONF-2012-147                                                                                                                                                              |
|                                                   | Vs = 7 TeV<br>full data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vs ≡ 8 TeV<br>artial data                                                                                                                                                                                                   | $\sqrt{s} = full$                                                                                                 | 8 téV<br>data                                                      |                                                                                           | 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                      |

\*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS Preliminary  $\sqrt{s} = 7, 8 \text{ TeV}$ 

## No Signs of SUSY (yet)



## No Signs of SUSY (yet)



- it is possible that we just missed the superpartners at the 7/8 TeV run, and they will show up at 13 TeV
- (it happend in the past: e.g. LEP and Tevatron just missed the Higgs)

## A Modified Naturalness Principle

Farina, Pappadopulo, Strumia, 1303.7244 (finite naturalness); Giudice, 1307.7879 (UV naturalness)

the higgs mass is quadratically sensitive to UV thresholds

- if there are no new particles/scales above the electro-weak scale, there is no hierarchy problem (what about gravity?)
- if new particles above the electro-weak scale are sufficiently weakly coupled to the Higgs, there is also no hierarchy problem

## A Modified Naturalness Principle

Farina, Pappadopulo, Strumia, 1303.7244 (finite naturalness); Giudice, 1307.7879 (UV naturalness)

the higgs mass is quadratically sensitive to UV thresholds

- if there are no new particles/scales above the electro-weak scale, there is no hierarchy problem (what about gravity?)
- if new particles above the electro-weak scale are sufficiently weakly coupled to the Higgs, there is also no hierarchy problem

can be used as a constraint on new physics:

- ▶ right handed neutrinos from a see-saw mechanism have to be lighter than  $\sim 10^7$  GeV in order to avoid fine-tuning
- minimal dark matter particles are typically bounded at the level of ~ 1 TeV in order to avoid fine-tuning

#### What about Gravity?



"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO,"

#### Three Categories of Miracles

(Giudice, 1307.7879)

#### miracle of the third degree:

gravity does not affect the Higgs mass

### Three Categories of Miracles

(Giudice, 1307.7879)

#### miracle of the third degree:

gravity does not affect the Higgs mass

miracle of the second degree:

gravity does not affect the Higgs mass

AND leads all SM couplings to fixed points (no Landau poles)

## Three Categories of Miracles

(Giudice, 1307.7879)

#### miracle of the third degree:

gravity does not affect the Higgs mass

miracle of the second degree:

gravity does not affect the Higgs mass

AND leads all SM couplings to fixed points (no Landau poles)

#### miracle of the first degree:

gravity does do not affect the Higgs mass

- AND leads all SM couplings to fixed points
- AND erases any large quantum correction to the Higgs mass from physics below the Planck scale

#### **No-Scale Models**

finite naturalness is guaranteed if there are no scales in the theory (Planck scale does not count, because one assumes gravity performs a miracle of third or maybe second degree)

electro-weak scale has to be generated dynamically

#### **No-Scale Models**

finite naturalness is guaranteed if there are no scales in the theory (Planck scale does not count, because one assumes gravity performs a miracle of third or maybe second degree)

electro-weak scale has to be generated dynamically

 strong dynamics: use technicolor to give mass to an elementary Higgs (Hur, Ko 1103.2571; Heikinheimo, et al. 1304.7006; Holthausen, et al. 1310.4423)

#### **No-Scale Models**

finite naturalness is guaranteed if there are no scales in the theory (Planck scale does not count, because one assumes gravity performs a miracle of third or maybe second degree)

electro-weak scale has to be generated dynamically

- strong dynamics: use technicolor to give mass to an elementary Higgs (Hur, Ko 1103.2571; Heikinheimo, et al. 1304.7006; Holthausen, et al. 1310.4423)
- Coleman-Weinberg: quartic of another scalar runs negative in the IR (many papers in the last few years)

$$V_{
m eff}(\Sigma) \sim \lambda \Sigma^4 + eta_\lambda \Sigma^4 \log \Sigma \ , \quad \lambda < 0 \ , \ eta_\lambda > 0$$

electro-weak symmetry breaking generated by a negative Higgs portal

$$\lambda_{\Sigma H} \Sigma^{\dagger} \Sigma H^{\dagger} H \quad 
ightarrow \quad rac{\lambda_{\Sigma H} \langle \Sigma \rangle^2}{2} H^{\dagger} H$$

## The Model

#### No Scales and a Dark Portal

a complex scalar serves as portal to a dark sector

$$\mathcal{L}_{\text{scalar}} = |\boldsymbol{D}\boldsymbol{H}|^2 + |\boldsymbol{D}\boldsymbol{\Sigma}|^2 - \frac{\lambda_H}{2}|\boldsymbol{H}|^4 - \frac{\lambda_{\boldsymbol{\Sigma}}}{2}|\boldsymbol{\Sigma}|^4 - \lambda_{\boldsymbol{\Sigma}\boldsymbol{H}}|\boldsymbol{H}|^2|\boldsymbol{\Sigma}|^2$$

Possibilities for Dark Matter

- pseudoscalar component of the complex dark scalar (Gabrielli, et al. 1309.6632)
- dark gauge boson that gets mass from eating a Goldstone from the complex portal scalar (Hambye, Strumia 1306.2329)
- dark fermions that gets mass from Yukawa couplings to the complex portal scalar (WA, Bardeen, Bauer, Carena, Lykken 1408.3429)

$$\beta_{\lambda_{\Sigma}} \sim \frac{1}{16\pi^2} \Big( + quartics + gauge couplings - Yukawas \Big)$$

#### Dark Gauge Interactions

• introduce a dark  $SU(2)_X \times U(1)_X$  gauge group

$$\mathcal{L}_{ ext{gauge}} = rac{1}{4} (\textit{W}_{a}')_{\mu
u} (\textit{W}_{a}')^{\mu
u} + rac{1}{4} (\textit{B}')_{\mu
u} (\textit{B}')^{\mu
u}$$

#### **Dark Gauge Interactions**

• introduce a dark  $SU(2)_X \times U(1)_X$  gauge group

$$\mathcal{L}_{ ext{gauge}} = rac{1}{4} ( \textit{W}_{a}')_{\mu
u} ( \textit{W}_{a}')^{\mu
u} + rac{1}{4} ( \textit{B}')_{\mu
u} ( \textit{B}')^{\mu
u}$$

• the dark scalar  $\Sigma$  is a  $SU(2)_X$  doublet with  $U(1)_X$  charge 1/2

#### **Dark Gauge Interactions**

• introduce a dark  $SU(2)_X \times U(1)_X$  gauge group

$$\mathcal{L}_{ ext{gauge}} = rac{1}{4} ( \textit{W}_{a}')_{\mu
u} ( \textit{W}_{a}')^{\mu
u} + rac{1}{4} ( \textit{B}')_{\mu
u} ( \textit{B}')^{\mu
u}$$

- the dark scalar  $\Sigma$  is a  $SU(2)_X$  doublet with  $U(1)_X$  charge 1/2
- a dark scalar vev (Σ) = w breaks the dark gauge group down to a dark U(1) (dark electro-magnetism)
- dark sector contains a massless dark photon, massive dark W and dark Z

$$m_{\gamma'} = 0 \;, \;\; m_{W'} = rac{w}{2} g_X \;, \;\; m_{Z'} = rac{w}{2} \sqrt{g_X^2 + {g_X'}^2}$$

• (we don't consider kinetic mixing between  $U(1)_X$  and  $U(1)_Y$ )

### The Dark Fermion Sector

▶ we introduce two generations of dark "leptons"

left-handed doublets  $\psi_i^L = \begin{pmatrix} \chi_i^L \\ \xi_i^L \end{pmatrix}$ , right-handed singlets  $\chi_i^R$ ,  $\xi_i^R$ 

 the two generations have opposite hypercharges to ensure cancellation of anomalies

### The Dark Fermion Sector

we introduce two generations of dark "leptons"

left-handed doublets  $\psi_i^L = \begin{pmatrix} \chi_i^L \\ \xi_i^L \end{pmatrix}$ , right-handed singlets  $\chi_i^R$ ,  $\xi_i^R$ 

 the two generations have opposite hypercharges to ensure cancellation of anomalies

$$\begin{aligned} \mathcal{L}_{\text{fermion}} &= i\bar{\psi}_i^L \mathcal{D} \psi_i^L + i\bar{\chi}_i^R \mathcal{D} \chi_i^R + i\bar{\xi}_i^R \partial \xi_i^R \\ &+ (Y_{\chi_1}\bar{\psi}_1^L \chi_1^R \tilde{\Sigma} + Y_{\chi_2} \bar{\psi}_2^L \chi_2^R \Sigma + Y_{\xi_1} \bar{\psi}_1^L \xi_1^R \Sigma + Y_{\xi_2} \bar{\psi}_2^L \xi_2^R \tilde{\Sigma} + \text{h.c.}) \end{aligned}$$

fermions get masses from Yukawa interactions with the dark scalar

$$m_{\chi_i} = rac{\mathsf{Y}_{\chi_i}}{\sqrt{2}} \mathsf{w} \;, \;\; m_{\xi_i} = rac{\mathsf{Y}_{\xi_i}}{\sqrt{2}} \mathsf{w}$$

 2 massive, dark-charged "electrons" and 2 massive, neutral "neutrinos"

Wolfgang Altmannshofer

#### **Radiative Symmetry Breaking**

$$\begin{aligned} \frac{d\lambda_{\Sigma}}{dt} &= \beta_{\lambda_{\Sigma}} = \frac{1}{16\pi^2} \Big( 12\lambda_{\Sigma}^2 + 4\lambda_{\Sigma H}^2 \\ &+ \frac{9}{4}g_X^4 + \frac{3}{4}(g_X')^4 + \frac{3}{2}g_X^2(g_X')^2 - 9g_X^2\lambda_{\Sigma} - 3(g_X')^2\lambda_{\Sigma} \\ &- 4\sum_i (Y_{\xi_i}^4 + Y_{\chi_i}^4) + 4\lambda_{\Sigma}\sum_i (Y_{\xi_i}^2 + Y_{\chi_i}^2) \Big) \end{aligned}$$

sizeable gauge couplings drive the dark quartic negative in the IR and a dark scalar vev is generated dynamically

#### **Radiative Symmetry Breaking**

$$\begin{aligned} \frac{d\lambda_{\Sigma}}{dt} &= \beta_{\lambda_{\Sigma}} = \frac{1}{16\pi^2} \Big( 12\lambda_{\Sigma}^2 + 4\lambda_{\Sigma H}^2 \\ &+ \frac{9}{4}g_X^4 + \frac{3}{4}(g_X')^4 + \frac{3}{2}g_X^2(g_X')^2 - 9g_X^2\lambda_{\Sigma} - 3(g_X')^2\lambda_{\Sigma} \\ &- 4\sum_i (Y_{\xi_i}^4 + Y_{\chi_i}^4) + 4\lambda_{\Sigma}\sum_i (Y_{\xi_i}^2 + Y_{\chi_i}^2) \Big) \end{aligned}$$

- sizeable gauge couplings drive the dark quartic negative in the IR and a dark scalar vev is generated dynamically
- dark scalar vev is transmitted to the visible sector by the portal coupling

$$rac{\langle H 
angle^2}{\langle \Sigma 
angle^2} = rac{v^2}{w^2} \simeq -rac{\lambda_{\Sigma H}}{\lambda_H}$$

#### Scalar Spectrum

▶ due to the portal coupling, the dark scalar and the Higgs mix

$$\mathcal{M}^{2} \simeq \frac{v^{2}}{2} \begin{pmatrix} 2\lambda_{H} & -2\sqrt{\lambda_{H}|\lambda_{\Sigma H}|} \\ -2\sqrt{\lambda_{H}|\lambda_{\Sigma H}|} & 2|\lambda_{\Sigma H}| + \lambda_{H}\beta_{\lambda_{\Sigma}}/|\lambda_{\Sigma H}| \end{pmatrix}$$
$$\begin{pmatrix} h \\ s \end{pmatrix} \rightarrow \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}, \quad \sin 2\alpha = \frac{2\sqrt{\lambda_{H}|\lambda_{\Sigma H}|}v^{2}}{m_{s}^{2} - m_{h}^{2}}$$

#### Scalar Spectrum

▶ due to the portal coupling, the dark scalar and the Higgs mix

$$\begin{split} \mathcal{M}^2 &\simeq \frac{v^2}{2} \begin{pmatrix} 2\lambda_H & -2\sqrt{\lambda_H|\lambda_{\Sigma H}|} \\ -2\sqrt{\lambda_H|\lambda_{\Sigma H}|} & 2|\lambda_{\Sigma H}| + \lambda_H \beta_{\lambda_{\Sigma}}/|\lambda_{\Sigma H}| \end{pmatrix} \\ \begin{pmatrix} h \\ s \end{pmatrix} &\to \begin{pmatrix} c_\alpha & s_\alpha \\ -s_\alpha & c_\alpha \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix} , \quad \sin 2\alpha = \frac{2\sqrt{\lambda_H|\lambda_{\Sigma H}|}v^2}{m_s^2 - m_h^2} \end{split}$$

- mass of the (mostly) Higgs is corrected compared to the SM value
- mass of the (mostly) dark scalar is proportional to the beta function of the dark quartic

$$m_h^2 \simeq v^2 \left( \lambda_H - \frac{2\lambda_{\Sigma H}^2}{\beta_{\lambda_{\Sigma}} - 2|\lambda_{\Sigma H}|} \right) , \ m_s^2 \simeq v^2 \left( \frac{\lambda_H \beta_{\lambda_{\Sigma}}}{2|\lambda_{\Sigma H}|} + \frac{\beta_{\lambda_{\Sigma}}|\lambda_{\Sigma H}|}{\beta_{\lambda_{\Sigma}} - 2|\lambda_{\Sigma H}|} \right)$$

#### Vacuum Stability

► in the SM the Higgs quartic runs negative at a scale ~ 10<sup>10</sup> GeV

Buttazzo, et al. 1307.3536 0.10  $3\sigma$  bands in 0.08  $M_t = 173.3 \pm 0.8 \text{ GeV} (\text{gray})$  $\alpha_3(M_Z) = 0.1184 \pm 0.0007$ (red) 0.06  $M_h = 125.1 \pm 0.2 \text{ GeV}$  (blue) Higgs quartic coupling λ 0.04 0.02  $M_t = 171.1 \text{ GeV}$ 0.00  $(M_{\gamma}) = 0.1205$ -0.02 $\alpha_{c}(M_{2}) = -0.1163$  $M_{t} = 175.6 \, \text{GeV}$ -0.04 $10^{10}$  $10^{2}$  $10^{4}$  $10^{6}$  $10^{8}$  $10^{12}$   $10^{14}$ 1016 1018  $10^{20}$ 

RGE scale  $\mu$  in GeV

Radiative Origin of the EW and DM scale

## Vacuum Stability

- ► in the SM the Higgs quartic runs negative at a scale ~ 10<sup>10</sup> GeV
- electro-weak vacuum is only meta-stable

Buttazzo, et al. 1307.3536



### Vacuum Stability

- in the SM the Higgs quartic runs negative at a scale
   ~ 10<sup>10</sup> GeV
- electro-weak vacuum is only meta-stable
- mixing with the scalar changes the IR boundary conditions

 $\lambda_{H}(m_{h}) \simeq \lambda_{H}^{\mathrm{SM}}(m_{h}) + rac{2\lambda_{\Sigma H}^{2}}{eta_{\lambda_{\Sigma}} - 2|\lambda_{\Sigma H}|}$ 

 scalar potential can be absolutely stable (see also Elias-Miro, et al. 1203.0237)



#### **Renormalization Group Evolution**

#### example point in parameter space

 $\begin{array}{l} m_h \simeq 125.5 \; {\rm GeV} \;, \;\; m_s \simeq 168 \; {\rm GeV} \\ m_{W'} \simeq 740 \; {\rm GeV} \;, \;\; m_{Z'} \simeq 850 \; {\rm GeV} \\ m_{\chi_1} \simeq 50 \; {\rm GeV} \;, \;\; m_{\chi_2} \simeq 50 \; {\rm GeV} \\ m_{\xi_1} \simeq 160 \; {\rm GeV} \;, \;\; m_{\xi_2} \simeq 700 \; {\rm GeV} \end{array}$ 

 SU(2)<sub>X</sub> gauge coupling is asymptotically free

#### $U(1)_X$ gauge coupling

becomes large close to the Planck scale



#### **Renormalization Group Evolution**

#### example point in parameter space

 $\begin{array}{l} m_h \simeq 125.5 \; {\rm GeV} \;, \;\; m_s \simeq 168 \; {\rm GeV} \\ m_{W'} \simeq 740 \; {\rm GeV} \;, \;\; m_{Z'} \simeq 850 \; {\rm GeV} \\ m_{\chi_1} \simeq 50 \; {\rm GeV} \;, \;\; m_{\chi_2} \simeq 50 \; {\rm GeV} \\ m_{\xi_1} \simeq 160 \; {\rm GeV} \;, \;\; m_{\xi_2} \simeq 700 \; {\rm GeV} \end{array}$ 

 SU(2)<sub>X</sub> gauge coupling is asymptotically free

#### $U(1)_X$ gauge coupling

becomes large close to the Planck scale

 Yukawa couplings show only mild scale dependence



#### **Renormalization Group Evolution**

#### example point in parameter space

 $\begin{array}{l} m_h \simeq 125.5 \; {\rm GeV} \;, \;\; m_s \simeq 168 \; {\rm GeV} \\ m_{W'} \simeq 740 \; {\rm GeV} \;, \;\; m_{Z'} \simeq 850 \; {\rm GeV} \\ m_{\chi_1} \simeq 50 \; {\rm GeV} \;, \;\; m_{\chi_2} \simeq 50 \; {\rm GeV} \\ m_{\xi_1} \simeq 160 \; {\rm GeV} \;, \;\; m_{\xi_2} \simeq 700 \; {\rm GeV} \end{array}$ 

 SU(2)<sub>X</sub> gauge coupling is asymptotically free

 $U(1)_X$  gauge coupling becomes large close to the Planck scale

- Yukawa couplings show only mild scale dependence
- ► parameter point was chosen such that the Higgs quartic, the dark scalar quartic and their beta functions are ~ 0 at the Planck scale



## Higgs Phenomenology

#### Reduced Signal Strength of the SM Higgs

 due to mixing with the dark scalar, higgs production is universally suppressed

 $\sigma = \mathbf{C}_{\alpha}^{\mathbf{2}} \times \sigma_{\mathsf{SM}}$ 

 bound on the mixing angle

 $c_lpha\gtrsim 0.9$ 





► if kinematically allowed, the Higgs can decay into dark fermions

$$\begin{split} \Gamma(h \to \chi \bar{\chi}) &= \\ &= \frac{Y_{\chi}^2}{8\pi} \; m_h \, s_{\alpha}^2 \; \left( 1 - \frac{4m_{\chi}^2}{m_h^2} \right)^{\frac{3}{2}} \end{split}$$

- ► for sizable mixing, the branching ratio can be O(10%)
- could be probed at a high luminosity LHC

#### Signals of the Dark Scalar



- looks like a second Higgs with couplings to SM reduced by s<sub>α</sub>
- but invisible decays to dark sector can be sizable if kinematically allowed

$$\Gamma(s \to \chi \bar{\chi}) =$$

$$=\frac{Y_{\chi}^2}{8\pi}\,m_h\,\boldsymbol{c}_{\alpha}^2\,\left(1-\frac{4m_{\chi}^2}{m_h^2}\right)^{\frac{3}{2}}$$

0

#### Signals of the Dark Scalar



- looks like a second Higgs with couplings to SM reduced by s<sub>α</sub>
- but invisible decays to dark sector can be sizable if kinematically allowed

$$\Gamma(s \to \chi \bar{\chi}) =$$

$$=\frac{Y_{\chi}^2}{8\pi}\,m_h\,c_{\alpha}^2\,\left(1-\frac{4m_{\chi}^2}{m_h^2}\right)^{\frac{3}{2}}$$

2



- $\blacktriangleright\,$  dark scalar is expected below  $\lesssim 250~GeV$
- current Higgs searches already constrain parts of the parameter space
- expect signal strength of at least few % of the SM Higgs

## Dark Matter Phenomenology

## Dark Matter Annihilation

- four dark fermions:  $\chi_1^{\pm}$ ,  $\chi_2^{\pm}$ ,  $\xi_1^0$ ,  $\xi_2^0$
- ► three lightest are always stable
- if kinematically allowed, heaviest can decay into the other three through W exchange (e.g. ξ<sub>2</sub><sup>0</sup> → ξ<sub>1</sub><sup>0</sup>χ<sub>2</sub><sup>+</sup>χ<sub>1</sub><sup>-</sup>)

## Dark Matter Annihilation

- four dark fermions:  $\chi_1^{\pm}$ ,  $\chi_2^{\pm}$ ,  $\xi_1^0$ ,  $\xi_2^0$
- three lightest are always stable
- if kinematically allowed, heaviest can decay into the other three through W exchange (e.g. ξ<sub>2</sub><sup>0</sup> → ξ<sub>1</sub><sup>0</sup>χ<sub>2</sub><sup>+</sup>χ<sub>1</sub><sup>-</sup>)
- the charged dark fermions can annihilate into dark photons
- ► 5%-10% charged dark matter component can be compatible with constraints

(Fan, Katz, Randall, Reece 1303.1521)



## Dark Matter Annihilation

- four dark fermions:  $\chi_1^{\pm}$ ,  $\chi_2^{\pm}$ ,  $\xi_1^0$ ,  $\xi_2^0$
- three lightest are always stable
- if kinematically allowed, heaviest can decay into the other three through W exchange (e.g. ξ<sub>2</sub><sup>0</sup> → ξ<sub>1</sub><sup>0</sup>χ<sub>2</sub><sup>+</sup>χ<sub>1</sub><sup>-</sup>)
- the charged dark fermions can annihilate into dark photons
- ► 5%-10% charged dark matter component can be compatible with constraints

(Fan, Katz, Randall, Reece 1303.1521)

- only unsuppressed annihilation channel of the neutral dark fermions is into the charged dark fermions
- $\rightarrow$  want  $m_{\xi} > m_{\chi}$



#### Dark Matter Relic Density



- for given gauge couplings, ξ<sup>0</sup><sub>1</sub> relic abundance depends strongly on its mass
- ► right relic abundance is easily obtained by adjusting m<sub>ξ1</sub> ~ Y<sub>ξ1</sub>

#### **Dark Matter Direct Detection**





- direct detection cross section suppressed by the Higgs mixing
- still 1-2 orders of magnitude below the current LUX constraint
- LZ should be able to cover essentially the full parameter space

 no-scale models avoid fine-tuning of the Higgs mass (if gravity has special properties)

- ➤ discussed a specific model, where the electro-weak scale and the dark matter scale are generated dynamically from the radiative breaking of a SU(2)<sub>X</sub> × U(1)<sub>X</sub> gauge group in a dark sector
- model makes testable predictions for
  - $\rightarrow$  higgs signal strengths
  - ightarrow collider signals of the dark scalar
  - $\rightarrow$  dark matter direct detection
  - ightarrow number of relativistic dof's in the early universe

"Of course, going from Higgs and no SUSY to modified naturalness [...] is risky.

Of course, it is much more reasonable to imagine ant\*\*\*ic selection within a SUSY multiverse of branes wrapped on compactified 6 or 7 extra dimensions."

A. Strumia

# Back Up

#### One Loop Effective Potential

$$\begin{split} V_{\text{eff}}(h,s) &\simeq \quad \frac{1}{8} \lambda_{H}(\mu_{h}) h^{4} + \frac{1}{4} \lambda_{\Sigma H}(\mu_{sh}) h^{2} s^{2} + \frac{1}{8} \lambda_{\Sigma}(\mu_{s}) s^{4} \\ &+ \quad \frac{1}{16\pi^{2}} \Biggl\{ -3m_{t}^{2} \left[ \log\left(\frac{m_{t}^{2}}{\mu_{h}^{2}}\right) - \frac{3}{2} \right] \\ &+ \frac{3}{2} m_{W}^{2} \left[ \log\left(\frac{m_{W}^{2}}{\mu_{h}^{2}}\right) - \frac{5}{6} \right] + \frac{3}{4} m_{Z}^{2} \left[ \log\left(\frac{m_{Z}^{2}}{\mu_{h}^{2}}\right) - \frac{5}{6} \right] \Biggr\} \\ &+ \quad \frac{1}{16\pi^{2}} \Biggl\{ -\sum_{i} m_{\chi_{i}}^{2} \left[ \log\left(\frac{m_{\chi_{i}}^{2}}{\mu_{s}^{2}}\right) - \frac{3}{2} \right] - \sum_{i} m_{\xi_{i}}^{2} \left[ \log\left(\frac{m_{\xi_{i}}^{2}}{\mu_{s}^{2}}\right) - \frac{3}{2} \right] \\ &+ \frac{3}{2} m_{W'}^{2} \left[ \log\left(\frac{m_{W'}^{2}}{\mu_{h}^{2}}\right) - \frac{5}{6} \right] + \frac{3}{4} m_{Z'}^{2} \left[ \log\left(\frac{m_{Z'}^{2}}{\mu_{h}^{2}}\right) - \frac{5}{6} \right] \Biggr\} , \end{split}$$

where the field dependent masses are given by

$$m_t^2 = Y_t^2 h^2 / 2 , \quad m_W^2 = g^2 h^2 / 4 , \quad m_Z^2 = (g^2 + (g')^2) h^2 / 4$$
$$m_{\chi_i}^2 = Y_{\chi_i}^2 s^2 / 2 , \quad m_{\xi_i}^2 = Y_{\xi_i}^2 s^2 / 2 , \quad m_{W'}^2 = g_X^2 s^2 / 4 , \quad m_{Z'}^2 = (g_X^2 + (g_X')^2) s^2 / 4$$

#### **Beta Functions**

$$\begin{aligned} \frac{d\lambda_{H}}{dt} &= \beta_{\lambda_{H}} &= \beta_{\lambda_{H}}^{\rm SM} + \frac{1}{16\pi^{2}} 4\lambda_{\Sigma H}^{2} \\ \frac{d\lambda_{\Sigma}}{dt} &= \beta_{\lambda_{\Sigma}} &= \frac{1}{16\pi^{2}} \left( 12\lambda_{\Sigma}^{2} + 4\lambda_{\Sigma H}^{2} - 9g_{X}^{2}\lambda_{\Sigma} - 3(g_{X}')^{2}\lambda_{\Sigma} + \frac{9}{4}g_{X}^{4} + \frac{3}{4}(g_{X}')^{4} + \frac{3}{2}g_{X}^{2}(g_{X}')^{2} \\ &- 4\sum_{i} (Y_{\xi_{i}}^{4} + Y_{\chi_{i}}^{4}) + 4\lambda_{\Sigma}\sum_{i} (Y_{\xi_{i}}^{2} + Y_{\chi_{i}}^{2}) \right) \end{aligned}$$

$$\begin{aligned} \frac{d\lambda_{\Sigma H}}{dt} &= \beta_{\lambda_{\Sigma H}} \quad = \quad \frac{1}{16\pi^2} \Big[ 4\lambda_{\Sigma H}^2 + 6(\lambda_H + \lambda_{\Sigma})\lambda_{\Sigma H} - \frac{\lambda_{\Sigma H}}{2} \Big( 3(g')^2 + 9g^2 + 9g_X^2 + 3(g_X')^2 \Big) \\ &+ \lambda_{\Sigma H} \Big( 6Y_t^2 + 2\sum_i (Y_{\xi_i}^2 + Y_{\chi_i}^2) \Big) \Big] \end{aligned}$$

$$\frac{dg_X}{dt} = \beta_{g_X} = -\frac{1}{16\pi^2} \frac{39}{6} g_X^3$$

$$\frac{dg'_X}{dt} = \beta_{g'_X} = \frac{1}{16\pi^2} \frac{13}{6} (g'_X)^3$$

$$\begin{aligned} \frac{dY_{\xi_i}}{dt} &= \beta_{Y_{\xi_i}} &= \frac{1}{16\pi^2} Y_{\xi_i} \left( \frac{3}{2} (Y_{\xi_i}^2 - Y_{\chi_i}^2) + \sum_j (Y_{\xi_j}^2 + Y_{\chi_j}^2) - \frac{9}{4} g_X^2 - \frac{3}{4} (g_X')^2 \right) \\ \frac{dY_{\chi_i}}{dt} &= \beta_{Y_{\chi_i}} &= \frac{1}{16\pi^2} Y_{\chi_i} \left( \frac{3}{2} (Y_{\chi_i}^2 - Y_{\xi_i}^2) + \sum_j (Y_{\xi_j}^2 + Y_{\chi_j}^2) - \frac{9}{4} g_X^2 - \frac{15}{4} (g_X')^2 \right) \end{aligned}$$

Wolfgang Altmannshofer