Microlensing with extended dark matter structures

Djuna Lize Croon (TRIUMF)

University of Toronto

September 2020

dcroon@triumf.ca | djunacroon.com

Dark matter substructure

Two things we may agree upon...

- (Unfortunately) all of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

Dark matter substructure

Two things we may agree upon...

- (Unfortunately) all of our evidence for Dark Matter is gravitational
- Many dark matter models feature substructure

What else can we learn from gravitational interactions?

- → Microlensing surveys constrain primordial black holes
- → What about extended structures?

In this talk: Subaru-HSC, EROS-2 and OGLE-IV surveys

Strong gravitational lensing

Newton, Cavendish, Soldner

Image credit: Chandra X-ray telescope, CXC/M.Weiss

Image credit: Adam Rogers, theamateurrealist.wordpress.com

Image credit: Adam Rogers, theamateurrealist.wordpress.com

The lensing equation (point-like lenses)

- The source position β and image position θ are related by

• The Einstein angle and corresponding radius define a characteristic scale for the source-lens system

A near perfect Einstein Ring with the Hubble Space telescope

The lensing equation (point-like lenses)

- The source position β and image position θ are related by

$$\begin{aligned} \beta &= \theta - \alpha \\ &= \theta - \frac{4GM(\theta)}{\theta c^2} \frac{D_{\rm LS}}{D_{\rm S}} \end{aligned} \qquad \begin{array}{c} \beta &= 0 \\ M(\theta) &= M \end{aligned} \qquad \theta_E &= \sqrt{\frac{4GM}{c^2} \frac{D_{\rm LS}}{D_{\rm L} D_{\rm S}}} \\ & \text{"Einstein angle" for a point-like lensely} \end{aligned}$$

• θ_E can be used to define a lensing tube with radius $r_E = \theta_E D_L$

$$\begin{array}{ll} \text{Magnification:} & \mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta} = \sum_{i} \mu_{i} = \frac{u^{2} + 2}{u\sqrt{u^{2} + 4}} & \text{Microlensing event is counted if } \mu > 1.34 & \text{Microlensing event is counte$$

Part I: extended lenses

DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO]

In this part: EROS-2 and OGLE-IV surveys

Sneak peak: substructure sensitivity

Lensing with finite sized objects

• Rewriting the lensing equation using the definition of $\theta_{E'}$

$$\beta = \theta - \frac{\theta_E^2}{\theta} \frac{M(\theta)}{M}$$

• Here $M(\theta)$ gives the projection of the lens mass onto the lens plane,

$$M(\theta) = 2\pi D_{\rm L}^2 \int_0^{\theta} d\theta' \theta' \Sigma(\theta'), \qquad \Sigma(\theta) = \int_{-\infty}^{\infty} dz \, \rho \left(\sqrt{D_{\rm L}^2 \theta^2 + z^2} \right)$$

D_L Lens mass distribution

Lensing with finite sized objects

• Rewriting the lensing equation using the definition of $\theta_{E'}$

$$\beta = \theta - \frac{\theta_E^2}{\theta} \frac{M(\theta)}{M}$$

• Using the new variables $u \equiv \beta/\theta_E$, $t \equiv \theta/\theta_E$, $m(t) \equiv M(\theta_E t)/M$ can rewrite this again to $u = t - \frac{m(t)}{t}$

Lensing with finite sized objects

• Can now also rewrite the magnification terms of the new variables

$$\mu = \left| 1 - \frac{m(t)}{t^2} \right|^{-1} \left| 1 + \frac{m(t)}{t^2} - \frac{1}{t} \frac{dm(t)}{dt} \right|^{-1}$$

• Where $m(t) \equiv M(\theta_E t)/M$ is given by

$$m(t) = \frac{\int_0^t d\sigma \sigma \int_0^\infty d\lambda \,\rho(r_E \sqrt{\sigma^2 + \lambda^2})}{\int_0^\infty d\gamma \gamma^2 \rho(r_E \gamma)}$$

Will focus on different examples: more peaked and more diffuse objects

Will choose r_{90} — the radius enclosing 90% of the total mass — as the characteristic scale in both cases

Case study 1: NFW-halo mass profile

• Well known halo profile:
$$\rho(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2}$$

- As the mass inclosed formally diverges, we cut it off at $R_{\rm cut} = 100 R_{\rm sc}$
- Enclosed mass $\propto \log(\kappa + 1) (\kappa/(\kappa + 1))$ where $\kappa = R_{\rm cut}/R_{\rm sc}$

• Computing m(t) is then a trivial exercise:

Case study 2: Boson star mass profile

• The Schrodinger-Poisson equation,

$$\mu \Psi = -\frac{1}{2m_{\phi}} \left(\Psi'' + \frac{2}{r} \Psi' \right) + m_{\phi} \Phi \Psi \quad \checkmark$$

describes a spherically symmetric ground state of a free scalar field in the non-relativistic limit

• The mass enclosed is given by $M_{\rm BS}(r) = \frac{1}{m_{\phi}G} \int_{0}^{m_{\phi}r} dy \ y^2 \ \Psi^2(y)$

from which m(t) may be computed

Describes the radial distribution

Comparing extended lenses

- For extended lenses, $\mu\,$ can not always be found analytically
- Define the threshold impact parameter $u_{1.34}$:

 $\mu_{\text{tot}}(u \le u_{1.34}) \ge 1.34$

All smaller impact parameters produce a magnification above $\mu > 1.34$

- As we will see, the threshold impact parameter $u_{1.34}$ depends on different properties of the lens
 - Mass profile $M(\theta)/M$
 - Characteristic size r_{g_0}
 - Distances in the problem

Threshold impact parameter

For some lenses, as expected, the larger the lens, the smaller $\overline{u_{1.34}}$

Threshold impact parameter

Caustics

Caustics

Consequence: the Einstein tube is not a tube; not ellipsoidal

→ Depending on the source, experiments may be more or less sensitive to extended objects compared to point sources in different locations

Constraining extended objects

The differential event rate contains all the essential physics

Constraining extended objects

The total number of expected events depends on the experiment

Obtaining constraints

To obtain limits, we have to account for the observed events

- EROS-2: 3.9 events at 90% CL
- OGLE-IV: $\mathcal{O}(1000)$ astrophysical events, $\kappa = 4.61$ at 90% CL

Constraints on DM fraction

Generally, constraints on extended objects are weaker...

Constraints on DM fraction

But for sufficiently flat density profiles, caustics change the constraints

In this part: the Subaru-HSC survey

Part II: extended lenses and sources

DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO]

Lensing geometry

- Up to this point, we have assumed that the sources are point-like
- This approximation breaks down when $r_E = \theta_E D_L \sim r_S$

• Geometry in the lens plane:

For point-like lenses, see for example, Witt and Mao, Astrophys. J (1994); Montero-Camacho, Fang, Vasquez, Silva, Hirata, [JCAP, arXiv:1906.05950]; Smyth, Profumo, English, Jeltema, McKinnon, Guhathakurta [PRD, arXiv:1910.01285];

Lensing geometry

- Up to this point, we have assumed that the sources are point-like
- This approximation breaks down when $r_E = \theta_E D_L \sim r_S$
- Geometry in the lens plane:

Lensing equation:

$$\bar{u}(\varphi) = t(\varphi) - \frac{m(t(\varphi))}{t(\varphi)}$$
Image parity Image position

$$\mu_i = \eta \frac{1}{\pi r_S^2} \int_0^{2\pi} d\varphi \, \frac{1}{2} t_i^2(\varphi)$$

Threshold impact parameter

Same procedure as before, but now $u_{1.34}$ is a function of both r_{90} and $r_{\rm S}$

 $u_{1.34}$ 2. 1.891.501.5 $r_{\rm S}$ 0.500.50.2 $\mathbf{3}$ 540

Boson star

NFW subhalo

 r_{90}

Star sizes in M31 Initially, the Subaru-HSC collaboration used $R = R_{\odot}$ for all stars, but this overestimates 0.08the constraints on the dark matter fraction We adopt the distribution derived in [Smyth et Relative abundance (M31) 0.06 al., PRD, arXiv:1910.01285] using the Panchromatic Hubble Andromeda Treasury star catalogue and the MESA Isochrones and 0.04 Stellar Tracks stellar evolution package 0.020.0010 1550 $N_{\text{events}} = N_{\star} T_{\text{obs}} \int dt_{\text{E}} \int dR_{\star} \int_{0}^{1} dx \frac{d^{2}\Gamma}{dx dt_{\text{E}}} \frac{dn}{dR_{\star}}$ R/R_{\odot}

To conclude,

- All of our current evidence for Dark Matter is gravitational
- Many dark matter models feature substructure such as miniclusters, microhaloes, and Bose Einstein condensates
- Microlensing provides a way to look for dark matter substructure of a large range of sizes and masses

→ Extended objects may give unique microlensing signatures

• Gravitational probes of dark matter are filling in the composite dark matter parameter space

Thank you!

...ask me anything you like!

dcroon@triumf.ca | djunacroon.com