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Dark matter substructure

Two	things	we	may	agree	upon…	
• (Unfortunately)	all	of	our	evidence	for	Dark	Matter	is	gravitational	
• Many	dark	matter	models	feature	substructure	

Boson	stars Subhalos Miniclusters Mirror	starsPrimordial	BHs



Dark matter substructure

Two	things	we	may	agree	upon…	
• (Unfortunately)	all	of	our	evidence	for	Dark	Matter	is	gravitational	
• Many	dark	matter	models	feature	substructure	

What	else	can	we	learn	from	gravitational	interactions?		
→	Microlensing	surveys	constrain	primordial	black	holes	

→	What	about	extended	structures?	 In	this	talk:	Subaru-HSC,	
EROS-2	and	OGLE-IV	surveys

Boson	stars Subhalos Miniclusters Mirror	starsPrimordial	BHs



Strong gravitational lensing

Image	credit:	Chandra	X-ray	telescope,	CXC/M.Weiss

Einstein	(1911):	matter	bends	
space;	light	moves	along	geodesics

Strong	gravitational	
lensing:	multiple	images

Newton,	Cavendish,	Soldner	
(1704-1804):	matter	bends	light	
(corpuscular	theory	of	light)			



Gravitational microlensing

Image	credit:	Adam	Rogers,	theamateurrealist.wordpress.com	

Microlensing:	the	lensed	images	
are	not	individually	resolved

Instead,	there	is	a	
temporary	magnification	of	
the	observed	brightness	



Gravitational microlensing

Image	credit:	Adam	Rogers,	theamateurrealist.wordpress.com	

Microlensing:	the	lensed	images	
are	not	individually	resolved

Instead,	there	is	a	
temporary	magnification	of	
the	observed	brightness	

Liouiville’s	theorem:	phase	space	distribution	
function	is	constant	along	the	world	line,	and	
therefore	so	is	the	number	density	of	photons	and	
the	surface	brightness	

	Lensing	preserves	surface	brightness	

	Magnification		 	

→

→ μ =
Area of the image
Area of the source
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The lensing equation (point-like lenses)

• The	source	position	  and	image	position	 	are	related	by	

• The	Einstein	angle	and	corresponding	radius	define	
a	characteristic	scale	for	the	source-lens	system

β θ

β = 0
M(θ) = M

“Einstein	angle”	for	a	point-like	lens

A	near	perfect	Einstein	Ring	with	
the	Hubble	Space	telescope

Point-like	lens	right	in	
front	of	the	source	



The lensing equation (point-like lenses)

• The	source	position	  and	image	position	 	are	related	by	

• 	can	be	used	to	define	a	lensing	tube	with	radius	

β θ

θE rE = θEDL

β = 0
M(θ) = M

“Einstein	angle”	for	a	point-like	lens

Microlensing	event	is	
counted	if	µ > 1.34

Magnification:

Impact	parameter
Images



Part I: extended lenses
DC, D. McKeen, N. Raj, PRD, arXiv:2002.08962 [astro-ph.CO] 

In	this	part:	EROS-2	
and	OGLE-IV	surveys



Sneak peak: substructure sensitivity

In	this	part:	EROS-2	
and	OGLE-IV	surveys

Complementary	to	other	
gravitational	probes,	like	
compact	binary	inspirals

Many	decades	in	
both	substructure	
mass	and	size!

Heuristic:	no	foreground,	
ideal	efficiencies



Lensing with finite sized objects

• Rewriting	the	lensing	equation	using	the	definition	of	 ,	

	 			

• Here	 	gives	the	projection	of	the	lens	mass	onto	the	lens	plane,	

,											

θE

β = θ −
θ2

E

θ
M(θ)

M
M(θ)

M(θ) = 2πD2
L ∫

θ

0
dθ′ θ′ Σ(θ′ ) Σ(θ) = ∫

∞

−∞
dz ρ ( D2

Lθ2 + z2)
Lens	mass	distribution	DL



Lensing with finite sized objects

• Rewriting	the	lensing	equation	using	the	definition	of	 ,	

	 			

• Using	the	new	variables	 ,	 ,	 	can	

rewrite	this	again	to	

θE

β = θ −
θ2

E

θ
M(θ)

M
u ≡ β/θE t ≡ θ/θE m(t) ≡ M(θEt)/M

u = t −
m(t)

t



Lensing with finite sized objects

• Can	now	also	rewrite	the	magnification	terms	of	the	new	variables

	

• Where	 	is	given	by	

μ = 1 −
m(t)
t2

−1

1 +
m(t)
t2

−
1
t

dm(t)
dt

−1

m(t) ≡ M(θEt)/M

m(t) =
∫ t

0
dσσ ∫ ∞

0
dλ ρ(rE σ2 + λ2)

∫ ∞
0

dγγ2ρ(rEγ)

Will	focus	on	different	examples:	more	
peaked	and	more	diffuse	objects	

Will	choose	 	—	the	radius	enclosing	
90%	of	the	total	mass	—	as	the	
characteristic	scale	in	both	cases	

r90
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Case study 1: NFW-halo mass profile

• Well	known	halo	profile:			 	

• As	the	mass	inclosed	formally	diverges,	we	cut	
it	off	at	 	

• Enclosed	mass 		
where	 	

• Computing	 	is	then	a	trivial	exercise:

ρ(r) =
ρs

(r/rs)(1 + r/rs)2

Rcut = 100 Rsc

∝ log(κ + 1) − (κ /(κ + 1))
κ = Rcut /Rsc

m(t)
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• The	Schrodinger-Poisson	equation,	

	

describes	a	spherically	symmetric	ground	state		
of	a	free	scalar	field	in	the	non-relativistic	limit	

• The	mass	enclosed	is	given	by		

	 		

from	which	 	may	be	computed

μΨ = −
1

2mϕ (Ψ′ ′ +
2
r

Ψ′ ) + mϕΦΨ

MBS(r) =
1

mϕG ∫
mϕr

0
dy y2 Ψ2(y)

m(t)

Case study 2: Boson star mass profile
Describes	the	radial	distribution	



Comparing extended lenses

• For	extended	lenses,	µ can	not	always	be	found	analytically	

• Define	the	threshold	impact	parameter	u1.34	:	

• As	we	will	see,	the	threshold	impact	parameter	u1.34	depends	on	different	
properties	of	the	lens	
• Mass	profile	M(𝜃)/M	

• Characteristic	size	r90	

• Distances	in	the	problem

All	smaller	impact	parameters	produce	
a	magnification	above	μ > 1.34

Reasonable	hypothesis:	
dilute	lenses	give	u1.34 < 1	



Threshold impact parameter

For	some	lenses,	as	expected,	the	larger	the	lens,	the	smaller	u1.34		



Threshold impact parameter

But	for	others,	something	else	happens…

Numerically	solve	the	
Schrodinger-Poisson	equations



Caustics

What’s	going	on	in	this	plot?

Point-like:	
∼two	images

Three	
images

Too	diffuse

One	boson	
star	image

One	image	of	the	
point-like	case

Sufficiently	flat	density	
profiles	can	give	more	or	
fewer	lens	images	(solutions	
to	the	lens	equation)	
compared	to	a	point-like	lens

→	Objects	such	as	boson	stars	may	
give	unique	microlensing	signals

→	Constraints	on	the	dark	matter	
subfraction	may	be	stronger	or	
weaker	than	for	point-like	lenses



Caustics

Consequence:	the	Einstein	tube	is	not	a	tube;	not	ellipsoidal
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→	Depending	on	the	source,	
experiments	may	be	more	or	
less	sensitive	to	extended	
objects	compared	to	point	
sources	in	different	locations



Constraining extended objects

The	differential	event	rate	contains	all	the	essential	physics

Efficiency	of	the	
experiment

220 km/s

Fraction	of		ΩDM

Halo	profile:	isothermal

x =
DL

DS



Constraining extended objects

The	total	number	of	expected	events	depends	on	the	experiment

Maximum	and	minimum	
transit	time

Tr
an
sit
	to

o	
br
ie
f

Transit	too	
slow

	or	rare

Number	of	
observed	stars	

EROS-2	LMC:	5.49×106	

OGLE-IV:	4.88×107

Observation	time	

EROS-2	LMC:	2500 days	
OGLE-IV:	1826 days	



Obtaining constraints

To	obtain	limits,	we	have	to	account	for	the	observed	events	
• EROS-2:	3.9 events	at	90%	CL	
• OGLE-IV:	  astrophysical	events,	  at	90%	CL𝒪(1000) κ = 4.61

Bin	events	in	tE



Constraints on DM fraction

Generally,	constraints	on	extended	objects	are	weaker…
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Constraints on DM fraction

But	for	sufficiently	flat	density	profiles,	caustics	change	the	constraints
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Part II: extended lenses and sources
DC, D. McKeen, N. Raj, Z. Wang, PRD, arXiv:2007.12697 [astro-ph.CO] 

In	this	part:	the	
Subaru-HSC	survey



Lensing geometry

• Up	to	this	point,	we	have	assumed	that	the	sources	are	point-like	
• This	approximation	breaks	down	when	 	

• Geometry	in	the	lens	plane:

rE = θEDL ∼ rS

ū(φ) = u2 + r2
S + 2urS cos φ

rs ≡ xR⋆/rE For	point-like	lenses,	see	for	example,	
Witt	and	Mao,	Astrophys.	J	(1994);	
Montero-Camacho,	Fang,	Vasquez,	
Silva,	Hirata,	[JCAP,	arXiv:1906.05950];	
Smyth,	Profumo,	English,	Jeltema,	
McKinnon,	Guhathakurta	[PRD,	
arXiv:1910.01285];



μi = η
1

πr2
S ∫

2π

0
dφ

1
2

t2
i (φ)

Lensing geometry

• Up	to	this	point,	we	have	assumed	that	the	sources	are	point-like	
• This	approximation	breaks	down	when	 	

• Geometry	in	the	lens	plane:

rE = θEDL ∼ rS

ū(φ) = u2 + r2
S + 2urS cos φ

Lensing	equation:		

ū(φ) = t(φ) −
m(t(φ))

t(φ)

Image	position	Image	parity	

rs ≡ xR⋆/rE



Threshold impact parameter Same	procedure	as	before,	but	now	
	is	a	function	of	both	 	and	u1.34 r90 rS
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From before : Point source, extended lens



Threshold impact parameter Same	procedure	as	before,	but	now	
	is	a	function	of	both	 	and	u1.34 r90 rS



Star sizes in M31
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We	adopt	the	distribution	derived	in	[Smyth	et	
al.,	PRD,	arXiv:1910.01285]	using	the	
Panchromatic	Hubble	Andromeda	Treasury	
star	catalogue	and	the	MESA	Isochrones	and	
Stellar	Tracks	stellar	evolution	package

Initially,	the	Subaru-HSC	collaboration	used	
	for	all	stars,	but	this	overestimates	

the	constraints	on	the	dark	matter	fraction
R = R⊙

Nevents = N⋆Tobs ∫ dtE ∫ dR⋆ ∫
1

0
dx

d2Γ
dxdtE

dn
dR⋆





• All	of	our	current	evidence	for	Dark	Matter	is	gravitational	
• Many	dark	matter	models	feature	substructure	such	as	miniclusters,	
microhaloes,	and	Bose	Einstein	condensates	

• Microlensing	provides	a	way	to	look	for	dark	matter	substructure	of	a	
large	range	of	sizes	and	masses	
→Extended	objects	may	give	unique	microlensing	signatures	

• Gravitational	probes	of	dark	matter	are	filling	in	the	composite	dark	
matter	parameter	space	

35

To conclude,



Thank you! 
 
…ask me anything you like!  
 
dcroon@triumf.ca | djunacroon.com 
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