#### Complementarity of Precision Measurements and Current and Future Colliders

#### Based on [arXiv:1810.07736]

with Cari Cesarotti, Yuichiro Nakai, Aditya Parikh, and Matthew Reece

#### and ongoing work as part of Snowmass 2020

with Sam Homiller and Matthew Reece

#### Qianshu Lu



University of Toronto T-HEP Seminar, October 5, 2020



Qianshu Lu

Complementarity of Precision Measurements and Current and Future Colliders

#### Outline

- Why study electron electric dipole moment (eEDM) and lepton flavor violating processes (LFV)?
- Current bounds = (often) beyond current collider scale
  - dimensional analysis
  - specific models (eEDM): QULE and SUSY
- The case for a high energy muon collider (LFV): high energy reach and clean environment help elucidate the underlying mechanism generating the precision observables.



# Why precision observables?

electron electric dipole moment (eEDM): CP violating.
 Connected to the origin of matter-antimatter asymmetry of our universe

$$\overrightarrow{d_e \vec{S}} \quad \overrightarrow{d_e} = \underline{d_e \vec{S}} \quad \underline{\text{time reversal}} \quad \overrightarrow{d_e \vec{S}} \quad \overrightarrow{d_e} = -\underline{d_e \vec{S}}$$

• lepton flavor violating processes (LFV): what generated the flavor structure of the Standard Model? Why is there a large hierarchy of masses?



Complementarity of Precision Measurements and Current and Future Colliders

#### Precisions are connected to high energy

| eEDM                                                                 | $l_i \rightarrow l_j + \gamma$                                      | $l_j \rightarrow l_i l_i l_i$                                                  |
|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $ih^{\dagger}\ell\bar{\sigma}^{\mu u}\bar{e}B_{\mu u}$               | $h^{\dagger}\ell_i \bar{\sigma}^{\mu u} \bar{e}_j B_{\mu u}$        | $\left(l_{j}\Gamma_{1}\bar{l}_{i} ight)\left(\bar{l}_{i}\Gamma_{2}l_{i} ight)$ |
| $ih^{\dagger}\ell\sigma^{i}\bar{\sigma}^{\mu u}\bar{e}W^{i}_{\mu u}$ | $h^{\dagger}\ell_i\sigma^i\bar{\sigma}^{\mu u}\bar{e}_jW^i_{\mu u}$ |                                                                                |

The operators all scale as  $\sim \frac{1}{\Lambda^2}$  ( $\sim \frac{v}{\Lambda^2}$ ) when generated by new physics as mass scale  $\Lambda$ .

And they are Standard Model background free!\*



# Precision Measurements are Advancing Steadily



Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

[1812.06540 for 2020 Update of the European Strategy for Particle Physics]

#### I order of magnitude in sensitivity = 1/4 order of magnitude in $\Lambda$ .



## Precision Measurements are Advancing Steadily



I order of magnitude in sensitivity = 1/2 order of magnitude in  $\Lambda$ ,

Complementarity of Precision Measurements and Current and Future Colliders

5/26

## Precision Measurements are Advancing Steadily



I order of magnitude in sensitivity = 1/2 order of magnitude in  $\Lambda$ ,

Complementarity of Precision Measurements and Current and Future Colliders

5/26

#### ACME II experiment: overview

• Recall Larmor precession of electron spin:





# ACME II experiment: overview

• Recall Larmor precession of electron spin:



- electric dipole moment creates entirely analogous precession
- Under an external  $\mathcal{B}_z$  and  $\mathcal{E}$ :





#### ACME II experiment: overview

EDM of ThO molecule can be flipped w.r.t to the lab  $\mathcal{E}$ , which changes the sign of  $\mathcal{E}_{\rm eff}$  relative to electron spin:





 $\tilde{\mathcal{N}} = -1 \rightarrow +1$ 



# ACME II experiment: setup





# Current bounds = collider scale and beyond

#### dimensional analysis



Qianshu Lu

Complementarity of Precision Measurements and Current and Future Colliders

#### ACME II = Collider Scale or Beyond A conservative analysis

Claim:  $|d_e| < 1.1 \times 10^{-29} \ e \ \mathrm{cm}$  is probing TeV ~ 1000 TeV

$$d_e \sim e \delta_{\rm CPV} \left(\frac{\lambda}{16\pi^2}\right)^k \frac{y_e v}{\Lambda^2}$$



#### ACME II = Collider Scale or Beyond A conservative analysis





#### ACME II = Collider Scale or Beyond A conservative analysis





Complementarity of Precision Measurements and Current and Future Colliders

#### ACME II = Collider Scale and Beyond A conservative analysis

Assuming  $\lambda = g^2 = (0.65)^2$  and  $\delta_{\rm CPV} = 1$ ,  $|d_e| < 1.1 \times 10^{-29} \ e \ {\rm cm}$  translates to

$$\begin{split} d_e &\sim e \delta_{\rm CPV} \left(\frac{\lambda}{16\pi^2}\right)^k \frac{y_e v}{\Lambda^2} \\ \Rightarrow \Lambda &> \begin{cases} 1000 \ {\rm TeV} & ({\rm 0 \ loop} \\ 50 \ {\rm TeV} & ({\rm 1 \ loop} \\ 3 \ {\rm TeV} & ({\rm 2 \ loop} \end{cases} \end{split}$$

Limits competitive to colliders, even at 2-loop (more on this later)



#### LFV bounds = Collider Scale or Beyond

 $\begin{array}{ll} \mbox{MEG} & \mbox{SINDRUM} \\ \mbox{BR}(\mu \rightarrow e \gamma) < 4.2 \times 10^{-13} & \mbox{BR}(\mu \rightarrow 3e) < 1.0 \times 10^{-12} \\ \hline \mathcal{O}_{\mu e \gamma} \sim \left(\frac{\lambda}{16\pi^2}\right)^k \frac{ev}{\Lambda^2} & \mbox{$\mathcal{O}_{\mu 3e}} \sim \left(\frac{\lambda}{16\pi^2}\right)^k \frac{1}{\Lambda^2} \\ \mbox{$\Lambda > $ \begin{cases} 3.8 \times 10^4 \mbox{ TeV} & (0 \mbox{ loop}) \\ 2000 \mbox{ TeV} & (1 \mbox{ loop}) \\ 100 \mbox{ TeV} & (2 \mbox{ loop}) \end{cases} & \begin{cases} 273 \mbox{ TeV} & (0 \mbox{ loop}) \\ 14.1 \mbox{ TeV} & (1 \mbox{ loop}) \\ 0.73 \mbox{ TeV} & (2 \mbox{ loop}) \end{cases} } \end{array}$ 

Depending on the flavor structure of the model, constraint will be weaker.



## Current bounds = collider scale and beyond

#### eEDM models: QULE and SUSY



Qianshu Lu

Complementarity of Precision Measurements and Current and Future Colliders

# QULE: general

- QULE =  $(\bar{q}\sigma_{\mu\nu}u)(\bar{l}\sigma^{\mu\nu}e)$
- QULE generate eEDM with one additional loop:



k-loop QULE  $\Rightarrow$  (k+1)-loop eEDM

• QULE doesn't require new physics to couple to the Higgs.



#### QULE at tree-level



- $\phi$  is leptoquark; either (3, 2, 7/6) or (3, 1, -1/3).
- Nothing is proportional to  $y_e$ ; need to impose naturalness constraint on overall diagram, which gives  $|y_{1t}y_{2t}| < O(10^{-6})$ .
- At max  $|y_{1t}y_{2t}|$  allowed by naturalness,  $|d_e| < 1.1 \times 10^{-29} e \text{ cm}$ gives  $m_{\phi} > \mathcal{O}(500 \text{ TeV})$  [J. M. Arnold, B. Fornal, and M. B. Wise (2013)]



## QULE at 1-loop: structure



Infinitely many possibilities for the quantum number of  $\psi_1,\psi_2,\phi_1,\phi_2.$  Some notable scenarios are:

- SUSY: e.g.  $\phi_1 = \tilde{u}, \bar{\psi_1} = \tilde{H}_u, \psi_1 = \tilde{H}_d, \phi_2 = \tilde{e}, \bar{\psi_2} = \psi_2 = \tilde{B}^0.$
- New physics parities: new particles cascade decay to a neutral, parity-odd particle (can serve as dark matter candidate)
- Leptoquarks: e.g.  $\phi_2=(3,2)_{7/6}$  that decays to a quark and a lepton

## QULE at 1-loop: result



#### SUSY I-loop eEDM: structure



(If there are flavor-violating couplings, will generate  $\mu \rightarrow e\gamma$ .)

At I-loop, one of the new particles must have lepton number.

26



26

#### Split SUSY 2-loop eEDM: structure

If we decouple squarks, sleptons, and heavy Higgs, dominant eEDM comes from loops of charginos and neutralinos.



Generic new physics with electroweak interaction will generate 2-loop eEDM.

Complementarity of Precision Measurements and Current and Future Colliders

19/26

## Split SUSY 2-loop eEDM: results

We fix the CPV phase in eEDM:  $\phi_{\mu} \equiv \arg(\mu M_2 b_{\mu}^*) = \pi/4$ , and assume  $\arg(M_1) = \arg(M_2)$ .



 $\Delta$ : measure of degree of fine-tuning.

Qianshu Lu

# ACME II vs LHC SUSY Search



LHC search in general only depends on particle mass, while eEDM depends on CPV phase.



# The case for a high energy muon collider

ongoing work as part of Snowmass 2020

with Sam Homiller and Matthew Reece



Qianshu Lu

# High energy reach

- A muon collider combines the advantage of an  $e^+e^-$  and a pp collider:
- $e^+e^-$ : all of beam energy  $\sqrt{s}$  is available for collision.
- *pp*: loss of energy by synchrotron radiation is small.

Even a 14 TeV muon collider will be an upgrade in the energy reach from the LHC.



# Clean environment helps unravel the physics behind the LFV observables

 $\mu^+\mu^- \rightarrow \tilde{e}^+_{1,2}\tilde{e}^-_{1,2} \rightarrow \mu e \tilde{B} \tilde{B}$  from mass mixing in SUSY sector.



26

# Clean environment produces competitive bounds on effective operators

Constraint on  $\frac{c^{\tau 3\mu}}{\Lambda^2} \tau \mu \mu \mu$  from search for  $\mu^+ \mu^- \to \mu \tau$  and  $\tau \to 3\mu$ 





# Clean environment produces competitive bounds on effective operators





# Clean environment produces competitive bounds on effective operators



Given a flavor ansatz, can relate the two constraints.



#### Conclusion

- eEDM and LFV processes are powerful probe of new physics, reaching mass scale of TeV and beyond.
- Sensitivities of these observables are expected to improve by orders of magnitude in the near future.
- A collider is necessary to understand the physics generating the precision observables.
- A muon collider can provide both high energy reach and clean environment that helps elucidate the underlying physics.



# Backup slides





## Why eEDM: it is SM background free

- Quark sector:  $|d_e| \sim 10^{-43} e \text{ cm}$ , and CPV electron-nucleon interaction faking eEDM:  $|d_e| \sim 10^{-38} e \text{ cm}$  [M. Pospelov and A. Ritz (2014)]
- Strong  $ar{ heta}$  angle:  $|d_e| \lesssim 10^{-37} \ e \ {
  m cm}$  [K. Choi and J.-y. Hong (1991)]
- Lepton sector: expect  $d_e \sim 10^{-43}~e~{\rm cm}$ , at most  $\sim 10^{-33}~e~{\rm cm}$  with fine tuning [M. Pospelov et al. (2004)]



[M. Pospelov and A. Ritz (2014)] [D. Ghosh and R. Sato (2018)]

[M. Pospelov et al. (2004)]

16/26

Many new physics models are expected to produce eEDM much larger than these.

Qianshu Lu

Complementarity of Precision Measurements and Current and Future Colliders

# Something pretending to be eEDM

• ACME II experiment constrains the linear combination of eEDM and the CP-odd electron-nucleon coupling  $-iC_S \bar{e}\gamma^5 e\bar{N}N$ :

$$d_{\rm ThO} \approx d_e + kC_S$$
  
 $k \approx 1.6 \times 10^{-15} \, {\rm GeV}^2 \, e \, {\rm cm}$ 

• Whether the QULE contributes more to  $C_S$  or  $d_e$  depends on which flavour of quark new physics couples to:

$$\left| \frac{d_{\text{ThO; eEDM}}}{d_{\text{ThO; }C_S}} \right| \approx \frac{m_q \log(M/m_q)}{\pi^2 \times 1.6 \times 10^{-15} \text{ GeV}^2 \text{ cm} \langle N | \bar{q}q | N \rangle}$$

$$\approx \begin{cases} 6 \times 10^{-3}, \quad q = u, \\ 2 \times 10^2, \quad q = c, \\ 2 \times 10^6, \quad q = t, \end{cases}$$
(assuming  $M = 10 \text{ TeV}$ )

#### $C_S$ constraints

$$\begin{split} C_{qe} &\sim \delta_{\mathsf{CPV}} \left(\frac{y^2}{16\pi^2}\right)^k \frac{m_q m_e}{v^2 \Lambda^2} \\ \Rightarrow \Lambda &> \begin{cases} 300 \text{ GeV} & (\mathbf{0} \text{ loop}) \\ 20 \text{ GeV} & (\mathbf{1} \text{ loop}) \\ 0.8 \text{ GeV} & (\mathbf{2} \text{ loop}) \end{cases} \end{split}$$

$$\begin{split} C_{qe} &\sim \delta_{\mathsf{CPV}} \frac{16\pi^2 m_e}{m_q} \frac{1}{\Lambda^2} \\ \Rightarrow \Lambda &> \begin{cases} 10^5 \, \mathsf{TeV} & (\mathsf{0} \, \mathsf{loop}) \\ 10^5 \, \mathsf{TeV} & (\mathsf{I} \, \mathsf{loop}) \\ 10^5 \, \mathsf{TeV} & (\mathsf{2} \, \mathsf{loop}) \end{cases} \end{split} \tag{2}$$

Complementarity of Precision Measurements and Current and Future Colliders

(1)

18/26



Oianshu Lu

26



Complementarity of Precision Measurements and Current and Future Colliders

26



Complementarity of Precision Measurements and Current and Future Colliders

<sup>20</sup>/26

#### Natural SUSY eEDM: structure

Natural SUSY: only higgsinos, stops, left-handed sbottom and gauginos are light.





#### Natural SUSY eEDM: results



<sup>22</sup>/26

#### Natural SUSY eEDM: results

Higgs mass is realized by some other interaction. A-term radiatively generated by gluino with mass = 2 TeV.



Complementarity of Precision Measurements and Current and Future Colliders

26

# ACME II vs LHC SUSY Search

#### Squark limits



LHC search in general only depends on particle mass, while eEDM depends on CPV phase.



# ACME II vs LHC SUSY Search

#### Squark limits



LHC search in general only depends on particle mass, while eEDM depends on CPV phase.

26

## ACME II experiment: but actually how??

Given radius of electron  $<10^{-18}$  m,  $|d_e|<1.1\times10^{-29}~e~{\rm cm}$  is equivalent to anisotropy of a strand of hair over the diameter of the Earth.

- ThO molecule:  $\sim 100~{\rm GV~cm^{-1}}$  effective electric field under  $\lesssim 100~{\rm V~cm^{-1}}$  lab field.
- "Binary switches" to reject backgrounds:
  - $\circ~$  direction of  ${\cal E},$  sign of  $\tilde{N},$  direction of  ${\cal B}...$  Total of 7 switches in the experiment.
  - $d_e$  is odd under  $\mathcal{E}$  direction and  $\mathrm{sgn}\tilde{N}$ , and even under all other switches; many systematics, e.g.  $\mathcal{B}$  from leakage currents, do not share the same parity structure.
- Further investigation of systematics of over 40 experimental parameters.



# ACME II experiment: setup





## Next generation of ACME?

- Concrete areas of improvement: [ACME collaboration (2018)]
  - order of magnitude increase in detection efficiency by optical cycling
  - order of magnitude increase in number of molecules by electric or magnetic focusing of ThO beam
  - dominant systematic errors in ACME II can be supressed with improved magnetic-field control and reduced polarization gradients in the laser beams.
- Future generations might involve molecules with longer coherence time (maintaining a uniform  $\mathcal{E}$  and  $\mathcal{B}$  fields would be more challenging)

