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Motivation
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Any interesting states in the electroweak sector?

QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 1: The Phase diagram in the strong coupling limit (left), as measured in a Monte Carlo
simulation, compared to the standard expectation of the continuum QCD phase diagram (right).
Both diagrams are for massless quarks.

the Grassmann constraint:

nx + Â
n̂=±0̂,...,±d̂

✓
kn̂(x)+

Nc

2
|`n̂(x)|

◆
= 3. (2.2)

This constraint restricts the number of admissible configurations {kb,nx,`} in Eq. (2.1) such that
mesonic degrees of freedom always add up to 3 and baryons form self-avoiding loops not in contact
with the mesons. The weight w(`,µ) and sign s(`) = ±1 for an oriented baryonic loop ` depend
on the loop geometry. The partition function Eq. (2.1) describes effectively only one quark flavor,
which however corresponds to four flavors in the continuum (see Sec. 4). It is valid for any quark
mass. We will however restrict here to the theoretically most interesting case of massless quarks,
mq = 0. In fact, in this representation the chiral limit is very cheap to study via Monte Carlo,
in contrast to conventional determinant-based lattice QCD where the chiral limit is prohibitively
expensive.

For staggered fermions in the strong coupling limit, there is a remnant of the chiral symmetry
U55(1) ⇢ SUL(Nf )⇥ SUR(Nf ). This symmetry is spontaneously broken at T = 0 and is restored
at some critical temperature Tc with the chiral condensate hȳyi being the order parameter of this
transition. As shown in Fig. 1 (left), we find that this transition is of second order. This is analogous
to the standard expectation in continuum QCD with Nf = 2 massless quarks, where the transition is
also believed to be of second order. Moreover, both for our numeric finding at strong coupling and
for the expectation in the continuum, the transition turns into first order as the chemical potential is
increased. Thus the first order line ends in a tricritical point, which is the massless analogue of the
chiral critical endpoint sought for in heavy ion collisions.

In fact, at strong coupling, the zero temperature nuclear transition at µB,c ' mB is intimately
connected to the chiral transition, and they coincide as long as the transition is first order. The
reason for this is the saturation on the lattice due to the Pauli principle: in the nuclear matter
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Dirac Monopole 

In E&M, we have learned that there is no monopole 

Dirac in 1931 proposed the possible existence of 
monopole

B = Q
h ̂r

4πr2

Q = 1

h =
2π
e

≈ 68.5 e



4

t ‘Hooft-Polyakov Monopole 
Based on spontaneously broken gauge theory: SU(2)/U(1) 

ℒ =
1
2

(DμΦ)2 −
1
4

Tr(FμνFμν) −
λ
4 ( |Φ |2 − f 2)

2

DμΦa = ∂μΦa + g ϵabcAb
μΦc Fa

μν = ∂μAa
ν − ∂νAa

μ + g ϵabc Ab
μ Ac

ν

In the “hedgehog gauge” with   (spherically symmetric)Aa
0 = 0

Φa = ̂ra f ϕ(r)

Equation (22), that far from the origin the gauge
field is

Aa
i ð~rÞ ¼

1

q
Eaij

rj
r2
; ð24Þ

where i and j correspond to directions in real space and
a in the internal space. This solution is an example of a
topological defect or a topological soliton [30]: it is
stable because it is impossible to turn it continuously
into the uniform vacuum state.

Far from the origin, the Higgs field approaches its
vacuum length, which means that f(r) ! 1, and its
direction is almost uniform. However, in order to be
continuous, the field has to go to zero at the origin,
f(0) ¼ 0, and its direction has to vary rapidly around
it, which means that it will have non-zero energy.
Therefore, the hedgehog configuration appears physi-
cally as a lump of energy localised in a small volume
near the origin. Because according to the theory of
relativity, mass is energy, this means that it is

essentially a massive particle. Furthermore, because
the Higgs field vanishes at the origin, the full SO(3)
gauge symmetry is unbroken inside the particle.

However, the most striking result is that the
particle has a magnetic charge. Because electromagnet-
ism is generated by rotations around the Higgs field
vector, one can calculate the magnetic field in the
hedgehog configuration. ’t Hooft found that it is given
by the expression [8]

Bi ¼ EijkĵaFa
jk $

1

q
EijkEabcĵaðDjĵÞbðDkĵÞc; ð25Þ

where ĵa ¼ ja=jjj and

Fa
jk ¼ @jA

a
k $ @kA

a
j þ qEabcAb

j A
c
k: ð26Þ

Substituting the solutions (23) and (24), one finds that
this is just the magnetic field (8) of a monopole with
magnetic charge

g ¼ 4p
q
; ð27Þ

which is twice the minimum allowed by the Dirac
quantisation condition (20). In fact, Equation (25) has
the general topological property that when integrated
over any closed surface, it always gives an integer times
4p/q. According to Equation (15) such an integral is
equal to the magnetic charge inside the surface, and
therefore this means that the magnetic charge is
quantised in any field configuration, not just in the
’t Hooft–Polyakov hedgehog solution.

The mass of these ’t Hooft–Polyakov monopoles
would be roughly 100 GeV, determined by the energy
scale associated with weak nuclear forces. However,
experimental results quickly ruled out the Georgi–
Glashow model as a theory of electroweak unification,
and the successful SU(2) 6 U(1) theory does not
allow similar magnetic monopole solutions.

However, Georgi and Glashow noticed very soon
that their theory could be modified to do something
even more ambitious, namely to unify the electroweak
theory with strong nuclear forces into one Grand
Unified Theory (GUT) [31], which would describe all
known elementary particle forces except gravity (see
Figure 2). They achieved this very elegantly using only
one non-Abelian gauge symmetry known as SU(5),
and two Higgs fields. At very high energies of around
1015 GeV, one of the Higgs fields would break the
GUT symmetry into three pieces, the SU(2) and U(1)
symmetries of the electroweak theory and a further
SU(3) symmetry that describes strong nuclear forces,
and the second Higgs would then play exactly the same
role as in the electroweak theory.

Figure 4. The hedgehog configuration. In the ’t Hooft–
Polyakov monopole solution, the Higgs field vector
(indicated by the arrows) points away from the origin
everywhere and its length approaches the vacuum value v far
from the origin. This configuration cannot be turned
continuously into the uniform vacuum state, so it is
topologically stable. In order for the field to be continuous,
it cannot be in the vacuum state at the origin, and therefore
there is a localised lump of energy (in other words, a particle)
at the origin.

202 A Rajantie

Aa
i =

1
g

ϵaij ̂r j ( 1 − u(r)
r )

Q = 2

triplet
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t ‘Hooft-Polyakov Monopole 
Classical equations of motion ( )r̄ ≡ g f r = mW r

d2ϕ
dr̄2

+
2
r̄

dϕ
dr̄

=
2 u2 ϕ

r̄2
+

λ
g2

ϕ (ϕ2 − 1)

d2u
dr̄2

=
u (u2 − 1)

r̄2
+ u ϕ2

Boundary conditions
ϕ(0) = 0 , ϕ(∞) = 1 , u(0) = 1 , u(∞) = 0

Total energy or mass (finite)

Mℳ = ∫ 4 π r2 ( 1
2

Ba
i Ba

i +
1
2

(DiΦa)(DiΦa) + V(Φ))
=

4πf
g ∫ dr̄r̄2 ( r̄2 ϕ′ 2 + 2 u2ϕ2

2 r̄2
+

(1 − u2)2 + 2 r̄2 u′ 2

2 r̄4
+

λ
4g2

(ϕ2 − 1)2)
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t ‘Hooft-Polyakov Monopole 
Mℳ ≡

4πf
g

Y(λ/g2) Y(0) = 1 Y(∞) ≈ 1.787
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Topological reason: π2[G/U(1)] = π1[U(1)] = ℤ

GUT monopole: SU(5) → SU(3) × SU(2) × U(1)
MGUT

ℳ ∼ 1017 GeV
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Monopole in the Standard Model 
In the SM:  with a Higgs doubletSU(2)W × U(1)Y → U(1)EM

Topological reason:  , no 
finite-energy EW monopole

π2[SU(2)W × U(1)Y /U(1)EW] = 0

In more detail and again making a spherical configuration

H =
v

2
ϕ(r) ξ , ξ = i

sin( θ
2 ) e−i ϕ

−cos( θ
2 )

H† ⃗σ H = −
v2

2
ϕ(r)2 ̂r

as the triplet case

Aa
i =

1
g

ϵaij ̂r j ( 1 − u(r)
r ) SU(2)W

Bi = −
1
gY

(1 − cos θ) ∂iϕ U(1)Y
Nambu, NPB130 (1977) 505
Cho, Maison, hep-th/9601028
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Monopole in the Standard Model 
S = − 4π ∫ dt dr r2 (K + U)

K =
(u′ )2

g2 r2
+

1
2

v2 (ϕ′ )2 U =
(u2 − 1)2

2 g2 r4
+

v2 u2 ϕ2

4 r2
+

λh v4

8 (ϕ2 − 1)2 +
1

2 g2
Y r4

The spherical EW monopole has an infinite mass

Nambu’s monopole-anti-monopole dumbbell configuration

Unstable! May be produced at a future collider
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Introduce BSM physics to have a finite-energy monopole

for instance, U(1)Y ⊂ SU(2)R

Or hide the divergence part behind the event horizon of a 
black hole

For the second avenue, no new BSM physics is needed. 
We just need to study the possible states based on

Standard Model + General Relativity
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Black Hole
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Figure 4. The stars’ orbits revealed that something invisible and heavy governed their paths at the heart of the Milky Way.
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Astronomers were able to map an entire orbit 
of less than 16 years for one of the stars,
S2 (or S-O2). The closest it came to Sagitta-
rius A* was about 17 light hours (more than
1000 million kilometres).

The stars’ orbits are the most convincing evidence yet that a supermassive black 
hole is hiding in Sagittarius A*. This black hole is estimated to weigh about 
4 million solar masses, squeezed into a region no bigger than our solar system.

Stars closest to the 
centre of the Milky Way

The S2 star’s radial velocity increases as it approaches 
Sagittarius A* and decreases as it moves away along its 
elliptical orbit. Radial velocity is the component of the star’s 
velocity that is in our line of sight.

Some of the measured orbits of 
stars close to Sagittarius A* at 
the centre of the Milky Way.

Closest to Sagittarius A* (in 2002 
and 2018), S2 reaches its maximum 
velocity of 7 000 km/s.

Astronomers started
mapping the path of
S2 in 1992.
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https://www.nobelprize.org/prizes/physics/2020/press-release/



11

Black Holes
Schwarzschild black hole

ds2 = − (1 −
2 G M

r ) dt2 + (1 −
2 G M

r )
−1

dr2 + r2(dθ2 + sin2 θdϕ2)

Charged or Reissner-Nordstrom black hole

ds2 = − BRN(r)dt2 + BRN(r)−1dr2 + r2(dθ2 + sin2 θdϕ2)

BRN(r) = 1 −
2 G M

r
+

G Q2
E e2 + Q2

M h2

4πr2

The outer horizon radius is

r+ =
(MeBH + M2

eBH − (Q2
E e2 + Q2

M h2)M2
pl /4π)

M2
pl

Re

MeBH =
Q2

Ee2 + Q2
Mh2

4π
Mpl
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Hawking Radiation and PBH Lifetime
According to the first law of the black hole thermal 
dynamics, the thermal radiation temperature has (for non-
extremal BH)

T =
M2

pl

8π MBH

Using the black body radiation formula, , the 
lifetime of a Schwarzschild black hole is

P ∝ R2 T4

τ ≈
5120π

g*

M3
BH

M4
pl

Requiring it to be longer than the age of our universe, one 
has a lower bound on PBH mass

MPBH ≳ 1015 g
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Extremal Black Hole
The Hawking radiation is fourth power of T . One way to 
suppress T is to make it extremal

T(MBH, MeBH) =
M2

pl

2π

M2
BH − M2

eBH

(MBH + M2
BH − M2

eBH)
2

A PBH with a charge Q will evolve towards a near extremal 
one, which has suppressed T

dMBH

dt
≈ −

π2

120
g* 4πr2

+ [T(MBH, MeBH)]4
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Evolution of the Black Hole Mass

TeBH =
60 MeBH

π g* t
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The initial BH evaporation still generates lot of Hawking 
radiations
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Electrically-Charged BH in SM
The charged BH has a large electric field close to the 
event horizon

E =
M3

pl

4π MeBH

The Schwinger effects can generate electrons and 
positrons from vacuum and discharge the eBH

+Q

e+
e−

e+
e−

e+
e−

e+
e−

e+
e−

e+
e− e+

e−
e+
e−

+Q

e+

e−

e+

e− e+e−

e+
e−

e+

e−

e+

e−

e+

e−

e+

e−
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The Schwinger discharge rate

dΓSchwinger

dV
=

(eE)2

4π3

∞

∑
n=1

1
n2

exp (−
π n m2

e

e E )

MeBH > Mmin
eBH ≈

eM3
pl

2π3/2 m2
e

ln (
e3 Mpl tuniv

16 π7/2 )
This sets a lower bound on the eBH mass 

Because the electron mass is small in SM, the minimum 
eBH mass is very large

Mmin
eBH ≈ 108 M⊙ for me = 0.511 MeV

Electrically-Charged BH in SM

for dark electrically-charged BH, see YB, Orlofsky, arXiv: 1906.04858
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Magnetically-Charged BH in SM
Since there is no finite-energy magnetic monopole in the 
SM, no worry about Schwinger discharge

If the GUT exists, it may worry its emission of GUT 
monopole

QM B(ReBH) =
Q

2 e R2
eBH

≈
e M2

pl

2 π Q
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Electroweak Symmetry Restoration
In a large B field background, the electroweak symmetry is 
restored Salam and Strathdee, NPB90 (1975) 203

Ambjorn and Olesen, NPB330 (1990) 193
196 J. Ambjorn and P. Olesen / Electroweak theory 

d e n t a n d  we  ta ke  W 0 = 0. Th e  s ta tic  e ne rgy de ns ity is  thus  (in  the  u n ita ry ga uge ) 

1 2 1 2 'Y = ~_l D, W j - DjW il 2 + J iy  + ~Z,s  + ½g2q~2W~W~ t + ( g2q02/4 cos 2 0 ) Z f 

2 2 2 2 
+ ig ( f , j s in O + Z ijc o s O )W itW j + lg 2 [(WiWit  ) - - (Wi* ) (Wj) ] 

q_(0iqO) 2 q_ ~(qD2 __q00 )2  2, (5) 

wh e re  the  la tin  indice s  ta ke  the  va lue s  1 . . .  3, whe re  W i a nd  Zi a re  the  us ua l ve c to r 
b o s o n  fie lds , whe re  the  cova ria n t de riva tive  is  g ive n b y 

a n d  wh e re  

D, = 3 , -  ig (A ,  s in 0  + Z i c o s  0 ) (6) 

f~j = 3 ,A  i - O jA ,,  Z ij = c g ,Z j- 3 jZ  i . (7) 

F irs t,  c o n s id e r the  s itua tion  with  a  h o m o g e n e o u s  fie ld  f12 = cons t.,  which  o f 
c o u rs e  s olve s  the  e qua tions  o f m o tio n  o b ta in e d  by min imiz ing  e q. (5), p ro vid e d  

= % .  
O n e  ca n  n o w a s k if it pa ys  e ne rge tica lly to  ha ve  a  non-va n is h ing  W-fie ld (fo r 

s imp lic ity we  ignore  the  Z-fie ld). Thus , cons ide r a  ve ry s ma ll W-fie ld, a nd  ke e p  o n ly 
te rm s  o f o rd e r I WI 2 bu t ignore  the  ] W 14-te rms . A ga in  in e ne rgy is  the n  o b ta in e d  if 
the  te rm  ig (f~j s in 0 + Zij cos  0)Wi*W j in  e q. (5) is  ne ga tive  with  a  m a g n itu d e  la rge r 
th a n  l"2 - 2 W *W  in  e q. (5). The s e  te rms  ca n  be  c o m b in e d  to  give  2 ~  W t i 

1 2 2  )() 
(W ],W 2 *) 2g  % ie f12 W1 

1 ~ 2~2 -- ie f12 5g  0 W 2  
(8) 

Dia g o n a liz in g  this  m a trix a nd  find ing  the  c o rre s p o n d in g  e ige nve c to r (1~1, IY2) one  
finds  th a t (8) be come s  ne ga tive  fo r f12 >1 m R / e  = 5gl~2q 02/eO/ a nd  with  IY 2 = il~  1. 
Th e re fo re  we  s e e , in  a c c o rd a n c e  with  p re vious  lite ra tu re  [2], tha t a  s ta b ility a na lys is  
o f the  s o lu tio n  fl2  = cons t, le a ds  to  a n  ins ta b ility fo r f12 ) m ~ /e .  Th u s  we  e xpe c t 
fo r e ne rge tic  re a s ons  th a t fo r e ne rgie s  s o la rge  tha t the  critica l fie ld  H~ 1) is  
s u rp a s s e d  o n e  s ha ll ha ve  a  W- a nd  Z-c o n d e n s a te ,  with  W 2 re la te d  to  W 1 b y the  
c o n s ta n t p h a s e  ~ /2 .  

Up  to  th is  p o in t the  a na lys is  is  the  s a me  a s  in  re f. [2]. Howe ve r,  now le t us  a s k 
wh e th e r,  a s  a  cons e que nce  o f the  fa c t th a t W~ doe s  no t va nis h , one  ca n  ha ve  a  pha s e  
tra n s itio n  wh e re  ¢p ~ 0 be come s  e ne rge tica lly fa voura b le .  This , in  tu rn  a m o u n ts  to  
c o m p a rin g  the  t e r m  ½g2~2W/W/?  in e q. (5) with  the  ne ga tive  (ma s s ) 2 Higgs  te rm  
- 2?~cp02cp 2 c o m in g  fro m  the  la s t te rm in  e q. (5). We  s e e  th a t if WgWit is  s u ffic ie n tly 
la rge  th e n  it wins  ove r the  ne ga tive  Higgs  te rm. It doe s  n o t fo llow fro m  this  a na lys is  
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For a large , a negative determinant leads to W-
condensation and electroweak restoration. This happens 
when

| f12 |

e B ≳ m2
h
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Electroweak Symmetry Restoration
e B(ReBH) ≳ m2

hB(ReBH) =
Q

2 e R2
eBH

≈
e M2

pl

2 π Q

Electroweak symmetry restoration happens for 

Q ≲ Qmax ≡
e2 M2

pl

2π m2
h

≈ 1.4 × 1032

Lee, Nair, Weinberg, PRD45(1992) 2751
Maldacena, arXiv:2004.06084

For Q=2, one can obtain the spherically symmetric 
configuration

For Q > 2, a non-spherically symmetric configuration is 
anticipated, and requires complicated numerical 
calculations Guth, Weinberg, PRD14(1976) 1660
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Q=2: spherical solution
ds2 = − B(r)dt2 + A(r)−1dr2 + r2(dθ2 + sin2 θdϕ2)

Smatter = − 4π ∫ dt dr r2 A B ( K
A

+ U)
Defining , and solving the EOMsA(r)−1 = (1 −

2 G ℳ(r)
r )

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

Lee, Nair, Weinberg, PRD45(1992) 2751
YB, Korwar, in progress

Re
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Q>2: non-spherical

QM

v ≈ 0
v = 246 GeV

cW = cos ✓W ⇡ 0.88, ✓W is the Weinberg angle of the SM, and MM ' 4⇡mW/e2 is the spher-
ically symmetric monopole mass (again, assuming such a monopole was admissible in the SM
symmetry group). The factor of cW appears because the EW symmetry is restored near the
event horizon, so the BH carries magnetic hypercharge 2⇡Q/gY = cW2⇡Q/e, with gY the hy-
percharge coupling constant. Its mass is bounded from above by requiring the mass not be
larger than that of a BH with radius REW. For a large Q, the corona boundary is anticipated to
be non-spherical, and the mass M⇤• must be above cWMRN

eBH
plus the non-spherical Q-charged

monopole mass MM(Q) [9]. The shape has not been worked out in detail, but may be expected
to contain spiky features where vortex strings end on monopoles [10], which we denoted using
subscript⇤•.

We now give a more precise estimate for the mass. Including the contributions from both
the hypercharged BH mass and the positive vacuum energy of the unbroken EW symmetry,
m2

h v
2/8, the EWS-corona BH mass is estimated to be
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. Here, we have ignored the energy contributions from the transition

boundary from symmetry-unbroken to broken regions as well as the non-sphericity of the corona
configuration. We anticipate that those corrections are small in the limit of 1 ⌧ Q ⌧ Qmax.
The second term, which comes from the energy density of the corona, is only important when
Q & 288c2W/(⇡e2)(Mplmh/v2)2 ⇡ 5⇥ 1035 � Qmax, so we will generally neglect it.

However, it is easy to see that M tot
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(2Q) > 2M tot
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(Q) due to the presence of the second

term, so energetically it is preferable for an MeBH with a large charge to split into smaller
MeBHs. Although the large-charged MeBH is metastable, its lifetime can be longer than the
age of the Universe for Q & Qmin ' 106 given the existence of a GUT monopole with mass
MGUT

M
⇠ 1017 GeV [10]. This is a stronger condition than in (5). This metastability is in

agreement with the weak gravity conjecture [30]: the non-gravitational interaction is stronger
than the gravitational one. The range of viable charges Qmin . Q . Qmax corresponds to a
mass range

6⇥ 1025 GeV . M⇤• . 9⇥ 1051 GeV . (10)

For reference, the mass of the Earth is M� = 6.0⇥ 1027 g = 3.4⇥ 1051 GeV.

2.2 Non-extremal magnetic black holes

Non-extremal BHs are also relevant for phenomenology. They appear, e.g., after mergers of
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2d Modes
For non-extremal BH, the Hawking temperature is

MBH > M⇤•, so the BH has a non-zero Hawking temperature given by

T (MBH,M⇤•) =
M2

pl

2⇡

q
M2

BH
�M2

⇤•
⇣
MBH +

q
M2

BH
�M2

⇤•
⌘2

. (11)

Here and elsewhere, M⇤• is taken to mean only the mass contribution from the BH and not the
corona as in (9).

For a non-extremal PMBH with an EWS corona, the Hawking radiation inside the corona is
e↵ectively made up of 2d modes (see Appendix A) leading to a radiated power [10, 31]

P2 =
dE

dt
=

⇡ g⇤
24

T 2(MBH,M⇤•) . (12)

Here, g⇤ counts the number of left- and right-handed 2d modes using the hypercharges of chiral
fermions. For instance, g⇤ = |Q| for qL, `L, dR, eR (the left handed quark, lepton doublets, right
handed down quark, and electron of the SM) and g⇤ = 2|Q| for uR (the right handed up quark).
In the high-temperature limit, the total g⇤ = 6|Q| for one family of SM fermions and g⇤ = 18|Q|

for three families. We emphasize that the 2d Hawking radiation only applies to fermions here
(for spin-zero particles, the 2d modes are massive with a mass proportional to

p
qeB(ReBH),

with q the particle’s charge; for spin-one particles, the magnetic flux generates a negative mass
and induces gauge boson condensation), so no photon modes with a large multiplicity |Q| are
anticipated. Furthermore, not all of those fermion modes can travel outside of the EWS corona
and be observed at a distant location. Electric-charged fermions can e↵ectively travel to infinity
if their energy is above their mass in the normal vacuum. Heavier particle emission with mass
m > T is suppressed by a Boltzmann factor of e�m/T . For instance, when me . T . mµ, only
electrons can e�ciently be 2d Hawking radiated and travel to infinity, and g⇤ = 2|Q| after taking
into account both chiralities.

Neutrinos do not have an electric charge and thus do not have Q-enhanced massless 2d
modes outside the EWS corona. The 2d Hawking-radiated O(Q) neutrino modes around the
event horizon are not able to freely travel outside the EWS corona (see Appendix A for more
discussion). The characteristic energy barrier is O[

p
eB(REW)] = O(mh). For T (MBH,M⇤•) &

mh (which can be satisfied for Q . Mpl/mh and MBH not too close to M⇤•), there are many
other Q-enhanced modes for charged leptons and quarks, which can escape the EWS corona
and directly (or after hadronization) decay into neutrinos.

When T (MBH,M⇤•) . me, the previous 2d radiation is suppressed. The region within the
EWS corona will be heated to the Hawking temperature of the BH. Both thermal photon and
neutrino modes are stored in this region. As a result, the 4d blackbody radiation on the boundary
of the EWS corona could be important and has radiated power

P4 =
dE

dt
⇡

⇡2 g⇤
120

(4⇡R2

EW
)T 4(MBH,M⇤•) , (13)

with g⇤ = 2 for photon and g⇤ = 3 ⇥ 2 ⇥
7

8
= 21

4
for three chiral neutrinos. Eq. (13) is only

valid for T (MBH,M⇤•) . me. For a higher temperature, the radiated 2d modes can escape the

6

In the existence of magnetic field, the massless 2d modes 
exist for a Dirac 4D massless fermion

the Dirac equation /De� = m� e� becomes

h
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(i�x@t + �y@x) = m� e
� . (87)

Eq. (86) can be solved exactly with the solution for Q > 0 given as [105]
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eim� , (89)

with j = (|Q|�1)/2 ⌘ q�1/2 and �j  m  j. For Q < 0, one can switch ⌘1 $ ⌘2. For Q = 0,
there is no solution. If m� = 0, there are Q two-dimensional massless spinor modes. The forms
of ⌘1 or ⌘2 depend on the gauge choice. If we choose a di↵erent gauge with A� = Q

2
(1� cos ✓),

the solution for Q > 0 is
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⌘2 = 0 . (91)

The solution for ⌘1,2 is related to the spin-weighted spherical harmonics or the monopole
harmonics qYlm with l = q ⌘ |Q|/2 [107, 108], which is given by

qYq,m(✓,�) = Mq,q,m
(�1)q+m(2q)!

2q+m(q +m)!(q �m)!
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where the normalization factor Mq,q,m = 2m[(2q+1)(q�m)!(q+m)!/(4⇡(2q)!)]1/2 [108]. For the
gauge choice of A� = Q

2
(1� cos ✓), the relation is
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Using (92) for qYq,m�1/2 and qYq,m+1/2, one has the following relation
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. (95)

As a consistency check, we can compare the result in (85) with ⌘1,2 given by (90) and (91)
with the results of Ref. [109], which discusses a similar problem neglecting the curvature of
spacetime due to the monopole. The solution using the gamma matrices in the spinor basis via
(83) is

e� =

⇢
d1

eiEr

r
, 0, d2

e�iEr

r
, 0

�T

⇥ ⌘1 , (96)
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disruption (see, e.g., [102, 103]). Alternatively, binaries may form in galactic halos, but the
merger rate from this population of binaries is smaller than the merger rate of primordially-
formed binaries [104].

To conclude, PMBHs are interesting long-lived objects that require no new physics beyond
the SM and general relativity. We have outlined many search strategies and shown the PMBH
abundance is already relatively constrained compared to dark matter. Nevertheless, they re-
main an interesting target for future searches. In particular, PMBH mergers or baryon number
violating processes o↵er the possibility to detect Hawking radiation. Furthermore, this Hawking
radiation would be emitted as 2d modes from the electroweak-symmetric corona, whose spec-
trum may be di↵erentiated from ordinary 4d Hawking radiation. If a signal is observed, this
distinction could provide strong evidence for the PMBH interpretation.
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A Dirac equations and 2d modes

In this section, we follow Ref. [105] to discuss the solutions to the Dirac equation in a background
BH geometry and magnetic field. Rather than only considering the massless case in [105], we
also keep the fermion mass in our discussion. For a general metric in spherical coordinates,

ds2 = e2�(t,x)
�
�dt2 + dx2
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, (81)

and A� = Q
2
cos ✓. For extremal BHs, the above metric is related to the one in the ordinary

spherical coordinate in (1) by
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, e2�(t,x) = f(r) ⌘ (1�Re/r)

2 , R(t, x) = r . (82)

Choosing the gamma matrices in the spinor representation [106],

e�0 = i�x ⌦ I2 , e�1 = �y ⌦ I2 , e�2 = �z ⌦ �x , e�3 = �z ⌦ �y , (83)

the four-dimensional spinors can be written as a tensor product of two dimensional spinors
e�↵� =  ↵ ⌦ ⌘�.

The Dirac operator in the bi-spinor representation is
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Here, �̇ = @�/@t, �0 = @�/@x and R0 = @R/@x. Using the ansatz with separation of variables
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the Dirac equation /De� = m� e� becomes
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with j = (|Q|�1)/2 ⌘ q�1/2 and �j  m  j. For Q < 0, one can switch ⌘1 $ ⌘2. For Q = 0,
there is no solution. If m� = 0, there are Q two-dimensional massless spinor modes. The forms
of ⌘1 or ⌘2 depend on the gauge choice. If we choose a di↵erent gauge with A� = Q
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The solution for ⌘1,2 is related to the spin-weighted spherical harmonics or the monopole
harmonics qYlm with l = q ⌘ |Q|/2 [107, 108], which is given by
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where the normalization factor Mq,q,m = 2m[(2q+1)(q�m)!(q+m)!/(4⇡(2q)!)]1/2 [108]. For the
gauge choice of A� = Q

2
(1� cos ✓), the relation is

⌘1(✓,�) = Cq,m�1/2

�
cos ✓

2

��1

ei
1
2� qYq,m�1/2(✓,�) , (93)

or ⌘1(✓,�) = Cq,m+1/2

�
sin ✓

2

��1

e�i 12� qYq,m+1/2(✓,�) . (94)
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As a consistency check, we can compare the result in (85) with ⌘1,2 given by (90) and (91)
with the results of Ref. [109], which discusses a similar problem neglecting the curvature of
spacetime due to the monopole. The solution using the gamma matrices in the spinor basis via
(83) is
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⇥ ⌘1 , (96)
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disruption (see, e.g., [102, 103]). Alternatively, binaries may form in galactic halos, but the
merger rate from this population of binaries is smaller than the merger rate of primordially-
formed binaries [104].

To conclude, PMBHs are interesting long-lived objects that require no new physics beyond
the SM and general relativity. We have outlined many search strategies and shown the PMBH
abundance is already relatively constrained compared to dark matter. Nevertheless, they re-
main an interesting target for future searches. In particular, PMBH mergers or baryon number
violating processes o↵er the possibility to detect Hawking radiation. Furthermore, this Hawking
radiation would be emitted as 2d modes from the electroweak-symmetric corona, whose spec-
trum may be di↵erentiated from ordinary 4d Hawking radiation. If a signal is observed, this
distinction could provide strong evidence for the PMBH interpretation.
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A Dirac equations and 2d modes

In this section, we follow Ref. [105] to discuss the solutions to the Dirac equation in a background
BH geometry and magnetic field. Rather than only considering the massless case in [105], we
also keep the fermion mass in our discussion. For a general metric in spherical coordinates,

ds2 = e2�(t,x)
�
�dt2 + dx2

�
+R2(t, x)

�
d✓2 + sin2 ✓ d�2

�
, (81)

and A� = Q
2
cos ✓. For extremal BHs, the above metric is related to the one in the ordinary

spherical coordinate in (1) by

dx =
dr

f(r)
, e2�(t,x) = f(r) ⌘ (1�Re/r)

2 , R(t, x) = r . (82)

Choosing the gamma matrices in the spinor representation [106],

e�0 = i�x ⌦ I2 , e�1 = �y ⌦ I2 , e�2 = �z ⌦ �x , e�3 = �z ⌦ �y , (83)

the four-dimensional spinors can be written as a tensor product of two dimensional spinors
e�↵� =  ↵ ⌦ ⌘�.

The Dirac operator in the bi-spinor representation is
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Here, �̇ = @�/@t, �0 = @�/@x and R0 = @R/@x. Using the ansatz with separation of variables
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2d fermion
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2d Modes
Solutions for Q > 0, 

the Dirac equation /De� = m� e� becomes
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Eq. (86) can be solved exactly with the solution for Q > 0 given as [105]
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with j = (|Q|�1)/2 ⌘ q�1/2 and �j  m  j. For Q < 0, one can switch ⌘1 $ ⌘2. For Q = 0,
there is no solution. If m� = 0, there are Q two-dimensional massless spinor modes. The forms
of ⌘1 or ⌘2 depend on the gauge choice. If we choose a di↵erent gauge with A� = Q
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The solution for ⌘1,2 is related to the spin-weighted spherical harmonics or the monopole
harmonics qYlm with l = q ⌘ |Q|/2 [107, 108], which is given by
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where the normalization factor Mq,q,m = 2m[(2q+1)(q�m)!(q+m)!/(4⇡(2q)!)]1/2 [108]. For the
gauge choice of A� = Q
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with the results of Ref. [109], which discusses a similar problem neglecting the curvature of
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There are |Q| massless modes for mχ = 0

Maldacena, arXiv:2004.06084
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2d Hawking radiation
Fermions are massless (ignoring QCD vacuum) inside the 
EW-corona region

MBH > M⇤•, so the BH has a non-zero Hawking temperature given by

T (MBH,M⇤•) =
M2

pl

2⇡

q
M2

BH
�M2

⇤•
⇣
MBH +

q
M2

BH
�M2

⇤•
⌘2

. (11)

Here and elsewhere, M⇤• is taken to mean only the mass contribution from the BH and not the
corona as in (9).

For a non-extremal PMBH with an EWS corona, the Hawking radiation inside the corona is
e↵ectively made up of 2d modes (see Appendix A) leading to a radiated power [10, 31]

P2 =
dE

dt
=

⇡ g⇤
24

T 2(MBH,M⇤•) . (12)

Here, g⇤ counts the number of left- and right-handed 2d modes using the hypercharges of chiral
fermions. For instance, g⇤ = |Q| for qL, `L, dR, eR (the left handed quark, lepton doublets, right
handed down quark, and electron of the SM) and g⇤ = 2|Q| for uR (the right handed up quark).
In the high-temperature limit, the total g⇤ = 6|Q| for one family of SM fermions and g⇤ = 18|Q|

for three families. We emphasize that the 2d Hawking radiation only applies to fermions here
(for spin-zero particles, the 2d modes are massive with a mass proportional to

p
qeB(ReBH),

with q the particle’s charge; for spin-one particles, the magnetic flux generates a negative mass
and induces gauge boson condensation), so no photon modes with a large multiplicity |Q| are
anticipated. Furthermore, not all of those fermion modes can travel outside of the EWS corona
and be observed at a distant location. Electric-charged fermions can e↵ectively travel to infinity
if their energy is above their mass in the normal vacuum. Heavier particle emission with mass
m > T is suppressed by a Boltzmann factor of e�m/T . For instance, when me . T . mµ, only
electrons can e�ciently be 2d Hawking radiated and travel to infinity, and g⇤ = 2|Q| after taking
into account both chiralities.

Neutrinos do not have an electric charge and thus do not have Q-enhanced massless 2d
modes outside the EWS corona. The 2d Hawking-radiated O(Q) neutrino modes around the
event horizon are not able to freely travel outside the EWS corona (see Appendix A for more
discussion). The characteristic energy barrier is O[

p
eB(REW)] = O(mh). For T (MBH,M⇤•) &

mh (which can be satisfied for Q . Mpl/mh and MBH not too close to M⇤•), there are many
other Q-enhanced modes for charged leptons and quarks, which can escape the EWS corona
and directly (or after hadronization) decay into neutrinos.

When T (MBH,M⇤•) . me, the previous 2d radiation is suppressed. The region within the
EWS corona will be heated to the Hawking temperature of the BH. Both thermal photon and
neutrino modes are stored in this region. As a result, the 4d blackbody radiation on the boundary
of the EWS corona could be important and has radiated power

P4 =
dE

dt
⇡

⇡2 g⇤
120

(4⇡R2

EW
)T 4(MBH,M⇤•) , (13)

with g⇤ = 2 for photon and g⇤ = 3 ⇥ 2 ⇥
7

8
= 21

4
for three chiral neutrinos. Eq. (13) is only

valid for T (MBH,M⇤•) . me. For a higher temperature, the radiated 2d modes can escape the

6

For high T, for three-family fermionsg* = 18 |Q |

The 2d radiation is very fast; it reaches extremal very 
quickly

QM

U(1)Y

U(1)EM

• 2d neutrino modes can not 
escape

• EM charged states can 
travel outside of coronas
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2d Hawking radiation

For the 2d radiation is suppressed. The 4D 
radiation dominants

T < me,
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For the 2d radiation usually dominants over 4DT > me,
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Primordial MBHs ?
There are various ways to form primordial black holes

Large primordial fluctuations

Phase transitions, boson stars, ……

Produce large number of monopoles and anti-monopoles 
(maybe Nambu’s dumbbell configurations)

The formation of black holes eat totally  objectsN

Anticipate the net BH magnetic charge: ∼ N

To be studied more. Let’s discuss how to search for them

YB, Orlofsky, arXiv: 1906.04858
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Parker Limits
Requiring the domains of coherent magnetic field are not 
drained by magnetic monopoles

applies to GUT monopoles [34–38]. Another interesting possibility, left for future work, is that
the BNV process could facilitate baryogenesis.

For the case of PMBH absorption of baryons, the resulting BH mass is close to the extremal
mass. In the limit of MBH �M⇤• ⌧ M⇤•, the Hawking temperature is

TBH '
M2

pl
p
2 ⇡

p
MBH �M⇤•
M3/2

⇤•
. (17)

For the 2d evaporation process to occur, TBH & me or MBH �M⇤• & 2⇡2m2

eM
3

⇤•/M
4

pl
⇡ (2.5 ⇥

10�4)mpM3

26
. For example, when even a single proton is absorbed (MBH �M⇤• ' mp), the 2d

evaporation process occurs for M⇤• . 1027 GeV, resulting in a prompt BNV process. PMBHs
with larger masses must absorb many baryons before reemitting via 2d modes. This may occur,
e.g., in dense environments like stars. Using the 2d radiation in (12) with g⇤ = 2|Q|, the fast 2d
evaporation time scale is

⌧BH ⇡

24⇡3/2 cW M2

⇤•
eM3

pl

log

"
M4

pl
(MBH �M⇤•)
2⇡2 m2

e M
3

⇤•

#
. (18)

After this time scale, the BH follows the slow 4d evaporation process.

3 Parker limits from Milky Way and Andromeda galaxies

The Parker bound arises from the requirement that domains of coherent magnetic field are not
drained by magnetic monopoles [39]. If a monopole transits such a domain, it will be accelerated
by the magnetic field and drain its energy. Thus, the energy loss to monopoles must be slower
than the time it takes for the fields to be regenerated. To simplify our discussion, we will ignore
the subleading second term in (9) for Q ⌧ Qmax and take M⇤•/Q = cW

p
⇡Mpl/e ⇡ 5.1Mpl.

Compared to a GUT monopole with Q = 1, a PMBH has a much larger mass-to-charge ratio.
We now compare the PMBH flux to the various Parker-type bounds, updated to include charge
dependence where necessary.

Assuming that PMBHs account for a faction f⇤• of all dark matter energy density and has
an averaged speed v, the flux is

F⇤• ⇡ (9.5⇥ 10�21 cm�2sr�1s�1) f⇤•
✓
1026 GeV

M⇤•

◆⇣ ⇢DM

0.4 GeV cm�3

⌘⇣ v

10�3

⌘
. (19)

For the local dark matter density in our solar system, we use ⇢local ⇡ 0.4 GeV cm�3 [40] and
virial velocity v ⇡ 10�3 [41].

We follow the treatment of Ref. [42], but include the Q-dependence in hQ and M⇤•. First, a
monopole can be accelerated in a coherent magnetic field to reach a speed

vmag ' min

"
1,

s
2B hQ `c

M⇤•

#
' 4⇥ 10�5

p
`21B3 , (20)
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The mass per charge is much larger than GUT monopoles
PMBH flux:

applies to GUT monopoles [34–38]. Another interesting possibility, left for future work, is that
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For the local dark matter density in our solar system, we use ⇢local ⇡ 0.4 GeV cm�3 [40] and
virial velocity v ⇡ 10�3 [41].

We follow the treatment of Ref. [42], but include the Q-dependence in hQ and M⇤•. First, a
monopole can be accelerated in a coherent magnetic field to reach a speed

vmag ' min

"
1,

s
2B hQ `c

M⇤•

#
' 4⇥ 10�5

p
`21B3 , (20)

8

where `21 = `c/(1021 cm) is the coherence length of the magnetic field and B3 = B/(3 ⇥

10�6 gauss) is the magnetic field strength in our Milky Way galaxy [43]. This velocity is less
than the virial velocity of our galaxy, around 10�3. Thus, the PMBHs can remain bound in our
galaxy and explain DM. They could also have a larger velocity and not be bound, thus unable
to explain DM, but the flux bound presented below turns out to be the same.

The Parker bound is set by requiring the mean rate of energy gained by PMBHs times the
regeneration time treg of the field by dynamo action to be smaller than the energy stored in the
magnetic field, or

�E ⇥ F⇤• ⇥ (4⇡`2c)⇥ (⇡ sr)⇥ treg .
B2
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3
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with �E ' M⇤•�v2/2 and �v ' B hQ `c/(M⇤•v). The magnetic-field-independent constraint
on the PMBH flux is
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v2�3
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where v�3 = v/(10�3) and t15 = treg/(1015 s). Combined with (19), the constraint on the PMBH
fraction from coherent fields in the Milky Way is independent of the PMBH mass and given by

f⇤• . 3.8⇥
v�3

⇢0.4 `21 t15
, (23)

where ⇢0.4 = ⇢DM/(0.4GeV cm�3).
Thus, at present there is no constraint from magnetic field domains in our galaxy, regardless

of PMBH mass and charge. To strengthen the bound in (23), one could look for systems with
larger coherent magnetic field domains `21 > 1, longer times to regenerate the magnetic fields
t15 > 1, smaller virial velocities v�3 < 1 (although note if v < vmag, then PMBHs would not be
bound to the galaxy so could not be DM, and a di↵erent constraint would apply [42]), or larger
enhancements to the local DM density ⇢0.4 > 1.

We identify the Andromeda galaxy as an example of a system with larger coherent magnetic
domains that take a correspondingly longer time to regenerate. Andromeda has an approxi-
mately azimuthal magnetic field around its whole circumference, measured between radii of 6
and 14 kpc [44]. This implies `c ⇠ 10 kpc ) `21 ⇠ 30 and treg ⇠ 10 Gyr ) t15 ⇠ 300 [45]. The
density of DM for Andromeda is very similar to the Milky Way [46, 47], so we keep ⇢0.4 ⇡ 1 and
v�3 ⇡ 1. Using these values in (23), we constrain the PMBH fraction in Andromeda to be

f⇤• . 4⇥ 10�4 (from M31) . (24)

Although there is a large uncertainty for `c and treg used in the Parker limit, the above limit
suggests PMBHs cannot account for all dark matter in our Universe.

While the above bounds come from galactic magnetic fields, intracluster magnetic fields
were considered in Ref. [48], although the bound is somewhat less secure as stated in their
paper. Because of the smaller intracluster dark matter density ⇡ 1.5 ⇥ 10�6 GeV cm�3 [49],
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Fig. 1. Polarized intensity (contours) of M31 with the orientation of the emission B-vector also shown (dashes, not
corrected for Faraday rotation) with their lengths proportional to the degree of polarization, observed at λ6 cm with
the Effelsberg radio telescope (Berkhuijsen et al. 2003). Note that the foreground RM of −90 radm−2 (Table 2)
corresponds to Faraday rotation of about 20◦ so that the intrinsic B-vectors are roughly azimuthal. The beam width
is 3′ and the rms noise is 0.2 mJy/beam. Contour levels are 1, 2, 3, 4, 6× (5 × 10−4) Jy/beam. A length of B-vectors
of 3′ corresponds to a degree of polarization of 36%. The northern major axis is to the left and the ellipses show the
radial range of the data analyzed in this paper, 6 ≤ r ≤ 14 kpc.
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the average polarization angle and the average polarized
emission intensity in each sector.
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2
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In Sect. 6 we compare the degree of polarization at
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essary to smooth the λ20 cm map to the 3′ resolution of
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10�6 gauss) is the magnetic field strength in our Milky Way galaxy [43]. This velocity is less
than the virial velocity of our galaxy, around 10�3. Thus, the PMBHs can remain bound in our
galaxy and explain DM. They could also have a larger velocity and not be bound, thus unable
to explain DM, but the flux bound presented below turns out to be the same.

The Parker bound is set by requiring the mean rate of energy gained by PMBHs times the
regeneration time treg of the field by dynamo action to be smaller than the energy stored in the
magnetic field, or
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on the PMBH flux is
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where v�3 = v/(10�3) and t15 = treg/(1015 s). Combined with (19), the constraint on the PMBH
fraction from coherent fields in the Milky Way is independent of the PMBH mass and given by
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, (23)

where ⇢0.4 = ⇢DM/(0.4GeV cm�3).
Thus, at present there is no constraint from magnetic field domains in our galaxy, regardless

of PMBH mass and charge. To strengthen the bound in (23), one could look for systems with
larger coherent magnetic field domains `21 > 1, longer times to regenerate the magnetic fields
t15 > 1, smaller virial velocities v�3 < 1 (although note if v < vmag, then PMBHs would not be
bound to the galaxy so could not be DM, and a di↵erent constraint would apply [42]), or larger
enhancements to the local DM density ⇢0.4 > 1.

We identify the Andromeda galaxy as an example of a system with larger coherent magnetic
domains that take a correspondingly longer time to regenerate. Andromeda has an approxi-
mately azimuthal magnetic field around its whole circumference, measured between radii of 6
and 14 kpc [44]. This implies `c ⇠ 10 kpc ) `21 ⇠ 30 and treg ⇠ 10 Gyr ) t15 ⇠ 300 [45]. The
density of DM for Andromeda is very similar to the Milky Way [46, 47], so we keep ⇢0.4 ⇡ 1 and
v�3 ⇡ 1. Using these values in (23), we constrain the PMBH fraction in Andromeda to be

f⇤• . 4⇥ 10�4 (from M31) . (24)

Although there is a large uncertainty for `c and treg used in the Parker limit, the above limit
suggests PMBHs cannot account for all dark matter in our Universe.

While the above bounds come from galactic magnetic fields, intracluster magnetic fields
were considered in Ref. [48], although the bound is somewhat less secure as stated in their
paper. Because of the smaller intracluster dark matter density ⇡ 1.5 ⇥ 10�6 GeV cm�3 [49],
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PMBHs Captured by Astrophysical 
Objects

Taking the finite size into account, the PMBH power loss 
rate is

where the last line is in the limit V ⌧ 1. The characteristic attenuation length is

l = ⇡�1/4(vth/V )1/2!�1

p ⇡ 3⇥ 10�6 cm . (114)

The last equality gives the value for the Sun with V = 10�3. The integral is truncated at finite
kmax to avoid a logarithmic divergence when R = 0. This corresponds to the assumption of a
linear plasma response in ✏T, which neglects short-range interactions. It is taken as related to
the distance where the electrostatic and thermal energies are equal: kmax ⇠ 4⇡ nL2

D
= T 2/e2 ⇡

(2⇥10�9 cm)�1, with n the number density of particles in the plasma and LD the Debye length.
However, the result is only logarithmically dependent on this. Then, the R = 0 result is

dW

dt

����
R=0

= �
µ0V h2

Q

3⇡2l2


log(kmax l) +

2

3

�
. (115)

To generalize to finite radius, we must now account for the j0(kR) term. We approximate the
integral in (113) by taking j0(kR) = 1 for k 2 [0, 1/R) and j0(kR) ⇠ 1/(kR) for k 2 [1/R,1)
(ignoring the sine dependence). For R ⌧ l, the result is the same as (115) but with kmax replaced
by k0

max
= min(kmax, 1/R), while for R � l and kmax � 1/R

dW

dt
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The radius is the EWS corona radius,

REW =

r
Q

2

1

mh
⇡ (10�8 cm)

r
Q

1016
. (117)

Thus, the stopping length LS ⇠
1

2
M⇤•V

2(dW/dx)�1
/ QV 3(dW/dt)�1 is monotonic with Q,

since

dW

dt
/

8
<

:

Q2 , kmaxR ⌧ 1 ,
Q2 log(1/

p
Q) , kmaxR � 1 & R = REW ⌧ l ,

Q log(
p
Q) , kmaxR � 1 & R = REW � l (i.e., Q � 1016 & Q . Qmax) .

Note LS is monotonically decreasing as Q increases regardless of how kmax, R, and ` are related.
Finally, note that in the point-like MeBH case, the stopping length is smaller than the solar

radius for Q & 30 (see below). For this charge, the point-like approximation is valid. Since the
stopping length monotonically decreases with Q even after accounting for finite size e↵ects, all
extremal magnetic BHs above this charge are stopped.

B.1 Stopping in other materials

To a rough approximation, the stopping power in other materials like conductors, insulators,
or degenerate gases is very similar the stopping power of plasmas considered in the previous
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section, but with the thermal velocity of electrons vth replaced by the Fermi velocity vF [112].
In other words, from the point-like approximation in (115),

dW

dx
⇠

!2

p h
2

Q V

vF
⇠

ne e2 h2

Q V

vF me
. (118)

This can be used for objects like neutron stars and the Earth. The minimum charge for a PMBH
to be captured while traveling through a body is then estimated by requiring

M⇤• v
2/2

dW/dx|V=(v2+v2esc)
1/2

& R , (119)

where v ⇡ 10�3 is the velocity of the PMBH far from the body, vesc is the body’s escape
velocity, and R is the radius of the body. If this condition is satisfied, then the PMBH becomes
gravitationally bound to the body and will, either during the first crossing or over the course of
further crossings, stop inside the body. The resulting minimal charge is

Qstop,min ⇠
cW v2 vF me Mpl

8 ⇡3/2 e ne R (v2 + v2
esc
)1/2

, (120)

which assumes that once the PMBH is gravitationally bounded, it will be quickly captured,
usually during its first pass through the object (this is true for the Sun, the Earth and neutron
stars, which provide non-trivial constraints). We provide relevant quantities in Table 1. For
stars, the proton-to-nucleon ratio (equivalent to the electron-to-nucleon ratio) is Z/A ⇠ 1, while
for the Earth Z/A ⇠ 1/2.

For the Sun, we use the more precise calculation of the stopping power in [53] (though with a
factor of two larger stopping power [55]), which gives Qstop,min ⇠ 30, compared to Qstop,min ⇠ 390
using (120) and the quantities in Table 1.

ne electron vth or vF Qstop,min

Sun 1024 cm�3 vth = 0.058 (from T = 107 K) 30 [53, 55]

Earth (5.5 cm�3) Z
A NA ⇠ 1.7⇥ 1024 cm�3 vF ⇠

q
2(1 eV)

(0.511 MeV)
⇠ 2⇥ 10�3 1900

Neutron star 6⇥ 1037 cm�3 vF ⇠ 1 1

White dwarf 6⇥ 1029 cm�3 vF ⇠ 0.7 1

Table 1: Physical quantities relevant for stopping.
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PMBHs inside the Sun
The capture rate is 

the constraint is much weaker than (24). Finally, the bound in [42] was extended in [50], which
observed that the much smaller seed magnetic fields early in our galaxy’s formation must also
survive. Otherwise, there would be no fields today. The limit from the progenitor field reduces
to the ordinary Parker bound when M⇤•/Q > 1017 GeV, which is always satisfied for PMBHs.

4 Cosmic rays: solar neutrinos

PMBHs can be captured by the Sun, drift into the core of the Sun, and merge to produce non-
extremal RN BHs that Hawking radiate energetic neutrinos. This high energy particle signal
from merging extremal BHs was pointed out in a di↵erent context in [21]. In addition, PMBHs
that are captured but have not yet annihilated can mediate BNV processes, which could also
be detected by the energetic particles they emit. Measuring the neutrino flux from the Sun’s
direction by a large-volume neutrino detector can therefore constrain the PMBH fraction f⇤• of
dark matter.

Before giving the detailed calculations, we provide a brief overview of the capture process,
which will be applicable for the Sun, the Earth, neutron stars, and white dwarfs. First, the Sun
captures PMBHs with a rate dependent on the flux and the strength of interactions between
PMBHs and the stellar medium. The PMBHs will drift to the core of the Sun, and the time
it takes should be short compared to other timescales in the problem. There, they may merge
with oppositely-charged PMBHs and “annihilate” via Hawking radiation. The capture and
annihilation rates often reach an equilibrium, so that the annihilation rate saturates to the
capture rate. However, magnetic fields in the core may separate oppositely-charged PMBHs,
preventing them from annihilating. These can lead to a build-up of PMBHs, and these PMBHs
can mediate BNV processes.

4.1 PMBH capture by the Sun

The capture rate of PMBHs by the Sun is estimated to be

Ccap ⇡ ✏ ⇡R2

�
⇥
1 + (vesc/v)

2
⇤
4 ⇡F⇤• ⇡

�
9.2⇥ 103 s�1

�
✏ f⇤•M

�1

26
, (25)

where R� = 7.0⇥1010 cm is the solar radius; vesc = 2⇥10�3 is the solar escape speed on the solar
surface; v = 10�3 is the averaged dark matter speed; ✏ 2 [0, 1] is the capture e�ciency parameter.
For F⇤• in (19) we use ⇢DM = ⇢local ⇡ 0.4 GeV cm�3. For a small radius PMBH, its stopping
power by the solar plasma is similar to the GUT monopole case [51–55] except for a factor of
Q2 enhancement. Using the results of [55], any PMBH with Q > 30 or M⇤• & 2 ⇥ 1021 GeV is
stopped. Following the analysis of Ref. [52], in Appendix B, we also take into account finite-size
e↵ects and demonstrate that our Sun can easily stop any large-radius PMBH above this minimal
charge once it enters the Sun. We therefore choose ✏ = 1.

The captured PMBH will be slowed down by interacting with the plasma, thermalize with
the medium, and drift into the core region of the Sun. Oppositely charged PMBHs “annihilate”
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Force-balance equation:

Then, it drifts to the center region with a time scale

other words, for low enough PMBH mass, PMBH mergers and annihilations can be thought of
interchangeably. We will see that all masses for which constraints can be placed satisfy this
approximation. The total number of PMBHs inside the Sun is then

N⇤• ⇡

r
Ccap

CA
' (2.3⇥ 1018)

✓
R

Rth

◆3/2

f 1/2

⇤• M�9/4
26

. (32)

So far, the PMBHs were assumed to make their way to the center of the Sun nearly instan-
taneously. However, if the drag forces are large enough, it may take a long time for PMBHs to
make their way from the surface to the center of the Sun. An estimate for this drift velocity can
be obtained by setting the stopping force in Appendix B equal to the gravitational attraction:

GM⇤•M�(r)

r2
⇠ vdrift

ne e2 h2

Q

4⇡me vth
. (33)

Thus, using ne = 1024 cm�3 and vth = 0.058 corresponding to T = 107 K, the drift time (for a
vertical moving PMBHs) is

tdrift ⇠
R�

vdrift
⇠

R3

�
M�

ne e2

c2W me vth
M⇤• ⇠ (8⇥ 104 s)M26 . (34)

Thus, PMBHs with mass M⇤• . 2⇥ 1038 GeV will take shorter than t� to settle to the center of
the Sun. This sets an upper limit on the masses that can be probed by PMBH merger signals.

The above analysis has ignored the magnetic field in the core of Sun. A magnetic field
could separate the locations of positively and negatively charged PMBHs, as emphasized in
Ref. [53]. This would prevent oppositely charged PMBHs from merging unless the number of
captured PMBHs is above a critical value. On the other hand, the attractive forces between
oppositely charged monopoles can increase the annihilation rate well above that in (29). As
we now demonstrate, the attractive forces are more important for the Sun when f⇤• is not too
small, while for tiny f⇤• the Sun’s magnetic field gives the dominant e↵ect. In either case, ⌧eq in
(30) will not be meaningful.

Choosing a constant B and assuming the +Q and �Q PMBHs are separated by a distance
z from the center, the force balance equation is

0 = F = B
2⇡Q

e
�

4⇡

3
G ⇢c M⇤• z �

GN⇤•M
2

⇤•
(2 z)2

, (35)

where the last term is the attractive force of 1

2
N⇤• PMBHs on one oppositely charged PMBH. We

have assumed that the PMBHs are near-extremal so that the gravitational and magnetic forces
are equal (they actually di↵er slightly, by a factor of cW , which we neglect). If the first two
terms are dominant, the magnetic and gravitational forces can be balanced with a separation
distance

zB '
3BMpl

2
p
⇡ cW ⇢c

= (2.0⇥ 103 cm)B100 , (36)
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So far, the PMBHs were assumed to make their way to the center of the Sun nearly instan-
taneously. However, if the drag forces are large enough, it may take a long time for PMBHs to
make their way from the surface to the center of the Sun. An estimate for this drift velocity can
be obtained by setting the stopping force in Appendix B equal to the gravitational attraction:
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Thus, PMBHs with mass M⇤• . 2⇥ 1038 GeV will take shorter than t� to settle to the center of
the Sun. This sets an upper limit on the masses that can be probed by PMBH merger signals.

The above analysis has ignored the magnetic field in the core of Sun. A magnetic field
could separate the locations of positively and negatively charged PMBHs, as emphasized in
Ref. [53]. This would prevent oppositely charged PMBHs from merging unless the number of
captured PMBHs is above a critical value. On the other hand, the attractive forces between
oppositely charged monopoles can increase the annihilation rate well above that in (29). As
we now demonstrate, the attractive forces are more important for the Sun when f⇤• is not too
small, while for tiny f⇤• the Sun’s magnetic field gives the dominant e↵ect. In either case, ⌧eq in
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have assumed that the PMBHs are near-extremal so that the gravitational and magnetic forces
are equal (they actually di↵er slightly, by a factor of cW , which we neglect). If the first two
terms are dominant, the magnetic and gravitational forces can be balanced with a separation
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Figure 1: Separation of PMBHs (filled red) and anti-PMBHs (hollow red) in the Sun generated
by a roughly uniform magnetic field B (blue).

where B100 = B/(100 gauss) (the precise value of magnetic field in the solar core region is still
unknown [58]) and ⇢c = ⇢p ⇡ 50 g/cm3. Compared to Rth in (28), the magnetic force is more
important than the thermal pressure and can potentially separate oppositely charged PMBHs
and reduce the annihilation rate CA (as shown in Fig. 1). To consistently ignore the attractive
force between PMBHs in the third term, the total number of PMBHs is required to be below a
critical value

N crit

⇤• '
18M3

pl
B3

p
⇡ c3W M⇤• ⇢2c

= (3.8⇥ 1010)B3

100
M�1

26
. (37)

Above this critical number, the third term in (35) reduces the distribution radius, and equi-
librium is quickly reached between capture and annihilation with Ccap = CA (N crit

⇤• )2. Starting
from time zero, the captured PMBHs settle down in the solar core with a separation distance
of zB. The amount of time to reach N crit

⇤• is given by

⌧ crit =
N crit

⇤•
Ccap

' (4.1⇥ 106 s)B3

100
f�1

⇤• , (38)

which is independent of PMBH mass and dramatically smaller than the age of the Sun unless
f⇤• . 3⇥ 10�11.

Note that when 1036 GeV . M⇤• . 2 ⇥ 1038 GeV, there are only O(1) PMBHs within the
distribution radius to annihilate. Also, for a heavy mass, the capture rate in (25) is small. The
capture/annihilation process is discrete: the Sun waits a long time to capture the next PMBH,
which quickly drifts into the core and annihilates with the existing one.

4.2 Solar neutrinos from PMBH annihilation

For the radiated charged fermions following a PMBH merger, the thermally averaged energy for
2d Hawking radiation is hEfi ⇡ 1.19TBH, with TBH given in (15). Ignoring order one factors,
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other words, for low enough PMBH mass, PMBH mergers and annihilations can be thought of
interchangeably. We will see that all masses for which constraints can be placed satisfy this
approximation. The total number of PMBHs inside the Sun is then
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So far, the PMBHs were assumed to make their way to the center of the Sun nearly instan-
taneously. However, if the drag forces are large enough, it may take a long time for PMBHs to
make their way from the surface to the center of the Sun. An estimate for this drift velocity can
be obtained by setting the stopping force in Appendix B equal to the gravitational attraction:
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Thus, using ne = 1024 cm�3 and vth = 0.058 corresponding to T = 107 K, the drift time (for a
vertical moving PMBHs) is
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Thus, PMBHs with mass M⇤• . 2⇥ 1038 GeV will take shorter than t� to settle to the center of
the Sun. This sets an upper limit on the masses that can be probed by PMBH merger signals.

The above analysis has ignored the magnetic field in the core of Sun. A magnetic field
could separate the locations of positively and negatively charged PMBHs, as emphasized in
Ref. [53]. This would prevent oppositely charged PMBHs from merging unless the number of
captured PMBHs is above a critical value. On the other hand, the attractive forces between
oppositely charged monopoles can increase the annihilation rate well above that in (29). As
we now demonstrate, the attractive forces are more important for the Sun when f⇤• is not too
small, while for tiny f⇤• the Sun’s magnetic field gives the dominant e↵ect. In either case, ⌧eq in
(30) will not be meaningful.

Choosing a constant B and assuming the +Q and �Q PMBHs are separated by a distance
z from the center, the force balance equation is
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where the last term is the attractive force of 1

2
N⇤• PMBHs on one oppositely charged PMBH. We

have assumed that the PMBHs are near-extremal so that the gravitational and magnetic forces
are equal (they actually di↵er slightly, by a factor of cW , which we neglect). If the first two
terms are dominant, the magnetic and gravitational forces can be balanced with a separation
distance
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12For , an equilibrium is quickly reached between 
capture and annihilation rates with                                   

N > Ncrit

or merge into a non-extremal RN BH. The annihilation or merger rate is related to the number
density distribution of PMBHs.

We begin by presenting the usual calculation of solar capture and annihilation, relevant for
DM with no self interactions aside from annihilations [56]. After that, we will include the e↵ects
of the magnetic fields of the Sun and PMBHs, which qualitatively and quantitatively change
the results. For the non-interacting case, the PMBH radial distribution at the core follows a
Maxwell-Boltzmann distribution / e��(r)/(kBT ) where �(r) is the gravitational potential. This
can be written as a Gaussian with a characteristic radius of R:

n⇤•(r) = n0 e
�r2/R2

, (26)

with n0 as the PMBH number density at the center of the Sun. The annihilation or merger rate
is estimated to be

CA ⇡

R
d3r n(r)2 h�A vi

[
R
d3r n(r)]2

'
⇡R2

eBH

(2⇡)3/2 R3
, (27)

where a geometric cross section with the BH event horizon radius is used. The radius R can be
estimated using the balance of the gravitational potential and kinetic energy 3

2
kB T = �(r) =

2⇡
3
G⇢c M⇤• r

2, where ⇢c is the mass density in the core. If T is similar to the solar core temper-
ature without PMBHs, T = Tc = 1.5⇥ 107 K. If the gravitational potential is dominated by the
solar plasma and using ⇢c = ⇢p ⇡ 50 g/cm3 [57], the radius is [41]

R ⇡ Rth ⇡ 0.13R�

r
mp

M⇤•
= (8.8⇥ 10�4 cm)M�1/2

26
, (28)

with the proton mass mp = 0.938 GeV. The annihilation rate is given by

CA '
⇡R2

eBH

(2⇡)3/2 R3

th

⇡ (1.7⇥ 10�33 s�1)M7/2
26

. (29)

The time evolution of the PMBHs in the Sun is given by Ṅ⇤• = Ccap�CA N2

⇤• [56], where all
PMBHs are assumed to have charges of equal magnitude. The solution to this number evolution
equation is N⇤•(t) =

p
Ccap/CA tanh

�p
Ccap CA t

�
, which has an equilibration time

⌧eq = 1/
p
Ccap CA = (2.5⇥ 1014 s) f�1/2

⇤• M�5/4
26

. (30)

So, for f⇤• = 1 and M⇤• > 6⇥1023 GeV, ⌧eq is shorter than the age of the Sun t� = 4.6⇥109 yr =
1.45⇥ 1017 s. For ⌧eq < t�, the annihilation rate is determined by the capture rate and given by

�A =
1

2
CA N2

⇤• ⇡
1

2
Ccap =

�
4.6⇥ 103 s�1

�
f⇤•M

�1

26
. (31)

The time between mergers ��1

A is longer than ⌧BH in (16) for M⇤• . 1039 GeV, so one could
approximately treat the 2d Hawking radiation as occurring instantaneously below this mass. In
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other words, for low enough PMBH mass, PMBH mergers and annihilations can be thought of
interchangeably. We will see that all masses for which constraints can be placed satisfy this
approximation. The total number of PMBHs inside the Sun is then
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So far, the PMBHs were assumed to make their way to the center of the Sun nearly instan-
taneously. However, if the drag forces are large enough, it may take a long time for PMBHs to
make their way from the surface to the center of the Sun. An estimate for this drift velocity can
be obtained by setting the stopping force in Appendix B equal to the gravitational attraction:

GM⇤•M�(r)

r2
⇠ vdrift

ne e2 h2

Q
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. (33)

Thus, using ne = 1024 cm�3 and vth = 0.058 corresponding to T = 107 K, the drift time (for a
vertical moving PMBHs) is

tdrift ⇠
R�
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Thus, PMBHs with mass M⇤• . 2⇥ 1038 GeV will take shorter than t� to settle to the center of
the Sun. This sets an upper limit on the masses that can be probed by PMBH merger signals.

The above analysis has ignored the magnetic field in the core of Sun. A magnetic field
could separate the locations of positively and negatively charged PMBHs, as emphasized in
Ref. [53]. This would prevent oppositely charged PMBHs from merging unless the number of
captured PMBHs is above a critical value. On the other hand, the attractive forces between
oppositely charged monopoles can increase the annihilation rate well above that in (29). As
we now demonstrate, the attractive forces are more important for the Sun when f⇤• is not too
small, while for tiny f⇤• the Sun’s magnetic field gives the dominant e↵ect. In either case, ⌧eq in
(30) will not be meaningful.

Choosing a constant B and assuming the +Q and �Q PMBHs are separated by a distance
z from the center, the force balance equation is

0 = F = B
2⇡Q
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where the last term is the attractive force of 1

2
N⇤• PMBHs on one oppositely charged PMBH. We

have assumed that the PMBHs are near-extremal so that the gravitational and magnetic forces
are equal (they actually di↵er slightly, by a factor of cW , which we neglect). If the first two
terms are dominant, the magnetic and gravitational forces can be balanced with a separation
distance
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Figure 1: Separation of PMBHs (filled red) and anti-PMBHs (hollow red) in the Sun generated
by a roughly uniform magnetic field B (blue).

where B100 = B/(100 gauss) (the precise value of magnetic field in the solar core region is still
unknown [58]) and ⇢c = ⇢p ⇡ 50 g/cm3. Compared to Rth in (28), the magnetic force is more
important than the thermal pressure and can potentially separate oppositely charged PMBHs
and reduce the annihilation rate CA (as shown in Fig. 1). To consistently ignore the attractive
force between PMBHs in the third term, the total number of PMBHs is required to be below a
critical value

N crit

⇤• '
18M3

pl
B3

p
⇡ c3W M⇤• ⇢2c

= (3.8⇥ 1010)B3

100
M�1

26
. (37)

Above this critical number, the third term in (35) reduces the distribution radius, and equi-
librium is quickly reached between capture and annihilation with Ccap = CA (N crit

⇤• )2. Starting
from time zero, the captured PMBHs settle down in the solar core with a separation distance
of zB. The amount of time to reach N crit

⇤• is given by

⌧ crit =
N crit

⇤•
Ccap

' (4.1⇥ 106 s)B3

100
f�1

⇤• , (38)

which is independent of PMBH mass and dramatically smaller than the age of the Sun unless
f⇤• . 3⇥ 10�11.

Note that when 1036 GeV . M⇤• . 2 ⇥ 1038 GeV, there are only O(1) PMBHs within the
distribution radius to annihilate. Also, for a heavy mass, the capture rate in (25) is small. The
capture/annihilation process is discrete: the Sun waits a long time to capture the next PMBH,
which quickly drifts into the core and annihilates with the existing one.

4.2 Solar neutrinos from PMBH annihilation

For the radiated charged fermions following a PMBH merger, the thermally averaged energy for
2d Hawking radiation is hEfi ⇡ 1.19TBH, with TBH given in (15). Ignoring order one factors,
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Annihilation Products
For two eBHs with  and  charges, the merge product 
has 

Q1 −Q2

Q = Q1 − Q2

MBH ≈ cW π(Q1 + Q2)Mpl/e

It is a non-extremal MBH with 

EWS corona region without thermalizing with the center BH (even neutrinos can be converted
to charged leptons plus gauge fields).

When a pair of PMBHs merge, a non-extremal RN BH is generated. The radius of a RN

BH is R+ = (MBH +
q

M2

BH
�M2

⇤•)/M
2

pl
. If two (near-)extremal PMBHs with charges Q1

and �Q2 satisfying Q1 � Q2 > 0 merge, the merger product has a charge of Q = Q1 � Q2

and mass of MBH = M⇤•(Q1) + M⇤•(Q2) ⇡ cW
p
⇡(Q1 + Q2)Mpl/e. The condition, eB(R+) &

m2

h, for the merger product to have an EWS corona becomes
p
Q1 �Q2/(

p
Q1 +

p
Q2)2 >

p
2⇡ cW mh/(eMpl) = cW/

p
Qmax. So, unless Q1 is infinitesimally close to Q2 (or both are near

Qmax), this condition can be easily satisfied and the PMBH merger product also has an EWS
corona. In the limit of Q1�Q2 ⌧ Q1+Q2 ⌘ 2Q and hence MBH � M⇤•, this condition becomes

MBH <
M2

pl

2
p
2mh

p
Q =

p
⇡

2 e

p
QQmax Mpl ⌘ MEW

max
(Q) . (14)

Thus, the produced non-extremal RN BH also has an EWS corona (we do not consider the
situation that the charge distribution of PMBHs is exactly monochromatic with a delta function).
Using (11), the Hawking temperature is

TBH '
M2

pl

2⇡

1

8M⇤•(Q1)
= (2.8⇥ 1010 GeV)M�1

26
, (15)

where M26 = M⇤•/10
26 GeV. For TBH > me, i.e. when M⇤• . 1039 GeV, the 2d radiation in (12)

dominates. For a smaller mass M⇤• . 1037 GeV, muons and other electrically charged particles
can be produced from the 2d Hawking radiation. The heavy charged particles have various decay
channels which generate neutrinos that can escape the Sun or the Earth’s core and potentially
be observed by neutrino telescopes. In addition, the radiated particles other than the neutrinos
may heat up astrophysical bodies like the Earth, neutron stars, or white dwarfs, potentially
providing a bound. Also note that the non-extremal RN BH can quickly 2d Hawking radiate to
become (nearly) extremal. Using (12), the evaporation time scale is

⌧BH ⇡
3000 ⇡3/2 cW

e

M2

⇤•
M3

pl

⇡ (1.8⇥ 10�25 s)M2

26
, (16)

where we have chosen g⇤ = 2|Q| and MBH = 2M⇤•. As emphasized in Ref. [10], this 2d Hawking
radiation time scale is much shorter than the 4d one, which scales like M3

⇤•/M
4

pl
[21].

PMBHs can also facilitate baryon number violation (BNV). As discussed in Appendix A,
baryons that enter an EWS corona become 2d modes and can be easily captured by the PMBH.
For example, if REW & 1 GeV�1 corresponding to Q & 104, then baryon bound states are
expected [17]. The PMBH can then reemit energy as Hawking radiation, which need not have
the same baryon number. There is also the possibility that the EWS corona can mediate
baryon number violation [32, 33]. We do not consider that here because the extended sphaleron
configuration is also relevant for the baryon-violating process, though the sphaleron energy is
reduced [33]. Note that these processes are di↵erent from the Callan-Rubakov process, which

7

For , it has quick 2d Hawking radiation to reach 
the extremal state

TBH > me

The radiated charged particles can decay into photons, 
neutrinos and protons; only (not too high-energy) 
neutrinos can easily propagate out of the Sun
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Solar  from PMBH Annihilationν
To satisfy the neutrino energy cut,

the number of charged particles from one PMBH annihilation event is Nf ⇡ M⇤•/TBH. Charged
particles like µ±, ⇡±, and K± can decay into neutrinos directly or via cascade. The total number
of high energy neutrinos from each annihilation event is

N⌫ ⇡ ⌘⌫
M⇤•
TBH

= (3.4⇥ 1015) ⌘⌫ M
2

26
, (39)

where ⌘⌫ is a factor to take into account the average number of high energy neutrinos from
charged particle decays, e.g., ⌘⌫ ⇡ 2 for a muon. This assumes that the particles do not
thermalize or significantly slow down in the solar plasma before decaying to neutrinos, which is
true for prompt-decaying particles like the ⌧ lepton, as well as the charm and bottom hadrons.
The neutrino energy is around E⌫ ' hEfi/⌘⌫ ⇡ (1.19/⌘⌫)TBH assuming ⌘⌫ � 1. The neutrinos
generated from PMBH annihilation plus 2d Hawking radiation can propagate outside the Sun
and reach the Earth to be observed by neutrino telescopes.

IceCube has performed a search for dark matter annihilations inside the Sun [59], which can
be recast as a search for PMBHs. There are lower energy cuts to select neutrinos: Ecut

⌫ = 10
GeV for DeepCore selection and 100 GeV for IceCube selection. Requiring TBH > Ecut

⌫ in (15),
the maximum mass that can be probed is

M⇤• . Mmax,E = (2.8⇥ 1035 GeV)

✓
10GeV

Ecut
⌫

◆
. (40)

For a heavy PMBH, the annihilation rate could be so suppressed such that the separation time
from one event to another event could be longer than the operation time, texp, of the experiment.
This sets another upper limit on the mass that can be probed

M⇤• . Mmax,t = (2.1⇥ 1037 GeV) f⇤•
✓

texp
532 day

◆
. (41)

For a given experiment, the combined upper limit on the testable mass is

M⇤• . min [Mmax,E,Mmax,t] . (42)

The generated neutrino flux is

I⌫ ⇡
N⌫ �A

4⇡ d2�
⇡ (5.5⇥ 10�9 cm�2 s�1)M26 ⌘⌫ f⇤• , (43)

where the distance from the Earth to the Sun is d� = 1.5 ⇥ 1013 cm. The Sun is opaque for
neutrinos with E⌫ & 100 GeV [60], so the high energy neutrinos generated at the solar core
will be converted to charged leptons from the charged-current interaction or to lower-energy
neutrinos from the neutral-current interaction. A detailed analysis requires a numerical study
of particle production, decay, and interaction. In our simplified recast of IceCube limits, we
take the initial neutrino energy E⌫ ⇠ TBH. When TBH below 100 GeV, we will take ⌘⌫ = 1.
For TBH & 100 GeV, we assume that the neutrinos with energy below or around 100 GeV have
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a multiplicity factor proportional the neutrino energy, ⌘⌫ ⇠ (TBH/100GeV), resulting from the
cascades of higher energy particles.

For the IceCube searches [59], texp = 532 day. The e↵ective area can be read from the left
panel of Fig. 4 of Ref. [59], which can be approximated by

Ae↵ ⇡
�
1.0⇥ 10�2 cm2

�
⇥ (E⌫/10GeV)3 10 < E⌫/GeV  100 , (44)

for the acceptance area for the DeepCore selection. We also note that the search in Ref. [59] is
for muon neutrinos, which generate tracks in the detector with a better pointing ability. Here,
we absorb the additional neutrino flavor dependence and also neutrino oscillation e↵ects into
the factor ⌘⌫ . Requiring the number of signal events I⌫ ⇥Ae↵ ⇥ texp . 100 (see Fig. 6 of [59] for
the observed number of events and Table 3 for systematical errors), we derive an approximate
upper limit on the fraction of dark matter as PMBH

f⇤• .

8
<

:
1.4⇥ 10�7 , 2⇥ 1021 GeV . M⇤• . 2.9⇥ 1030 GeV ,

M⇤•/(2.1⇥ 1037 GeV) , 2.9⇥ 1030 GeV . M⇤• . 2.8⇥ 1035 GeV ,
(IceCube)(45)

where we have chosen ⌘⌫ = max(1, TBH/100 GeV). The lower limit on the mass in the top line
comes from the minimum mass that can be stopped in the Sun. The lower line comes from (41),
with the upper reach in mass set by (40). If the experiment ran for long enough that it was not
limited by (41), it would still be limited by the neutrino energy needing to exceed 10 GeV. In that
case, the second line would read f⇤• . 1.8⇥10�6 M2

35
for 2.8⇥1034 GeV . M⇤• . 2.8⇥1035 GeV.

The above limit can be potentially improved if one takes the temporal information into account.
For a heavy PMBH, a transient signal is anticipated and one could search for high-energy solar
neutrino flares to search for PMBHs.

For the Super-Kamiokande searches [61], neutrino energy cuts 20MeV < E⌫ < 55MeV
have been imposed. For the Hawking temperature to be in this energy window, M⇤• 2 (5.1 ⇥
1037, 1.4 ⇥ 1038) GeV. The observing time is texp = 2853 day, so the observation-time-related
upper limit from (41) is 1.1 ⇥ 1038 GeV, slightly smaller than the energy-related upper mass
limit. For M⇤• < 5.1⇥1037 GeV, we take the neutrino multiplicity factor as ⌘⌫ ⇠ (TBH/55MeV);
otherwise ⌘⌫ = 1. Using the experimental upper limit on the flux of 183.4 cm�2s�1 [61], we derive
the following constraints on the PMBH fraction:

f⇤• .
(

0.07 , 2⇥ 1021 GeV . M⇤• . 5.1⇥ 1037 GeV ,

0.03M�1

38
, 5.1⇥ 1037 GeV . M⇤• . 1.1⇥ 1038 GeV .

(Super-K) (46)

The second line comes from Mmax,t in (41). This limit would apply if the drift time were instan-
taneous, which is a good approximation for M⇤• . 2⇥ 1038 GeV from (34). Thus, solar neutrino
searches cannot probe merging PMBHs to higher masses than this, regardless of experiment
time or energy threshold.
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Super-K probes even heavier masses because a smaller 
energy cut
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PMBH inside Earth
Similar story as the Sun, the capture rate is 

4.3 Baryon number violation process

Captured PMBHs absorb baryons in the Sun, increasing their mass above extremality and
leading to 2d or 4d Hawking radiation depending on the temperature increase by the incoming
flux of baryons. For a PMBH captured within the Sun, we can approximate the rate of change
of the mass, �M ⌘ MBH �M⇤•, as

d�M

dt
= ⇢p ⇡R2

EW
vp
th
� P2 ⇥(TBH �me)� P4 ⇥(me � TBH) , (47)

where ⇥(x) is the heavyside function and vp
th
is the proton thermal velocity. Here, the first term

on the right side is energy deposited by the proton flux, while the second and third terms are
power radiated in 2d or 4d modes, respectively, depending on the temperature. As the PMBH
absorbs protons, the temperature increases and reaches equilibrium between the first and third
terms on the RHS of (47), giving

T eq

BH
=

⇣30 ⇢p vpth
⇡2 g⇤

⌘1/4

' (20 keV)⇥

✓
⇢p

50 g/cm�3

◆1/4 ✓
vp
th

1.7⇥ 10�3

◆1/4 ✓
7.25

g⇤

◆1/4

. (48)

For the Sun, T eq

BH
⇡ 2 ⇥ 10�5 GeV ⇡ 2 ⇥ 108 K, which is below me, so the 2d radiation is

suppressed. This gives the total power radiated via BNV by surviving PMBHs as

LBNV = N crit

⇤• P4(T = 2⇥ 10�5 GeV) = (5.2⇥ 1015 erg s�1)B3

100
. (49)

The above power is dramatically smaller than the observed solar luminosity L� = 3.8 ⇥

1033 erg s�1. The corresponding neutrino flux is also much below the solar neutrino flux [62].
Therefore, proton decay does not constrain the PMBH abundance.

5 Earth heat and neutrinos

As discussed in [63, 64], if a significant fraction of DM is captured as it passes through the Earth
and then annihilates e�ciently to SM particles other than neutrinos inside the Earth, the heat
so generated would surpass measurements of the internal heat of the Earth. This can be used to
set a stringent constraint on DM candidates with scattering cross sections that are large enough
to be captured by the Earth.

As discussed in Appendix B.1, the Earth can e�ciently capture PMBHs for Q & 1900 or
M⇤• & 1.2⇥ 1023 GeV. Similar to (25), the capture rate is estimated to be

Ccap ⇡ ✏ ⇡R2

� 4 ⇡F⇤• ⇡
�
0.15 s�1

�
✏ f⇤•M

�1

26
, (50)

where R� = 6.4 ⇥ 108 cm. The magnetic field in the Earth core is around 25 gauss [65], while
the density is around 10 g/cm3 [66]. Using (37), the critical number to overcome the separation
of PMBHs due to the Earth’s magnetic field is

N crit

⇤• ' (1.5⇥ 1010)M�1

26
. (51)

16

Other than the neutrino signals, the total power generated 
from BH annihilation is 

The corresponding time to reach this critical number is

⌧ crit =
N crit

⇤•
Ccap

⇡ (9.8⇥ 1010 s) f�1

⇤• , (52)

which is shorter than the age of the Earth t� ⇡ 1.4⇥1017 s. As in the case of the Sun, if t� < ⌧ crit

then PMBHs are separated by Earth’s magnetic field, while for t� > ⌧ crit their attractive forces
allow for an equilibrium to be reached between capture and annihilation. The drift time for the
Earth is very similar to that of the Sun in (34) because the average densities and vth (for Sun)/vF
(for Earth) are similar to within O(1). Specifically, using ne = 1.7⇥1024 cm�3 and Fermi energy
EF = mev2F/2 = 1 eV (see Appendix B.1), tdrift ⇠ (1⇥ 106 s)M26. We will conservatively require
tdrift < t� for annihilations to become important, setting an upper bound on the mass that can
be probed. Thus, PMBHs with M⇤• . 1⇥1037 GeV will reach equilibrium in the Earth’s center.

If equilibrium is reached, the time-averaged power generated by PMBH annihilations is
independent of M⇤• and is estimated to be

PA ' (2.4⇥ 1015 W) f⇤• . (53)

Compared to the internal heat of the Earth P� ⇡ 4.7⇥ 1013 W [67], this sets a bound

f⇤• . 0.02 (Earth heat) , (54)

again for 1.2 ⇥ 1023 GeV . M⇤• . 1 ⇥ 1037 GeV. However, unlike for particle DM, the rate
of mergers must be considered for heavy PMBHs. As a rough estimate, to set a bound we
require the annihilation rate (which equals the capture rate in equilibrium) to be faster than
the di↵usion rate of heat from the core to the surface. The thermal di↵usion timescale of the
inner core alone is estimated as ⌧ = (1.4 ± 0.7) ⇥ 109 yr = (4.4 ± 2.2) ⇥ 1016 s [68], which
is comparable to the age of the Earth. Demanding Ccap & ⌧�1

 requires M⇤• . 7 ⇥ 1041 f⇤•,
comparable to the bound from tdrift < t� when f⇤• = 1. Thus, we do not expect a dramatic
reduction in sensitivity even when the PMBH merger/annihilation events are very rare. In fact,
this long di↵usion timescale enables us to set bounds for much larger masses, rather than being
limited by how long we have been taking detailed measurements of Earth’s heat flux.

In addition to Earth heating, the neutrino flux from PMBH mergers can be used to set a
limit. We recast the results in the IceCube search for particulate DM � [69]. Specifically, they
set a mass-dependent bound on the rate of � particle annihilations �A,� going to both hard and
soft channels. We expect post-merger PMBHs with a temperature TBH given by (15) will emit
neutrinos with a similar energy spectrum as particulate DM whose mass m� ⇠ TBH in both the
hard (�� ! W+W�) and soft (�� ! bb̄) channels. The only di↵erence is that the neutrino
multiplicity is enhanced by a factor ⇠ ⌘⌫M⇤•/TBH. As before, ⌘⌫ is a neutrino multiplicity
parameter, with ⌘⌫ ⇠ 1 for the hard component and ⌘⌫ � 1 for the soft component. Thus,
their bound on �A,� for a given m� becomes a bound on �A ⌘⌫M⇤•/TBH . �A,� for a given M⇤•
satisfying TBH � m� in (15). When captures and annihilations are in equilibrium, �A = Ccap/2,
with Ccap given in (50).
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If equilibrium is reached, the time-averaged power generated by PMBH annihilations is
independent of M⇤• and is estimated to be

PA ' (2.4⇥ 1015 W) f⇤• . (53)

Compared to the internal heat of the Earth P� ⇡ 4.7⇥ 1013 W [67], this sets a bound

f⇤• . 0.02 (Earth heat) , (54)

again for 1.2 ⇥ 1023 GeV . M⇤• . 1 ⇥ 1037 GeV. However, unlike for particle DM, the rate
of mergers must be considered for heavy PMBHs. As a rough estimate, to set a bound we
require the annihilation rate (which equals the capture rate in equilibrium) to be faster than
the di↵usion rate of heat from the core to the surface. The thermal di↵usion timescale of the
inner core alone is estimated as ⌧ = (1.4 ± 0.7) ⇥ 109 yr = (4.4 ± 2.2) ⇥ 1016 s [68], which
is comparable to the age of the Earth. Demanding Ccap & ⌧�1

 requires M⇤• . 7 ⇥ 1041 f⇤•,
comparable to the bound from tdrift < t� when f⇤• = 1. Thus, we do not expect a dramatic
reduction in sensitivity even when the PMBH merger/annihilation events are very rare. In fact,
this long di↵usion timescale enables us to set bounds for much larger masses, rather than being
limited by how long we have been taking detailed measurements of Earth’s heat flux.

In addition to Earth heating, the neutrino flux from PMBH mergers can be used to set a
limit. We recast the results in the IceCube search for particulate DM � [69]. Specifically, they
set a mass-dependent bound on the rate of � particle annihilations �A,� going to both hard and
soft channels. We expect post-merger PMBHs with a temperature TBH given by (15) will emit
neutrinos with a similar energy spectrum as particulate DM whose mass m� ⇠ TBH in both the
hard (�� ! W+W�) and soft (�� ! bb̄) channels. The only di↵erence is that the neutrino
multiplicity is enhanced by a factor ⇠ ⌘⌫M⇤•/TBH. As before, ⌘⌫ is a neutrino multiplicity
parameter, with ⌘⌫ ⇠ 1 for the hard component and ⌘⌫ � 1 for the soft component. Thus,
their bound on �A,� for a given m� becomes a bound on �A ⌘⌫M⇤•/TBH . �A,� for a given M⇤•
satisfying TBH � m� in (15). When captures and annihilations are in equilibrium, �A = Ccap/2,
with Ccap given in (50).
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PMBH inside Neutron Stars
The capture rate is 

6 Neutron stars and white dwarfs

6.1 PMBH capture

PMBHs can get captured by other large bodies outside the solar system, such as neutron stars
and white dwarfs. The calculation proceeds similarly to solar capture, though in the case of
neutron stars, we include a relativistic correction factor,

Ccap ⇡ ✏ ⇡R2


1 + (vesc/v)2

1� v2
esc

�
4 ⇡F⇤• ⇡ (0.11 s�1) f⇤•R

2

10
M�1

26
, (58)

where R = R10 ⇥ 10 km is the radius of the neutron star, vesc ⇡ 0.47 for a neutron star and
v = 10�3. In Appendix B, we show that a MeBH will be stopped if it enters a neutron star or
white dwarf, so ✏ = 1. The number of captured PMBHs per neutron star is then

NNS

⇤• = Ccap ⌧NS ⇠
�
3.3⇥ 1016

�
f⇤•R

2

10
M�1

26
⌧10 , (59)

where ⌧NS = ⌧10 ⇥ 1010 yr is the age of the neutron star. The number of captured PMBHs per
white dwarf (with R ⇡ 7000 km and vesc ⇡ 0.02) is

NWD

⇤• ⇠
�
2.3⇥ 1019

�
f⇤•M

�1

26
⌧10 . (60)

Note that in the above analysis, we neglected the strong magnetic field of the neutron star.
The B field of old neutron star is less than 108 gauss, which induces a force of order FEM ' QhB.
The gravitational force close to the surface of the neutron star is of order Fgrav ' GMNS M⇤•/R

2.
Neglecting relativistic corrections, which are O(1), for simplicity, the ratio of the forces is

FEM

Fgrav

⇠
2
p
⇡BMpl R2

cW MNS

⇠ (7.8⇥ 10�10) ⇥
M�

MNS

R2

10
B8 , (61)

for a surface magnetic field B = B8 ⇥ 108 gauss, the approximate value for an old neutron star.
Old neutron stars are more prevalent and will have captured many more PMBHs than young
neutron stars, so they are the most relevant for setting bounds. The magnetic force is much
smaller than the gravitational force and can therefore be neglected to first approximation for
the calculation of the encounter rate.

6.2 PMBH distribution

Like the Sun, magnetic fields inside neutron stars can separate PMBHs and prevent them from
merging. The analysis of this possibility is complicated in this scenario by the unknown exotic
phase of matter in the core of the neutron star. We begin by analyzing that case.

At a depth of order few km below the crust, a neutron star is expected to be a proton
superconductor [71, 72] (see Ref. [73] for a recent review), in which protons form Cooper pairs.
This region forms the outer core. Magnetic fields in this region are confined to flux tubes at
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The inner core of a neutron star is anticipated to be a 
proton superconductor Gezerlis, et. al, arXiv:1406.6109

The magnetic field of PMBH is confined to flux tubes with

early times, which di↵use outward until the core is free of magnetic field. The di↵usion time is
somewhat uncertain, but can be less than the typical age of an old neutron star [74].

The nature of the inner core is not definitively known. For example, the environment could
be a pion superconductor in which the pions acquire an isospin-breaking expectation value [75].
It could also be a color superconductor, which would break SU(3)c ⇥U(1)EM ! SU(2)⇥U(1),
with the unbroken U(1) [76].

We are most concerned, as we will see, with the phase at a distance of around a kilometer
from the center, very deep in the neutron star. There are essentially two qualitatively di↵erent
scenarios. If the neutron star is a proton or pion superconductor at a distance of around a
kilometer from the center, then the magnetic field lines of the PMBHs are confined to quantized
flux tubes which create a large outward force that can balance the gravitational pull toward the
core of the neutron star. Otherwise, if the magnetic field lines are not confined to flux tubes,
there is a weak outward magnetic force (similar to the case of the Sun in Fig. 1), and the PMBH
and anti-PMBHs collapse unimpeded toward the core.

As a PMBH enters a superconductor, its magnetic field is confined to flux tubes. In the case
of a proton superconductor, the flux of each tube is

� =
⇡

e
, (62)

which is half of the fundamental Dirac charge. The factor of half is due to the fact that it is
charge-two Cooper pairs of protons that break the electromagnetic gauge group. For a pion
superconductor, where EM charge is broken only by one unit, the flux per tube is twice that.
There must then be 2Q (Q) flux tubes per PMBH for a proton (pion) superconductor. For
simplicity, we focus on the proton superconductor case, though the pion superconductor case is
not qualitatively di↵erent. The typical size of these flux tubes is given by the London penetration
depth

� =

✓
mp

e2 np

◆1/2

⇠ 10�12 cm , (63)

for npmp ⇡ 4⇥ 1014 g/cm3. The typical magnetic field inside the flux tube is then given by

B� ⇠
�

⇡ �2
⇠ 1016 gauss , (64)

much larger than the surface magnetic field.
A flux tube has an enormous tension force that would like to minimize the length of the flux

tube. This force is given by [74]

FT ⇠ B2

�
⇡ �2 ln (�/⇠) ⇠ 104 N , (65)

where ⇠ ⇠ few⇥10�13 cm is the Bardeen-Cooper-Schrie↵er (BCS) correlation length for each flux
tube. For GUT monopoles, the tension force is su�cient to eject monopoles inside the supercon-
ducting core when it forms or to prevent monopoles from entering except along flux tubes [74].
For PMBHs, however, the charge-to-mass ratio is lower and the gravitational force allows the
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Figure 2: An ensemble of PMBHs (filled red) and anti-PMBHs (hollow red) inside the super-
conducting core of a neutron star. The gray circle is the stable position where the magnetic and
gravitational forces are equal. The black circle is the edge of the superconducting region. The
thick brown circle indicates the edge of the neutron star. The blue lines represent magnetic flux
tubes. Magnetic field lines are not depicted outside the superconducting core. For color super-
conductors or other phases where magnetic fields do not confine in flux tubes, the dynamics are
more similar to Fig. 1.

PMBHs to penetrate into the superconducting region. The flux tubes are approximately radially
outward going from the entry point of the PMBH. This configuration is qualitatively illustrated
in Fig. 2. For a su�cient tension force, this allows for a stable shell of hanging PMBHs, also
illustrated in Fig. 2. The radius of the shell is given by balancing the tension force with the
neutron star gravitational force, neglecting for the moment self-gravitation contributions of the
PMBH population,

Rbalance ⇡
6QFT

4 ⇡G ⇢c M⇤•
⇠ 1600 m , (66)

with ⇢c ⇡ mp np ⇡ 4⇥ 1014 g/cm3.
The energy of the flux tubes can be lowered if outward-going flux tubes from PMBHs merge

with inward going flux tubes from anti-PMBHs, leading to a tension force that pulls the PMBH
and anti-PMBH together to annihilate. The dominant e↵ect that initially prevents this from
happening is that the drift of the flux tubes is very slow. 1 The drift velocity can be obtained by
balancing the flux tube tension against the force due to impinging electrons and other elements

1
There is also a potential barrier given by the added tension of a configuration where the two flux tubes are

merged rather than radially outward, but this potential will be negligible in the regime of small separation we

consider.
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Fraction of PMBH over dark matter
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Figure 3: Bounds on PMBH abundance as a fraction of the dark matter abundance. In green is
the Parker bound using M31/Andromeda. Red and blue show constraints from the Sun and the
Earth, respectively, due to neutrino observations at IceCube (IC), Super-Kamiokande (SK), and
Earth heating. Orange dashed lines show constraints from neutron stars (NS) assuming a total
baryon number violation energy on emitted photon luminosity of either r = 1 or r = 104. See
details and caveats in the text. Purple regions are excluded by direct searches from MACRO
and ancient mica. Brown displays constrains from microlensing at Subaru/HSC (HSC), Kepler
(K), and MACHO/EROS/OGLE (M/E/O). The dotted black vertical lines show where Q = 2,
Qmin ' 106 (assuming the existence of a GUT monopole), and Qmax ' 1.4⇥ 1032 (above which
there is no EWS corona).

be modified if the BHs obtain a large enough charge to form a corona before Hawking radiating
to near-extremal. If, on the other hand, PMBHs are born extremal or near extremal, these
constraints are relaxed.

If PMBHs are indeed primordial, then they can form binaries in the early Universe that
merge today, giving high energy neutrinos and gamma rays throughout the sky. An estimate of
this signal is given in [21], but more detailed numerical work is needed, particularly on binary
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Magnetic black holes have electroweak-symmetric coronas

It has a fast 2d Hawking radiation rate and can reach the 
extremal state quickly

Because of their heavy masses, they require astrophysical 
objects to infer their existence

It is unlikely to account 100% of dark matter abundance, 
because of the Parker limit and neutrino and photon signals 
from the Sun, Earth and NS captures

It does not require unknown new physics. More studies are 
deserved to search for them



Thanks!
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