Chiral Lattice Theories from Staggered Fermions

Simon Catterall (Syracuse)

December 2020

Simon Catterall (Syracuse)

Outline:

- Why chiral lattice fermions, why is it difficult ...
- Fermion doubling, no-go theorems, staggered and reduced staggered fermions.
- Symmetric mass generation for vector-like theories.
- Chiral theories: Yukawa terms: site parity and Kitaev structure.
- Discrete anomalies and continuum limit.
- Relation to Kähler-Dirac fermions.
- Pati-Salam model.
- Future ...

arXiv:2010.02290

Motivation and Problems

Why?

Would like a non-perturbative definition of a chiral gauge theory pedagogical and practical reasons – eg dynamical symmetry breaking

Only non-perturbative regulator we have is lattice ...

Putting chiral fermions on lattice is hard (impossible ?)

- Mirror models start with vector-like theory and try to gap right handed states (mirrors) ...
- Many lattice formulations tried eg. naive, DWF, overlap, ... no success. Typically bilinear fermion condensates form

In this talk:

New lattice mirror model. Reduced staggered fermions. Gapped by Yukawas with structure borrowed from CMT Automatically satisfy discrete anomaly cancellation conditions

Simon Catterall (Syracuse)

Back to basics: fermion doubling

Naive discretization of Dirac action:

$$S = \frac{1}{2} \sum_{x} \sum_{\mu} \overline{\psi}(x) \gamma_{\mu} \left[\psi(x+\mu) - \psi(x-\mu) \right] + m \sum_{x} \overline{\psi}(x) \psi(x)$$

Momentum space:

.

$$m{D}_{\mu}=i\sin{(ap_{\mu})}, \quad m{p}_{\mu}=ig(0,\ldots,rac{\pi}{a}ig)$$
Two zeroes per dimension: 16 fermions in 4d !

Nielsen-Ninomiya theorem:

Doubling topologically guaranteed for reasonable choice of massless lattice action (local, translation invariant, chirally symmetric) Doublers come in L/R pairs. Continuum limit is vector-like.

Staggered fermions: a step in the right direction ?

Workarounds - reduce numbers of doublers (but lattice theories still vector-like)

- Add chiral symmetry breaking mass term for doublers (Wilson)
- Formulate 4d theory as boundary of 5d world (DWF)
- Overlap fermions non-local Dirac op. and γ₅
- Staggering spin diagonalize naive fermions

$$\psi_{\alpha}(\mathbf{x}) = \Omega_{\alpha\beta}(\mathbf{x})\chi_{\beta}(\mathbf{x}) \quad \text{with } \Omega(\mathbf{x}) = \gamma_{1}^{\mathbf{x}_{1}}\gamma_{2}^{\mathbf{x}_{2}}\gamma_{3}^{\mathbf{x}_{3}}\gamma_{4}^{\mathbf{x}_{4}}$$

Staggered action:

$$S = \frac{1}{2} \sum_{x} \sum_{\mu} \eta_{\mu}(x) \overline{\chi}(x) \left[\chi(x + \mu) - \chi(x - \mu) \right] + m \sum_{x} \overline{\chi}(x) \chi(x)$$

with $\eta_{\mu}(x) = (-1)^{\sum_{i=1}^{\mu-1} x_{i}}$
 $\chi(x)$ - 4 uncoupled components - discard 3 copies.
Describes 4 Dirac fermions in continuum limit

Simon Catterall (Syracuse)

Reduced staggered fermions (RSF)

Can we do any better ?

If m = 0:

 $S = \sum_{\mathbf{x}} \sum_{\mu} \eta_{\mu}(\mathbf{x}) \left[\overline{\chi}_{+}(\mathbf{x}) D_{\mu} \chi_{-}(\mathbf{x}) \right] + \left[\overline{\chi}_{-}(\mathbf{x}) D_{\mu} \chi_{+}(\mathbf{x}) \right]$

where
$$\begin{bmatrix} 2D_{\mu}f(x) = f(x+\mu) - f(x-\mu) \end{bmatrix}$$
$$\psi_{\pm}(x) = P_{\pm}\psi(x) = \frac{1}{2}(1 \pm \epsilon(x))\psi(x)$$
$$\epsilon(x) = (-1)^{\sum_{i=1}^{4}x_i} \text{ lattice site parity}$$

Relabel $\overline{\chi}_+ \rightarrow \chi_+$ and write:

$$S = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \chi(x) D_{\mu} \chi(x)$$

U(1) symmetry:
$$\chi(x)
ightarrow e^{ilpha\epsilon(x)}\chi(x)$$

Describes two massless Dirac or four Majorana fermions in continuum

Simon Catterall (Syracuse)

Generating mass - four fermion interactions for RSF

$$S = \frac{1}{2} \sum_{x,\mu} \eta_{\mu}(x) \chi^{a}(x) D_{\mu} \chi^{a}(x) + \frac{1}{2} G \sum_{x} \sigma^{+}_{ab}(x) \chi^{a}(x) \chi^{b}(x) + \frac{1}{2} (\sigma^{+}_{ab})^{2} (x)$$

Symmetries:

SO(4) invariant. $\sigma^+ \in SO(3)$ subgroup. Shift symmetries $\chi^a(x) \to \xi_\mu(x)\chi^a(x+\mu)$ with $\xi_\mu(x) = (-1)^{\sum_{i=\mu+1}^4}$

 Z_8 symmetry $(\omega, \omega^2, \dots, \omega^8)$ with $\omega = e^{i\epsilon(x)\frac{\pi}{4}}$

$$\psi^{a}(\mathbf{x}) \rightarrow \omega \psi^{a}(\mathbf{x})$$

 $\sigma^{+}_{ab}(\mathbf{x}) \rightarrow \omega^{-2} \sigma^{+}_{ab}(\mathbf{x}) = -i\epsilon(\mathbf{x})\sigma^{+}_{ab}$

Note:

Symmetries protect against all fermion bilinear terms

Simon Catterall (Syracuse)

Where does Z_8 come from ?

Why not Z_4 ?

- Z_4 on fermions means $Z_2 \in (1, -1)$ on σ
- Hence Z_8 implies $Z_4 \in (1, -1, i, -i)$ on σ
- Like g
 ightarrow ig in Yukawa or $g^2
 ightarrow -g^2$ in four fermi term

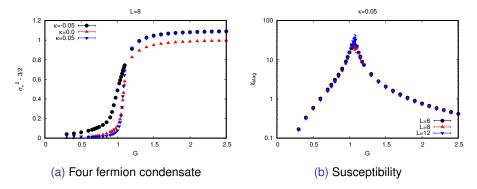
Original $SO(4) = SU_{+}(2) \times SU_{-}(2)$ symmetry

Used $\sigma^+ = \frac{1}{2}(\sigma^{ab} + \frac{1}{2}\epsilon^{abcd}\sigma^{cd})$. But could have chosen σ^- Swapping $g^2 \to -g^2$ preserves partition function !

True symmetry is Z₈ !

Symmetric mass generation

- $\lambda = 0$. Massless fermions
- λ → ∞. Four fermion condensate. Interpret as mass term χ^aΠ^a with Π^a = ε_{abcd}χ^bχ^cχ^d. Gapped symmetric phase.



Phase transition $\lambda \sim$ 1. Need to add kinetic term for σ^+ coeff. κ

Gapping subsets of RSF

Using four fermion interactions full RSF can generate masses for both χ_{-} and χ_{+} leading to 2 massive Dirac fermions without breaking symmetries Can we apply interactions only to (say) χ_{+} ?

Consider

$$S_{\text{Yuk}} = \sum_{x} (GP_+ + gP_-)\sigma_A(x)\chi^a(x)\Gamma^{ab}_A\chi^b(x) + \frac{1}{2}\sigma^2_A$$

Assume Γ_A Dirac gamma matrices for 2*N* fermions transforming under some global rotation symmetry *G*

Question:

Assume G >> g. Can we gap χ_+ fermions and leave χ_- massless ? What do we get ? Are there constraints ?

Simon Catterall (Syracuse)

Effective action for σ_A

Let

$$M = \eta_{\mu}(x)D_{\mu}\delta^{ab} + (gP_{-} + GP_{+})\sigma_{A}\Gamma^{ab}_{A}$$

Consider eigenvalue equation:

$$M(\sigma_A)\phi_n = \mu_n\phi_n$$

Invariance under Z_8 with $\omega = e^{i\epsilon(x)\frac{\pi}{4}}$

$$M(\omega^2 \sigma) \omega^{-1} \phi_n = (\omega^2 \lambda_n) \omega^{-1} \phi_n$$

eigenvalues shift by phase ω^2 under $\sigma \to \omega^2 \sigma$
Thus $Pf(\sigma_A) = e^{-S_{eff}}$ naively invariant

Need to take care with zero modes with $D_{\mu}\chi^{0}_{\pm} = 0$ Arising when $g, G \rightarrow 0$ on torus with pbc

Discrete Z_8 anomaly

Consider configuration $\sigma_A(x) = \hat{\sigma}_A$ with $\hat{\sigma}_A^2 = 1$ and $g = G \to 0$ Changing phase of $\hat{\sigma}_A$ corresponds to $g \to g' = e^{i\epsilon(x)\frac{\pi}{2}}g$.

Bring $\Lambda = \hat{\sigma}_A \Gamma_A$ to 2 × 2 block diagonal form *J* using *SO*(2*N*) rotation.

 $J = \operatorname{diag} \left(\mu_1 i \tau_2 \oplus \mu_2 i \tau_2 \dots \oplus \mu_N i \tau_2 \right) \quad \text{with } \mu_i = 1 \text{ for } \chi^0_{\pm}$

 $Pf(g'J) = \prod_{\epsilon(x)=\pm 1} e^{iN\epsilon(x)\frac{\pi}{2}} Pf(gJ)$ Pfaffian invariant for vector-like theory

But suppose gap out χ_+ with large *G*:

Pfaffian is not invariant under $g \rightarrow g'$ if *N* not multiple of 4. Global anomaly in Z_8 symmetry! Cancel anomaly using multiples of 8 fermions

Turning this around

Will not be able to generate mass for χ_+ and decouple from I.R unless we have a multiple of eight RSF. Minimal model fermions must be in 8 dim real irrep. of global symmetry

simplest solution -G =Spin(7)

Comments:

- Will show that this implies continuum theory has 16 Weyl fermions in agreement with continuum arguments on discrete anomalies (Dai Freed ...)
- $ig \equiv g$. Sign of $g^2 (\chi^T \Lambda \chi)^2$ irrelevant. No energetic reason to condense the bilinear and break symmetry.
- Argument formal. Assumed χ_+ gapped above cut-off to decouple....
- Likely need kinetic term for scalars in four dimensions.

Continuum fields

Assemble staggered fields into matrix fermion (neglect global Spin(7) indices)

$$\Psi = \sum_{\{n_{\mu}=0,1\}} \chi(\boldsymbol{x} + n_{\mu}\hat{\mu}) \Omega(n_{\mu})$$

with Ψ residing on lattice with twice the lattice spacing. Has block structure (chiral basis):

$$\Psi = \begin{pmatrix} E & O' \\ O & E' \end{pmatrix}$$
 (E, E') even parity sites etc.

Columns of Ψ give continuum spinors

In continuum limit recover $\text{Spin}(4)_{\text{Lorentz}} \times \text{Spin}(4)_{\text{Flavor}}$ symmetry. Act by left and right multiplication of Ψ . Majorana nature of Ψ :

$$O' = \sigma_2 O^* \sigma_2$$
 and $E' = -\sigma_2 E^* \sigma_2$.

Generalized charge conjugation

Simon Catterall (Syracuse)

Continuum Symmetries

Symmetries:

$$\left[\textit{SU}(2) \times \textit{SU}(2)\right]_{\text{Lorentz}} \otimes \left[\textit{SU}(2) \times \textit{SU}(2)\right]_{\text{Flavor}} \otimes \textit{Z}_8 \otimes \text{Spin}(7)$$

2 × 2 block	Lorentz rep.	Flavor rep.
E	(2, 1)	(2, 1)
0	(1 , 2)	(2,1)
E'	(1,2)	(1,2)
0′	(2, 1)	(1,2)

If we succeed in gapping the blocks (E, E') left with:

(O, O') containing a pair of Majorana fermions. Expect in I.R $g \rightarrow 0$ - massless Equivalent to pair left handed Weyl fermions transforming in $(8, 2, 1)_L$ representation of Spin(7) $\otimes [SU(2) \otimes SU(2)]_{Flavor}$

Continuum as Kähler-Dirac

This continuum fermion Ψ can be mapped into a set of p-forms $\Omega = (\omega_0, \omega_1, \dots, \omega_D)$ via

$$\Psi = \sum_{p} \omega_{n_1 \dots n_p(x)} \gamma_1^{n_1} \gamma_2^{n_2} \cdots \gamma_p^{n_p}$$

Satisfy the Kähler-Dirac equation:

$$(d-d^{\dagger})\Omega=0$$

Analog of $\epsilon(x)$ is Γ acting on forms: $\Gamma : \omega_p \to (-1)^p \omega_p$

Reduced Kähler-Dirac fermion \equiv real forms. Implies $\Psi^{\dagger} = \gamma_2 \Psi^T \gamma_2$ $\chi_{\pm} \rightarrow \Psi_{\pm} = \frac{1}{2} (\Psi \pm \gamma_5 \Psi \gamma_5)$

$$S = \int d^4 x \operatorname{Tr} \left[\Psi^{\dagger a} \gamma_{\mu} \partial_{\mu} \Psi^a \right] + \Lambda^{ab} \operatorname{Tr} \left[(GP_+ + gP_-) \Psi^{\dagger a} \Psi^b \right]$$

Simon Catterall (Syracuse)

Connection to Pati-Salam

- Gap out Ψ_+ . 4 \rightarrow 2 massless Majoranas per Kähler-Dirac field. Equivalent to 2 Weyl.
- All flavor symmetries explicit: $SU(2) \times SU(2) \times Spin(7)$.
- Gauge flavor

Spontaneously break $Spin(7) \rightarrow Spin(6) \equiv SU(4)$

eg.
$$\sigma_A^2 = 1$$

8 \rightarrow **4** $+$ **$\overline{4}$**

Pati Salam GUT:

 $\begin{array}{l} \mbox{fermions} \ (\textbf{8},\textbf{2},\textbf{1}) \rightarrow (\textbf{4},\textbf{2},\textbf{1})_L \oplus (\textbf{4},\textbf{1},\textbf{2})_R \\ \mbox{unbroken gauge symmetry:} \ SU(4) \times SU(2) \times SU(2) \end{array}$

Summary

- RSF with carefully chosen Yukawa interactions may allow for lattice theory whose continuum limit is chiral.
- Requires symmetric mass generation (SMG) non-perturbative.
- A necessary condition for SMG is cancellation of discrete anomalies.
- Shown how these arise in context of model. Cancellation requires 8 RSF or 16 Weyl in continuum. Agrees with known results.
- Spin(7) symmetry can be gauged chiral lattice gauge theory !
- Continuum limit given by Pati-Salam after breaking Spin(7) → Spin(6). How to gauge internal SU(2) × SU(2) ?
- SMG remains to be checked by simulation (sign problems ?)

Thanks!