
Non-Abelian lattice gauge theory on quantum computers

1. Motivation
2. Gauge fields on gated-based quantum computers
3. Gauge fields on a quantum annealer
4. Including quarks
5. Outlook

www.yorku.ca/lewisr



From bits to qubits

Classical computers use bits. Quantum computers use qubits.
One bit is either |0〉 or |1〉. One qubit is a superposition of |0〉 and |1〉.

θ

φ

= |0〉 = cos( θ
2
) |0〉+ eiφ sin( θ

2
) |1〉

Multiple bits act independently. Multiple qubits can be entangled, so
measuring one affects the others.

NOTE: Qubits can be in a superposition of all classically allowed states.



I will show results from qubits at IBM and D-Wave

D-Wave, 5760 qubits, no gates

IBM, 7 qubits, universal gate set



Lattice gauge theory is very successful without qubits
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What qubits might do for lattice gauge theory

Quantum computers offer an efficient Hamiltonian-based approach that might. . .

. . . allow us to avoid Euclidean time, thus moving from statics to dynamics.

. . . allow us to include a chemical potential, thus reaching nuclear densities.

Lattice QCD at non-zero density would be valuable for heavy-ion collisions, the
early Universe and neutron-star structure. In practice, simulations at finite µ suffer
from a “sign problem” and are at a rudimentary stage.

— paraphrased from Particle Data Group, Review of Lattice QCD



Time evolution in gauge theories using qubits

Figure 2 from Klco, Roggero and Savage, arXiv:2107.04769 37

FIG. 2. The real-time evolution of 1+1 dim QED and Yang-Mills gauge theories on small lattices.

The right-side panels show results obtained for the Schwinger model: (top) the vector current

after a ✓-quench obtained using IBM’s classical simulators (2020) [449], and pair-production on a

four-site (staggered) lattice obtained using (middle) Innsbruck’s trapped ion systems (2016) [40],

and (bottom) IBM’s quantum devices (2018) [448]. The lower-left panels show, for two-plaquette

systems in SU(2), (right) the time dependence of the local electric energy obtained using IBM’s

quantum devices (2019) [327], and (left) the strong-coupling vacuum persistence probability ob-

tained using D-wave’s quantum annealing systems (2021) [469]. The upper-left panel shows the

electric energy of two plaquettes of SU(3) obtained using IBM’s quantum devices (2021) [328]. [

(right-top): Reprinted figure with permission from Dmitri E. Kharzeev, Physical Review Research, 2, 023342, 2020. Copyright

(2020) by the American Physical Society. (right-middle): Reprinted with permission from Christine Muschik. (lower-left-left):

Reprinted with permission from Randy Lewis. ]

in Figure 2 11. Encouragingly, even with the ⇠ 50 quantum gates necessary for each step in
the time evolution, control and coherence was demonstrated up to four Trotter steps with
a survival probability in the physical, zero-charge subspace (six of the 24 fermionic configu-
rations) of greater than 70%, allowing for error-mitigating post-selection while maintaining
su�cient statistics. As a theory in one spatial dimension, the Schwinger model is a system
where a number of dynamical attributes can be addressed with precision using modern an-
alytical and numerical tools, such as tensor networks, e.g., Refs. [326, 463, 464, 470–472].
However, continuing to perform quantum simulations of this and similar theories aids the
benchmarking of quantum devices, and the development of algorithmic techniques.

While 1+1 dim QED is not of direct interest to fundamental physics, it shares attributes
with QCD, such as charge screening, a fermion condensate and a spectrum of composite

11 In each figure panel of this section, icons from Ref. [166] are assigned to indicate the type of compute

device that generated the results, i.e. a classical computer without a noise model, a classical com-

puter using a noise model, or a quantum device. These icons and their descriptions can be found at

https://iqus.uw.edu/resources/icons/.



SU(3) pure gauge theory on gate-based hardware
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501
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How the Hamiltonian was constructed
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501

The Hamiltonian is

Ĥ =
g2

2ad−2

∑
b,links

∣∣∣Ê(b)
∣∣∣2 +

1

2a4−dg2

∑
plaquettes

[
6− �̂(x)− �̂†(x)

]

The chromoelectric term comes from∑
b

∣∣∣Ê(b)
∣∣∣2 |p, q〉 =

p2 + q2 + pq + 3p+ 3q

3
|p, q〉

The chromomagnetic term comes from

ðT; Tz; YÞ with Tz, Y additive as utilized in Ref. [13] or,
more abstractly, the Gelfand-Tsetlin patterns.
While this four-link operator is naively capable of

producing transitions outside the gauge-invariant subspace,

the vertex CGs prevent such transitions. To be concrete,
consider the application of a plaquette operator impacting
two links of a three-point vertex in an initial state of C1 ¼
Rt ¼ 3 and Ql ¼ 8. Schematically,

ð8Þ

where the right shows the physical irrep configurations
populated by the plaquette operator application and the
associated CGs that would appear in the vertex factor.
When applying the □̂

† operator, 3’s will be applied,
according to Eq. (7), to Rt and Ql. Some combinations
of the irreps generated by the plaquette operator are dis-
allowed by Gauss’ law, requiring information of the state of
the neighboring link C1 stored in the vertex CG to maintain
gauge invariance. An example of such a configuration
disallowed by the neighboring link is j3iC1

j15iQl
j3̄iRt

as
3 ⊗ 3 does not produce a 15 or, equivalently, there is no
singlet present in the 3 ⊗ 3 ⊗ 15 tensor product.

As detailed in Appendix A, the vector components at
each vertex can be captured analytically through the
calculation of composite CG factors. As a result, the basis
for quantum simulation can be simplified to expressing
an SU(3) irrep on each link, leaving internal quantum
numbers to impact the matrix elements comprising the
local plaquette operator calculated classically. This formu-
lation extends the observations previously made in SU(2)
lattice gauge theory for a one-dimensional string of links
[27] and plaquettes [38]. Defining notation through the 9-R
symbol,

8
<

:

A B C

3 1 3

D B E

9
=

; ¼
X

hD; y0;B; xjE; q0iΓ1
hA; y;B; xjC; qiΓ2

hA; y; 3; cjD; y0iΓ3
hC; q; 3; cjE; q0iΓ4

; ð9Þ

where the sum is over all local vector and multiplicity indices, the plaquette matrix elements may be expressed as

ð10Þ

where the subscripts on the 9-R symbols graphically denote
the corresponding vertex in Fig. 1. The delocalization of
information necessary to consider in the application of a
plaquette operator, depicted in Eq. (8), is set at the distance
of neighboring links and does not grow beyond this locality
for larger lattices, nor in higher dimension. Because the
simple Hilbert space structure of qubit degrees of freedom

will not provide the vertex CGs necessary to retain a four-
link local plaquette operator, the CGs, usually separately
relegated to the vertex and the operator, have been included
here in their entirety. Two methods of implementation will
be explored below. In Sec. IV, the vertex CGs of Eq. (5) will
be manually captured through symmetry-projected, global
wave functions of the lattice mapped to quantum states of a

CIAVARELLA, KLCO, and SAVAGE PHYS. REV. D 103, 094501 (2021)

094501-4



How the gauge links were truncated
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501

Each of the 6 links is an irrep of SU(3): 1, 3, 3̄, 6, 6̄, 8, . . .

Truncating to only {1,3,3̄} gives 36 = 729 basis states for the lattice.

Enforcing Gauss’s law at every vertex leaves only 27 of those basis states.

9 of 27 are global singlet states. (Apply �̂, �̂† to the strong-coupling vacuum.)

Spatial translation and parity block diagonalize the Hamiltonian: 9→ 4 +2+2+1.

Gauss’ law at each vertex reduces this number down to 27.
Further restricting to global singlet states, as is the strong-
coupling vacuum and preserved by the Hamiltonian, the
dynamical Hilbert space becomes nine dimensional, which

decomposes into sectors of dimensions (4, 2, 2, 1) under the
discrete symmetries of color parity and spatial translation.
Focusing on the sector that contains the trivial vacuum, the
basis states in the þþ sector are,

jψ ð133̄;þþÞ
1 i ¼ jχð1; 1; 1; 1; 1; 1Þi;

jψ ð133̄;þþÞ
2 i ¼ 1

2
½jχð3; 3̄; 3̄; 1; 3; 1Þiþ jχð3̄; 3; 3; 1; 3̄; 1Þiþ jχð1; 3; 1; 3; 3̄; 3̄Þiþ jχð1; 3̄; 1; 3̄; 3; 3Þi&;

jψ ð133̄;þþÞ
3 i ¼ 1ffiffiffi

2
p ½jχð3; 1; 3̄; 3; 1; 3̄Þiþ jχð3̄; 1; 3; 3̄; 1; 3Þi&;

jψ ð133̄;þþÞ
4 i ¼ 1ffiffiffi

2
p ½jχð3; 3; 3̄; 3̄; 3̄; 3Þiþ jχð3̄; 3̄; 3; 3; 3; 3̄Þi&; ð35Þ

where the superscript “þþ” denotes the transformation properties under color-parity inversion and spatial translation,
respectively. The wave functions in the other sectors are

jψ ð133̄;−þÞ
2 i ¼ 1

2
½jχð3; 3̄; 3̄; 1; 3; 1Þi − jχð3̄; 3; 3; 1; 3̄; 1Þiþ jχð1; 3; 1; 3; 3̄; 3̄Þi − jχð1; 3̄; 1; 3̄; 3; 3Þi&;

jψ ð133̄;−þÞ
3 i ¼ 1ffiffiffi

2
p ½jχð3; 1; 3̄; 3; 1; 3̄Þi − jχð3̄; 1; 3; 3̄; 1; 3Þi&; ð36Þ

in the −þ sector,

jψ ð133̄;þ−Þ
2 i ¼ 1

2
½jχð3; 3̄; 3̄; 1; 3; 1Þiþ jχð3̄; 3; 3; 1; 3̄; 1Þi − jχð1; 3; 1; 3; 3̄; 3̄Þi − jχð1; 3̄; 1; 3̄; 3; 3Þi&; ð37Þ

in the þ− sector, and

jψ ð133̄;−−Þ
2 i ¼ 1

2
½jχð3; 3̄; 3̄; 1; 3; 1Þi − jχð3̄; 3; 3; 1; 3̄; 1Þi − jχð1; 3; 1; 3; 3̄; 3̄Þiþ jχð1; 3̄; 1; 3̄; 3; 3Þi&;

jψ ð133̄;−−Þ
4 i ¼ 1ffiffiffi

2
p ½jχð3; 3; 3̄; 3̄; 3̄; 3Þi − jχð3̄; 3̄; 3; 3; 3; 3̄Þi&; ð38Þ

in the −− sector.
By a direct calculation of the Hamiltonian matrix elements, both the Casimir and plaquette operators, in theþþ sector we

find Hamiltonian matrices of the form

ˆH ð133̄;þþÞ ¼ g2

2

0

BBB@

0 0 0 0

0 16
3 0 0

0 0 16
3 0

0 0 0 8

1

CCCAþ 1

2g2

0

BBBBB@

6 −2 0 0

−2 5 −
ffiffi
2

p

9 −
ffiffi
2

p

3

0 −
ffiffi
2

p

9 6 − 2
3

0 −
ffiffi
2

p

3 − 2
3 6

1

CCCCCA
; ð39Þ

and in the other sectors

ˆH ð133̄;−þÞ ¼ g2

2

" 16
3 0

0 16
3

#
þ 1

2g2

 
7 −

ffiffi
2

p

9

−
ffiffi
2

p

9 6

!
;

ˆH ð133̄;þ−Þ ¼ g2

2

16

3
þ 1

g2
5

2
;

ˆH ð133̄;−−Þ ¼ g2

2

" 16
3 0

0 8

#
þ 1

2g2

 
7 −

ffiffi
2

p

3

−
ffiffi
2

p

3 6

!
: ð40Þ

CIAVARELLA, KLCO, and SAVAGE PHYS. REV. D 103, 094501 (2021)

094501-18

Note the various
Clebsch-Gordan
combinations.



How the circuit was implemented
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501

First-order Trotter is used. The circuit has single qubit terms and these:

Ĥ E ¼ g2

6
ð17Î ⊗ Î−9Ẑ ⊗ Î−9Î ⊗ Ẑ þ Ẑ ⊗ ẐÞ; ð15Þ

where Î is the identity operator. The magnetic Hamiltonian
can similarly be decomposed as

Ĥ B ¼ 3

g2
Î ⊗ Î

−
1

2g2

!
X̂ ⊗ Î þ Î ⊗ X̂ þ 1

2
ðX̂ ⊗ X̂ þ Ŷ ⊗ ŶÞ

"
:

ð16Þ

While there is a wide range of tactics being explored for the
time evolution of quantum systems [91–95], the method of

Trotterization [96,97] is a qubit-efficient approach intro-
ducing zero auxiliary qubits. Focusing on this latter
method, time evolution through Trotterization [98–102]
for a time Δt of a general quantum wave function is
approximated at first and second orders as

e−iΔt
P

k
Ĥ k ∼

Y

k

e−iΔtĤ k þ OðΔt2Þ∼
Y1

k¼N

e−i
Δt
2 Ĥ k
YN

k¼1

e−i
Δt
2 Ĥ k

þ OðΔt3Þ: ð17Þ

The one-plaquette Hamiltonian can be separated into
Trotterized operators, Ĥ ¼ Ĥ 1 þ Ĥ 2, with

Ĥ 1 ¼
!
17g2

6
þ 3

g2

"
Î ⊗ Î−

g2

6
ð9Ẑ ⊗ Î þ 9Î ⊗ ẐÞ− 1

2g2
ðX̂ ⊗ Î þ Î ⊗ X̂Þ;

Ĥ 2 ¼
g2

6
Ẑ ⊗ Ẑ−

1

4g2
ðX̂ ⊗ X̂ þ Ŷ ⊗ ŶÞ: ð18Þ

The matrix exponential of the first Hamiltonian contribution can be implemented with single-qubit gates, while that of the
second Hamiltonian contribution can be implemented as

ð19Þ

using the decomposition of the SU(4) Cartan subalgebra
[103,104].
The panels of Fig. 6 show the probability of a single

plaquette remaining in the trivial vacuum, j00i, and its
electric energy fluctuations for a color irrep basis truncated

to f1; 3; 3̄; 8g. Up to four second-order Trotter steps of
the form,

ÛðΔtÞ ¼ e−i
Δt
2 Ĥ 1e−iΔtĤ 2e−i

Δt
2 Ĥ 1 ; ð20Þ

FIG. 6. The (trivial) vacuum-to-vacuum persistence probability jh00jÛðtÞj00ij2 (left panel) and the energy in the electric field (right
panel) of the one-plaquette system derived from the Hamiltonian given in Eq. (14) for color irreps 1; 3; 3̄; 8. Dashed lines correspond to
the exact results for second-order Trotterization given in Eq. (20) with Δt ¼ t; t=2; t=3; t=4; 0. Points correspond to quadratic
extrapolations of results obtained from IBM’s Athens quantum processor, with systematic and statistical uncertainties combined in
quadrature.

CIAVARELLA, KLCO, and SAVAGE PHYS. REV. D 103, 094501 (2021)

094501-10

ˆH 1 ¼
!
7

3
g2 þ 23

8g2

"
Î ⊗ Î−

!
1

8g2
þ g2

"
Ẑ ⊗ Î þ

!
1

8g2
−g2

"
Î ⊗ Ẑ−

1

6g2
ffiffiffi
2

p X̂ ⊗ Î−
2

3g2
Î ⊗ X̂;

ˆH 2 ¼
!

1

8g2
−
g2

3

"
Ẑ ⊗ Ẑ−

1

18g2
ffiffiffi
2

p ðX̂ ⊗ X̂ þ Ŷ ⊗ ŶÞ;

ˆH 3 ¼
1

6g2
ffiffiffi
2

p X̂ ⊗ Ẑ−
1

3g2
Ẑ ⊗ X̂: ð42Þ

The first-order Trotterized time evolution operator used in the following implementation is ÛðtÞ ¼ e−i ˆH 3te−i ˆH 2te−i ˆH 1t.
Application of the first evolution contains only single-qubit operators in ˆH 1, which can be implemented by single-qubit
quantum gates without further Trotterization, while the second evolution can be implemented using the quantum circuit in
Eq. (19), and the third can be implemented with the following circuit relation:

ð43Þ

The results of performing first-order Trotter time steps with
g ¼ 1 beginning in the electric vacuum are shown in
Fig. 12. Two middle qubits of the Athens chip were used
to store the state of the system and, when the measurement
error mitigation is implemented through voting, the re-
maining three qubits were used to inform the post-selection
described in Sec. III B 1. As the results show, three Trotter
steps are capable of reproducing the first maximum and
minimum in the evolution of the electric energy and
calculations on the Athens quantum processor are in
agreement with the exact calculation.

B. Two-plaquette: f1;3;3̄;8g local truncation

To further explore global wave functions and also to
demonstrate a further complexity in such calculations, the
discussion in Sec. IVA is here extended to include the 8 in

the local link basis. The construction involves an expanded
basis that requires considering nontrivial multiplicities in
the products of irreps, in particular in 8 ⊗ 8 ¼ 27 ⊕
10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1. Of the 46 states in this local basis,
109 of them satisfy Gauss’ law. Projecting further to the
global color-singlet states—the global color charge being a
quantum number conserved by the Hamiltonian—there are
41 distinct physical configurations potentially connected to
the strong-coupling vacuum.
These physical and global color-singlet states combine

into states with definite transformation properties under the
discrete symmetries of color parity, translation, and reflec-
tion, which is no longer redundant in this larger basis as
3 ⊗ 3̄ ¼ 8 ⊕ 1 leads to configurations that can be odd
under reflection. Focusing only on theþþþ sector, the 15
independent states are,

Exact
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FIG. 12. The (trivial) vacuum-to-vacuum persistence probability jh00jÛðtÞj00ij2 (left panel) and the energy in the electric field (right
panel) of the two-plaquette system in the color-parity basis truncated locally at 3 and 3̄. Evolution is a first-order Trotterization of the
Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s Athens quantum processor, with
systematic and statistical uncertainties combined in quadrature.

CIAVARELLA, KLCO, and SAVAGE PHYS. REV. D 103, 094501 (2021)

094501-20

The IBM Athens chip has 5 qubits in total:
2 hold the state of the lattice.
3 were used for post-selection error mitigation.



SU(2) pure gauge theory on gate-based hardware
Klco, Savage, Stryker, Phys.Rev.D101(2020)074512



What a D-Wave quantum annealer calculates

The hardware moves quasi-adiabatically
to the ground state of

H(q) =
N∑
i=1

hiqi +
N∑
i=1

N∑
j=i+1

Jijqiqj

The user chooses any real hi and Jij.
Each qi is either 0 or 1.

A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501

• Can this be used for a non-Abelian gauge theory? Yes, some aspects.

• Can it handle the various Clebsch-Gordan combinations? Yes!

• Will the number of qubits scale efficiently to large lattices?
No, not with our method on today’s hardware.

D-Wave Advantage, 5760 qubits
(usable as 180 all-to-all qubits)



Constructing the SU(2) Hamiltonian

Ĥ =
g2

2

(∑
i=links

Ê2
i − 2x

∑
i=plaquettes

�̂i

)

LI J

E C GA A

B BDF H

K

21 3

5 6 7 8

4x ≡ 2

g4

〈ψ| Ê2
i |ψ〉 = ji(ji + 1)

〈ψfinal| �̂1 |ψinitial〉 = (−1)jA+JE+jI
√

(2jI + 1)(2JE + 1)

{
jA jE jI
1
2

JI JE

}
(−1)jC+JE+jJ

√
(2jE + 1)(2JJ + 1)

{
jC jE jJ
1
2

JJ JE

}
(−1)jD+JF+jJ

√
(2jJ + 1)(2JF + 1)

{
jD jF jJ
1
2

JJ JF

}
(−1)jB+JF+jI

√
(2jF + 1)(2JI + 1)

{
jB jF jI
1
2

JI JF

}
We also apply vertical reflection, horizontal reflection, and translation symmetries.



The quantum annealer eigensolver (QAE)

Recall the variational method: E0 ≤
〈ψ|H |ψ〉
〈ψ|ψ〉 .

Recall that D-Wave finds the minimum of H(q) =
N∑
i=1

hiqi +
N∑
i=1

N∑
j=i+1

Jijqiqj .

If the |ψ〉 vector has only 0 and 1 as entries, then those are basically the same.
q → |ψ〉
hi → on-diagonals of H

Jij → off-diagonals of H

All Hamiltonian entries can be entered directly and easily.

QAE handles a general vector (fixed-point representation) and the normalization.
It uses one penalty term (called λ) to avoid the null vector.
Teplukhin,Kendrick,Babikov,J.Chem.Theory&Comp15,4555(2019)

We built an adaptive QAE to use fewer qubits and solve larger Hamiltonians.
Its only parameter is the λ from original QAE.



Ground state eigenvalue for two plaquettes and jmax =
1
2A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501
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The importance of our adaptive algorithm
A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501
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Assessing the gauge truncation
A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501
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Time evolution as a minimization problem

The TEDVP algorithm minimizes this functional:

L =
∑
t,t′

〈t′| 〈Ψt′ | C |Ψt〉 |t〉 − λ
(∑
t,t′

〈t′| 〈Ψt′ |Ψt〉 |t〉 − 1
)

C = C0 +
1

2

∑
t

(
I ⊗ |t〉 〈t| − e−iεHt ⊗ |t+ε〉 〈t| − eiεHt ⊗ |t〉 〈t+ε| + I ⊗ |t+ε〉 〈t+ε|

)
McClean,Parkill,Aspuru-Guzik,Proc.Natl.Acad.Sci.110,E3901(2013)

For D-Wave hardware, we • express Ht as imaginary so coefficients are real.
• use a combined QAE+TEDVP algorithm.
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Including quarks

Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, accepted for publication.
SU(2) hadrons on a quantum computer via a variational approach

Consider a one-dimensional lattice. It will have no colour-magnetic fields.

Put quarks and antiquarks on alternating sites (“staggered fermions”).

We need two qubits per lattice site.



Absorbing the gauge fields

There are two physics parameters: the gauge coupling and the quark mass.

With open lattice boundaries, gauge field effects are long-range quark interactions.

Ĥ = xm̃Ĥm + Ĥel + xĤkin

Ĥm = 2
N∑
n=1

(
(−1)n

2

(
σ̂z2n−1 + σ̂z2n

)
+ 1

)

Ĥkin = −
N−1∑
n=1

(
σ̂+
2n−1σ̂

z
2nσ̂

−
2n+1 + σ̂+

2nσ̂
z
2n+1σ̂

−
2n+2 + h.c.

)
Ĥel =

3

8

N−1∑
n=1

(N − n)(1− σ̂z2n−1σ̂z2n)

+
1

8

N−2∑
n=1

N−1∑
m>n

(N −m)
(
σ̂z2n−1 − σ̂z2n

) (
σ̂z2m−1 − σ̂z2m

)
+

N−2∑
n=1

N−1∑
m>n

(N −m)
(
σ̂+
2n−1σ̂

−
2nσ̂

+
2mσ̂

−
2m−1 + h.c.

)



Computing the meson mass



Computing the baryon mass



Computing the meson-to-baryon mass ratio

For continuum SU(2), the meson and baryon are exactly degenerate.

Our staggered lattice calculation is consistent with this continuum limit.

N = 2  VQE result    
N = 4  VQE result    
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Comparing several formulations

The complexity associated with non-Abelian LGTs in
the KS theory in its original formulation is the motivation
behind the development of a recent framework called the
LSH formulation for the SU(2) LGT coupled to matter,
which is valid in any dimensions [35,102]. It is founded
upon the prepotential formalism of pure LGTs [103–107],
which is fundamentally a representation that reexpresses
the angular-momentum basis in terms of the harmonic-
oscillator basis of Schwinger bosons [108].5 As a result, the
SU(2) gauge-link and electric-field operators are expressed
in terms of harmonic-oscillator creation and annihilation
operators and allow gauge-invariant operators to be formed
out of gauge and fermionic d.o.f. at each site. These
operators, therefore, excite only the states in the physical
sector of the Hilbert space, as long as an Abelian Gauss’s
law is satisfied, which requires the number of oscillators at
the left and right of the link to be equal. The LSH
formulation constructs a complete set of properly normal-
ized gauge-invariant operators and expresses the
Hamiltonian in terms of this complete basis [102]. As will
be shown, the Hilbert space of the KS theory in the angular-
momentum basis after imposing the Abelian and

non-Abelian Gauss’s laws, and for a given cutoff on the
gauge d.o.f., is identical to that of the LSH Hamiltonian.
Nonetheless, the computational cost of generating the
associated Hamiltonian is far less in the LSH framework
given its already gauge-invariant physical basis states.
Consequently, the simplicity of the fermionic representa-
tion (with OBCs) is enjoyed by the LSH formulation as
well but without associated redundancies and with
the prospects of straightforward applications to higher
dimensions.
Such computational-cost analyses in the four formula-

tions described, as well as a study of truncation errors on
physical observables, will be presented thoroughly in the
following sections.

III. PHYSICAL HILBERT-SPACE ANALYSIS

The naive basis states in the KS LGTs spans a Hilbert
space that is predominantly unphysical. The physical sector
corresponds to the zero eigenvalue of the Gauss’s law
operator in Eq. (A9). As mentioned before, in contrast to
the U(1) LGT, in SU(2) LGT the Gauss’s law is not a single
algebraic constraint on the eigenvalues of the electric-field
operator, but instead, it mixes states with different electric-
field quantum numbers and is therefore a nondiagonal
constraint when expressed in the electric-field basis.6 A
major complexity in the Hamiltonian formulation of

FIG. 1. Various formulations of the KS SU(2) LGT in 1þ 1D studied in this work and the connection among them.

5Prepotential formulation for SU(3) [109] as well as SU(N)
[110] LGTs have also been constructed in terms of irreducible
Schwinger bosons [111,112] in any dimension. These exhibit the
same features as the SU(2) theory discussed in the present paper.
It can be shown that the Hamiltonian-simulation cost in the
prepotential formulation is lower than that in the angular-
momentum formulation in the physical sector but is higher than
that in the LSH formulation. As a result, the current analysis
excludes this formulation and focuses on its upgraded version,
i.e., the loop-string-hadron formulation.

6In d > 1þ 1D, another relevant basis is the magnetic-field
basis, in which the magnetic Hamiltonian is diagonal. The
Gauss’s laws in such a basis remain nondiagonal conditions as
well.

DAVOUDI, RAYCHOWDHURY, and SHAW PHYS. REV. D 104, 074505 (2021)
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Many ideas remain to be explored

D-Wave, 5760 qubits, no gates

IBM, 7 qubits, universal gate set

You are here!


