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From bits to qubits

Classical computers use bits. Quantum computers use qubits.
One bit is either |0) or |1). One qubit is a superposition of |0) and |1).

= cos(2)[0) + e sin(%) |1)

Multiple bits act independently. Multiple qubits can be entangled, so
measuring one affects the others.

NOTE: Qubits can be in a superposition of all classically allowed states.



I will show results from qubits at IBM and D-Wave

IBM, 7 qubits, universal gate set

D-Wave, 5760 qubits, no gates



Lattice gauge theory is very successful without qubits
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What qubits might do for lattice gauge theory

Quantum computers offer an efficient Hamiltonian-based approach that might. ..

... allow us to avoid Euclidean time, thus moving from statics to dynamics.

... allow us to include a chemical potential, thus reaching nuclear densities.

Lattice QCD at non-zero density would be valuable for heavy-ion collisions, the
early Universe and neutron-star structure. In practice, simulations at finite u suffer
from a “sign problem” and are at a rudimentary stage.

— paraphrased from Particle Data Group, Review of Lattice QCD



Time evolution in gauge theories using qubits

Figure 2 from Klco, Roggero and Savage, arXiv:2107.04769
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SU(3) pure gauge theory on gate-based hardware
iavarella, Klco, Savage, Phys.Rev.D103(2021)094501

a b 8 h
—R R .
i Lod
Two plaquettes with a periodic boundary: Q4
Q: O Qb
i C |

n
o

—
()

Electric Energy
o o

o
o




How the Hamiltonian was constructed
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501
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How the gauge links were truncated
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501
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Truncating to only {1,3,3} gives 3 = basis states for the lattice.
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How the circuit was implemented
Ciavarella, Klco, Savage, Phys.Rev.D103(2021)094501

First-order Trotter is used. The circuit has single qubit terms and these:
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SU(2) pure gauge theory on gate-based hardware
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What a D-Wave quantum annealer calculates

The hardware moves quasi-adiabatically
to the ground state of

Z hig; + Z Z 5344

i=1 j=i+1

The user chooses any real h; and J;;.
Each ¢; is either 0 or 1.

D- Wave Advantage 5760 qublts
(usable as 180 all-to-all qubits)

A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501

e Can this be used for a non-Abelian gauge theory? Yes, some aspects.
e Can it handle the various Clebsch-Gordan combinations? Yes!

e Will the number of qubits scale efficiently to large lattices?
No, not with our method on today's hardware.



Constructing the SU(2) Hamiltonian
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We also apply vertical reflection, horizontal reflection, and translation symmetries.



The quantum annealer eigensolver (QAE)

H
Recall the variational method: E, < M
(¥[¥)
Recall that D-Wave finds the minimum of H(q th% + Z Z Jijqiq; -
=1 j=i+1
If the |¢)) vector has only 0 and 1 as entries, then those are basically the same.
¢ — [¥)

h; — on-diagonals of H
Jij — off-diagonals of H

All Hamiltonian entries can be entered directly and easily.

QAE handles a general vector (fixed-point representation) and the normalization.
It uses one penalty term (called \) to avoid the null vector.
Teplukhin,Kendrick,Babikov,J.Chem.Theory&Comp15,4555(2019)

We built an adaptive QAE to use fewer qubits and solve larger Hamiltonians.
Its only parameter is the A from original QAE.



Ground state eigenvalue for two plaquettes and j,,,,x = 1

A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501 2
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The importance of our adaptive algorithm
A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501
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The original QAE has no adaptive step, so zoom=0.
Our AQAE is helpful on a classical simulator.
Our AQAE is necessary for larger Hamiltonians on noisy quantum hardware.
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Assessing the gauge truncation
A Rahman,Lewis,Mendicelli,Powell, Phys.Rev.D104(2021)034501
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Time evolution as a minimization problem

The TEDVP algorithm minimizes this functional:
L=l w1 = (D (Wl W) ) - 1)
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McClean,Parkill,Aspuru-Guzik,Proc.Natl.Acad.Sci.110,E3901(2013)

For D-Wave hardware, we e express H; as imaginary so coefficients are real.
e use a combined QAE+TEDVP algorithm.
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Including quarks

Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, accepted for publication.

SU(2) hadrons on a quantum computer via a variational approach
Consider a one-dimensional lattice. It will have no colour-magnetic fields.
Put quarks and antiquarks on alternating sites (“staggered fermions”).

We need two qubits per lattice site.

2 %3 95
#? 3 3



Absorbing the gauge fields

There are two physics parameters: the gauge coupling and the quark mass.

With open lattice boundaries, gauge field effects are long-range quark interactions.
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Computing the meson mass

VQE preparation of the low-lying energy spectrum
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Computing the baryon mass

a  VQE circuit to prepare baryon and vacuum states
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Computing the meson-to-baryon mass ratio

For continuum SU(2), the meson and baryon are exactly degenerate.

Our staggered lattice calculation is consistent with this continuum limit.
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Comparing several formulations

DAVOUDI, RAYCHOWDHURY, and SHAW PHYS. REV. D 104, 074505 (2021)
Purely bosonic Purely fermionic
formulation formulation

Kogut-Susskind formulation

of SU(2) LGT in 1+1 D

Solve Gauss’s laws, Ag — oo
Reduction of physical Hilbert space with loop
and string d.o.f. identical spectra for OBCs

Angular-momentum
formulation

in the physical sector Isomorphic Hilbert spaces, identical Hamiltonians

and spectra, identical global-symmetry properties

Loop-String-Hadron
formulation

FIG. 1. Various formulations of the KS SU(2) LGT in 1 + 1D studied in this work and the connection among them.



Many ideas remain to be explored

QA () > I
D-Wave, 5760 qubits, no gates

You are herel!



