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Introduction to Hamiltonian 
Anomalies
Extremely briefly



Anomalies

• The breaking of a classical symmetry through quantum effects

• Often shown as a phase ambiguity in the path integral

• Can be recast in terms of the operators of the theory:
𝜕! %𝐽! ≠ 0

• Can rewrite this in terms of the charge:
)𝐻, ,𝑄 ≠ 0 with ,𝑄 = ∫ 𝑑"𝑥 %𝐽#



Anomalous algebras

• In fact, we could extend this to the symmetry operators:

)𝑈$ = 𝑒%$ &'

• Then the operator algebra definition of symmetry breaking is

)𝐻, )𝑈$ ≠ 0

• This form can be generalized to all symmetries, hence new anomalies 
of discrete and higher-form symmetries



‘t Hooft anomalies

)𝐻, )𝑈 = 0

)𝐻, )𝑈 ≠ 0

Introduce background for 
U symmetry



Mixed ‘t Hooft anomalies

)𝐻, )𝑈 = 0
)𝐻, ,𝑇 = 0

)𝐻, )𝑈 ≠ 0

or
)𝐻, ,𝑇 ≠ 0

Introduce backgrounds for both 
T and U symmetries

)𝐻, )𝑈 = 0
)𝐻, ,𝑇 = 0

But modify )𝑈, ,𝑇

Introduce background 
for just T symmetry



Symmetry breaking via an algebra
Diagonalize !𝐻 and #𝑇

| ⟩𝐸#, 𝑡#

| ⟩𝐸(, 𝑡(

| ⟩𝐸), 𝑡)
Apply )𝑈

Apply )𝑈

Apply )𝑈
| ⟩𝐸#, 𝑡′#

| ⟩𝐸(, 𝑡′(

| ⟩𝐸), 𝑡′)

Anomaly implies 𝑡# ≠ 𝑡#*



This talk

• Work out the algebras explicitly for new mixed ‘t Hooft anomalies in 
Yang-Mills and QCD-like theories

• Specifically the center-chiral anomaly in QCD(adj) and the center-
parity anomaly at 𝜃 = 𝜋

• Show exactly the implication of these algebra on symmetry breaking 
patterns 



Center stability

Center unbroken Center broken

Parity (chiral) symmetry 
unbroken

Parity (chiral) symmetry 
broken



Caveats and Motivations

Caveats:
• We only work on a 3-torus
• Algebra only forces the symmetry breaking in the presence of a non-

trivial boundary conditions

Motivations:
• Works for any torus size, so we can take the torus really big making 

the first two caveats unimportant



“Old Bottles”

arXiv:2106.11442

https://arxiv.org/abs/2106.11442


Quantizing Yang-Mills
A brief overview



Boundary conditions

• Boundary conditions:
𝐴 𝑥% = 𝐿% = Ω% 𝐴 𝑥% = 0 − 𝑖𝑑 Ω+

,

• Usual cocycle condition:
Ω% 𝑥- = 𝐿- Ω. x+ = 0 = Ω. x+ = 𝐿% Ω% 𝑥- = 0

• With only adjoint fields we can add:
Ω% 𝑥- = 𝐿- Ω. x+ = 0 = Ω. x+ = 𝐿% Ω% 𝑥- = 0 𝑒%)/ 0!"/2

Ω!

Ω"

𝑥!

𝑥"



Center backgrounds

• Related to background center field via:

∮ 𝐶 ) =
2𝜋𝑛%-
𝑁

+ 2𝜋ℤ

• This is often described using:

𝑚% =
1
2
𝜀%-3𝑛-3

• This is often called the “magnetic flux” since introducing an ‘t Hooft 
loop in the 𝑖 direction increases 𝑚% by 1



The large Hilbert space

• Fix boundary conditions 

• Create a Hilbert space out of all possible gauge field configurations | ⟩𝐴!" 𝑥
that respect boundary conditions and have 𝐴# = 0

• Define the field operators '𝐴$%(𝑥) via
'𝐴$% 𝑦 | ⟩𝐴!" 𝑥 = | ⟩𝐴!" 𝑥 𝐴$%(𝑦)

• This is known as the large Hilbert space because it contains physical Hilbert 
space as a subspace



Gauge transformations & physical Hilbert space

• Now define gauge transformation operators on the large Hilbert 
space by

)𝑈| ⟩𝐴 𝑥 = | ⟩𝑈 𝐴 − 𝑖𝑑 𝑈4(

• To remain in the large Hilbert space, we only consider gauge 
transformations that do not change the boundary conditions

• Define the physical Hilbert space as the subspace of the large Hilbert
space that is invariant under all gauge transformations

)𝑈| ⟩𝜓 = | ⟩𝜓



!𝐸, !𝐵, and $𝐻

• To define the Hamiltonian we need the colour electric and magnetic 
field operators:

,𝐸%5 𝑥 = −𝑖
𝛿

𝛿 %𝐴%5(𝑥)

,𝐵%5 𝑥 =
1
2
𝜀%-3 𝜕- %𝐴35 𝑥 − 𝜕3 %𝐴-5 𝑥 − 𝑓567 %𝐴-6 𝑥 %𝐴37 𝑥

• Then the Hamiltonian is
)𝐻 = 𝑔)𝑡𝑟 ,𝐸% )𝐸% +

1
𝑔)

𝑡𝑟 ,𝐵% ,𝐵%



Theta angle

• The theta angle may be incorporated into the Hamiltonian via
)𝐻8 = 𝑔)𝑡𝑟 ,𝐸% −

𝜃
8𝜋)

,𝐵% ,𝐸% −
𝜃
8𝜋)

,𝐵% +
1
𝑔)

𝑡𝑟 ,𝐵% ,𝐵%

• Alternatively, use )𝐻# and redefine Hilbert space to have 
)𝑈9 ⟩𝜓 = 𝑒4%98 ⟩𝜓

• Map between these using the operator 
,𝑉8 = exp 𝑖𝜃∫ 𝐾# %𝐴

𝐾#(𝐴) =
1
8𝜋)

𝑡𝑟 𝐴 ∧ 𝐹 −
𝑖
3
𝐴 ∧ 𝐴 ∧ 𝐴



!𝑉%&
• ,𝑉$ has the following properties:

)𝑈9 ,𝑉$| ⟩𝜓 8 = 𝑒4% 84$ 9 ,𝑉$| ⟩𝜓 8

,𝑉$ )𝐻8 ,𝑉$
, = )𝐻8:$

• ,𝑉$ takes states out of the physical Hilbert space unless 𝛼 ∈ 2𝜋ℤ
• Hence, ,𝑉)/ is a good operator of the theory and corresponds to 2𝜋

rotations of the theta angle
• This will be a very useful operator for us



Center symmetry

• Consider maps C 𝑘 : 𝑇" → 𝐺 with 𝑘 ∈ ℤ" which could be applied as a 
gauge transformation except they change the boundary conditions by 

Ω% → 𝑒%)/3!/2Ω%
• These are not gauge transformations of our theory, but they preserve 

our physical Hilbert space, so we may use them to define operators 
%𝐶 𝑘

• These operators form the 1-form center symmetry group 𝑍 𝐺 " = ℤ2"

• Consider a set of generators of the symmetry:
,𝑇( = %𝐶 1,0,0 ,𝑇) = %𝐶 0,1,0 ,𝑇" = %𝐶 0,0,1



Eigenvalues of the !𝑇' operators

• Each ,𝑇; generates a 𝑍 𝐺 = ℤ2 subgroup 
so we can denote eigenstates by a vector of 
integers 𝑒 mod N

,𝑇;| ⟩𝑒 = 𝑒%)/<#/2| ⟩𝑒

• 𝑒 is known as the “electric flux” because a 
Wilson loop increases it by 1

• Since ,𝑇; are symmetry operators, 𝑒 is a 
good quantum number



The algebra

• One can work out explicitly that

,𝑇; ,𝑉)/ = 𝑒%)/=#/2 ,𝑉)/ ,𝑇;

• This commutation relation will give us the anomalous symmetry 
algebras (since ,𝑉)/ shows up as part of other symmetries)

• Notice that the phase is the same as one gets in the path integral
when doing a 2𝜋 shift of 𝜃 in a center background field



The center-parity anomaly at 𝜃 = 𝜋



The parity symmetry operator

• The parity operator ,𝑃# at 𝜃 = 0 is defined via

,𝑃#| ⟩𝐴 𝑥(, 𝑥), 𝑥" = | ⟩−Γ>𝐴 𝐿( − 𝑥(, 𝐿) − 𝑥), 𝐿" − 𝑥" Γ?

• ,𝑃# commutes with ,𝐵 but anticommutes with ,𝐸:

,𝑃# )𝐻8 ,𝑃# = )𝐻48

• Hence not a symmetry unless 𝜃 = 0 or 𝜃 = 𝜋



Center-parity algebra

𝜽 = 𝟎
• ,𝑃# is a symmetry operator on its 

own
• The following algebra holds:

,𝑃# ,𝑇; ,𝑃# = ,𝑇;
,

• Hence ,𝑃#| ⟩𝑒 = | ⟩−𝑒

𝜽 = 𝝅
• ,𝑃/ = ,𝑉)/ ,𝑃# is the symmetry 

operator to account for shift of 𝜃
• The algebra is

,𝑃/ ,𝑇; ,𝑃/ = 𝑒%)/=#/2 ,𝑇;
,

• Hence ,𝑃/| ⟩𝑒 = | ⟩𝑚 − 𝑒



Implications
• Consider 𝑚 = (0, 0, 1) and look at just the 𝑒" eigenstates:
• At 𝜃 = 0, ,𝑃#| ⟩𝑒" = | ⟩−𝑒" means 𝑒" = 0 is a valid eigenvalue for a 

unique ground state

• At 𝜃 = 𝜋, ,𝑃/| ⟩𝑒" = | ⟩1 − 𝑒" means:
• At odd N, 𝑒$ =

%&!
" is the only candidate for a unique ground state

• At even N, there are no 𝑒$ states invariant under '𝑃'
𝑆𝑈 3

| ⟩0 ⟷ | ⟩1

| ⟩2

𝑆𝑈 4

| ⟩0 ⟷ | ⟩1

| ⟩2 ⟷ | ⟩3



Implications
• Consider 𝑚 = (0, 0, 1) and look at just the 𝑒" eigenstates:
• At 𝜃 = 0, ,𝑃#| ⟩𝑒" = | ⟩−𝑒" means 𝑒" = 0 is a valid eigenvalue for a 

unique ground state

• At 𝜃 = 𝜋, ,𝑃/| ⟩𝑒" = | ⟩1 − 𝑒" means:
• At odd N, 𝑒$ =

%&!
" is the only candidate for a unique ground state

• At even N, there are no 𝑒$ states invariant under '𝑃'

• Hence, at even N we must have at least 2 ground states
• This corresponds to spontaneous breaking of parity and it only shows 

up in the theories with the anomaly



Explicit example (𝑆𝑈 6 )

• On a very small torus we can find the lowest energies explicitly



The center-chiral anomaly in 
QCD(adj)



Chiral symmetry operator
• Consider adding 𝑛@ flavours of adjoint Weyl fermions, 𝜆A
• There is a classical 𝑈 1 symmetry given by 𝜆A → 𝑒%$𝜆A
• Broken by usual anomaly:

𝜕! %𝐽! = 2𝑛@𝑁𝜕! )𝐾!

• We can define the operator:
%𝐽B
! = %𝐽! − 2𝑛@𝑁)𝐾!

• Operator is conserved, but not gauge invariant
• However, the operator

,Χ = 𝑒
% )/
)0$2

∫ DE%
&

Is gauge invariant and generates the unbroken subgroup ℤ)0$2



Center-parity anomaly
• Notice that 

,Χ = 𝑒
% )/
)0$2

∫ DE&4%)/∫ F&
= 𝑒

% )/
)0$2

∫ DE& ,𝑉)/4(

• Hence, since %𝐽# only depends on fermion operators, and fermion 
operators are unaffected by ,𝑇;:

,𝑇; ,Χ = 𝑒4%)/=#/2 ,Χ,𝑇;
• Hence 

,Χ| ⟩𝑒 = | ⟩𝑒 − 𝑚



Implications

• Again consider 𝑚 = (0, 0, 1)
• This gives

,Χ| ⟩𝑒" = | ⟩𝑒" − 1

• No 𝑒" eigenstates can be invariant under this and it forces a minimum 
N-fold degeneracy
• Hence, there is are at least N vacua related by chiral symmetry, so we 

have spontaneous chiral symmetry (partial) breaking

| ⟩0

| ⟩5

| ⟩4

| ⟩3

| ⟩2

| ⟩1

,Χ



Results for all gauge groups

Group, G Center, Z(G) Parity breaking? Chiral symmetry Minimal 
degeneracy in chiral 

theory

𝑆𝑈(𝑁) ℤ# Only for N even ℤ"$!# 𝑁

𝑆𝑝(2𝑘 + 1) ℤ" Yes ℤ"$!("&'") 2

𝑆𝑝𝑖𝑛(4𝑁) ℤ"×ℤ" Yes ℤ"$!()#*") 2

𝑆𝑝𝑖𝑛 4𝑁 + 2 ℤ) Yes ℤ+$!# 4

𝐸, ℤ- No ℤ")$! 3

𝐸. ℤ" Yes ℤ-,$! 2



Summary

• New anomalies can be understood in Hamiltonian formalism

• We showed that anomalies imply exact degeneracies at any finite volume 
(unexpected without anomalies)

• Can more concrete calculations of the IR spectra reveal something about 
how the anomalies force cancellation of semiclassical effects (dYM)?

• Could more degeneracy be implied by anomalies of non-invertible 
symmetries?



Thank you!


