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Introduction to Hamiltonian
Anomalies



Anomalies

* The breaking of a classical symmetry through quantum effects
e Often shown as a phase ambiguity in the path integral

e Can be recast in terms of the operators of the theory:
/" #0
e Can rewrite this in terms of the charge:
|H,Q] #0 withQ = J d3x J°



Anomalous algebras

* In fact, we could extend this to the symmetry operators:

Py

U, =e@?
* Then the operator algebra definition of symmetry breaking is
17,0, +0

* This form can be generalized to all symmetries, hence new anomalies
of discrete and higher-form symmetries



t Hooft anomalies
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Mixed ‘t Hooft anomalies
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Symmetry breaking via an algebra

Diagonalize H and T

|E2,t2> —A |E2,t’2>
Apply U

|E{, t1) — |E{, t'1)
Apply U

|E0,t0) = |E0,t’0)

Apply U
Anomaly implies t, # t|



This talk

* Work out the algebras explicitly for new mixed ‘t Hooft anomalies in
Yang-Mills and QCD-like theories

* Specifically the center-chiral anomaly in QCD(adj) and the center-
parity anomalyatf = m

* Show exactly the implication of these algebra on symmetry breaking
patterns



Center stability

Center unbroken

_enter broken

Parity (chiral) symmetry
unbroken

Parity (chiral) symmetry
broken




Caveats and Motivations

Caveats:
* We only work on a 3-torus

* Algebra only forces the symmetry breaking in the presence of a non-
trivial boundary conditions

Motivations:

* Works for any torus size, so we can take the torus really big making
the first two caveats unimportant



“Old Bottles”

The mixed 0-form/1-form anomaly in Hilbert space:
pouring the new wine into old bottles
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ABSTRACT:

We study four-dimensional gauge theories with arbitrary simple gauge group with 1-form
global center symmetry and O-form parity or discrete chiral symmetry. We canonically quan-
tize on T3, in a fixed background field gauging the 1-form symmetry. We show that the
mixed 0-form/1-form 't Hooft anomaly results in a central extension of the global-symmetry
operator algebra. We determine this algebra in each case and show that the anomaly implies

degeneracies in the spectrum of the Hamiltonian at any finite-size torus. We discuss the con- d rXiV:Z 106. 1 1442

sistency of these constraints with both older and recent semiclassical calculations in SU(N')

theories, with or without adjoint fermions, as well as with their conjectured infrared phases.


https://arxiv.org/abs/2106.11442

Quantizing Yang-Mills




Boundary conditions / \ / \
| x* | 04
. Bogndary conditions:_ \ /
Alx' = L) = 0,(4(x' = 0) - id)a] ‘ .
o S

* Usual cocycle condition:

 With only adjoint fields we can add:
Q(x) =L)Q(x' =0) = Q;(x' = L;)Q;(x/ = 0)e?™ /N




Center backgrounds

* Related to background center field via:
ZT[Tll'j
$ C(2) = -+ 2mZ o
U
* This is often described using: .
1 T /’3
m; = zeijkn-k % t Hoof+ loop

* This is often called the “magnetic flux” since introducing an ‘t Hooft
loop in the i direction increases m; by 1



The large Hilbert space

* Fix boundary conditions

* Create a Hilbert space out of all possible gauge field configurations |A% (x))
that respect boundary conditions and have A, = 0

* Define the field operators /T]I? (x) via
A7 NIAF)) = |AF AT ()

* This is known as the large Hilbert space because it contains physical Hilbert
space as a subspace



Gauge transformations & physical Hilbert space

* Now define gauge transformation operators on the large Hilbert
space by _
UlA(x)) = |UA — id)U™)

* To remain in the large Hilbert space, we only consider gauge
transformations that do not change the boundary conditions

* Define the physical Hilbert space as the subspace of the large Hilbert
space that is invariant under all gauge transformations

Ulp) = )
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E, B, and H

* To define the Hamiltonian we need the colour electric and magnetic
field operators:

~ 1 . . . .
BECO) = e (94500 — 94T (x) — A (4G ()

e Then the Hamiltonian is

_ . 1 N A
H = gth'EiEi —+ g_z tT'BiBl'



Theta angle

* The theta angle may be inc@orporated intogthe Hamilionian via
Hy = g%tr (E — 5 Bi ) (E ~ 5 Bi ) +? trB;B;
» Alternatively, use H, and redefine Hilbert space to have
U\v‘l/» — e_iVBWJ)
* Map between these using the operator
Vs = exp (i@f KO(/T))

1 l
KO(A) _@tT(A/\F—gA/\A /\A)



VZn
. Va has the following properties:
U, Volh)o = eH O~V |1

VaH\BVaT — ﬁ9+a
. Va takes states out of the physical Hilbert space unless a € 2nZ

* Hence, VZ,T is a good operator of the theory and corresponds to 2
rotations of the theta angle

* This will be a very useful operator for us



Center symmetry

* Consider maps C[l_c)]: T3 - G with k € Z3 which could be applied as a

gauge transformation except they change the boundary conditions by
‘Q‘i — eiZTL’ki/NQi

* These are not gauge transformations of our theory, but they preserve
our physical Hilbert space, so we may use them to define operators

k]
* These operators form the 1-form center symmetry group Z(G)3 = Z3,
 Consider a set of generators of the symmetry:

T, = C[(1,0,0)] T, = C[(0,1,0)] T5; = €[(0,0,1)]



Figenvalues of the T, operators

* Each T; generates a Z(G) = Zy subgroup

SO we can denote eigenstates by a vector of
integers e mod N

,18) = e2mV|g) -

e ¢ is known as the “electric flux” because a T
Wilson loop increases it by 1

—  Wilson looP

* Since T} are symmetry operators, € is a
good quantum number



The algebra

* One can work out explicitly that
I\Vyr = gtzmmy/N VorT

* This commutation relation will give us the anomalous symmetry
algebras (since I/, shows up as part of other symmetries)

* Notice that the phase is the same as one gets in the path integral
when doing a 2m shift of 8 in a center background field



The center-parity anomalyat @ = m



The parity symmetry operator

* The parity operator P, at 8 = 0 is defined via
Py|A(xY, x2,x2)) = |-TpA(Ly — xY, L, — x%, Ly — x3)Tp)
* P, commutes with B but anticommutes with E:
PyHyP, = H_g

* Hence not a symmetryunless@ =0orf =m



Center-parity algebra

* P, is a symmetry operatoronits * P. = V,_P, is the symmetry
own operator to account for shift of 6
* The following algebra holds: * The algebra is
PyTiPy =T B, 1,B, = et2mm/NTH

* Hence P,|é) = |—é) * Hence P,|é) = |m — &)



Implications

* Consider m = (0,0, 1) and look at just the e; eigenstates:

* At0 = 0, Py|e;) = |—e3) means e; = 0 is a valid eigenvalue for a
unique ground state

* At 0 = m, P,|es) = |1 — e3) means:
N-1, . :
* Atodd N, e3 = — s the only candidate for a unique ground state
* At even N, there are no e3 states invariant under P,
SU(3) SU(4)
|0) < |1) 10) < [1)

12) 2) & [3)



Implications

* Consider m = (0,0, 1) and look at just the e; eigenstates:

* At0 = 0, Py|e;) = |—e3) means e; = 0 is a valid eigenvalue for a
unique ground state

* At 0 = m, P,|es) = |1 — e3) means:
* Atodd N, e3 = % is the only candidate for a unique ground state

* At even N, there are no e; states invariant under P,

* Hence, at even N we must have at least 2 ground states

* This corresponds to spontaneous breaking of parity and it only shows
up in the theories with the anomaly



Explicit example (SU(6))

* On a very small torus we can find the lowest energies explicitly

E

1.0}




The center-chiral anomaly in
QCD(adj)



Chiral symmetry operator
* Consider adding nf flavours of adjoint Weyl fermions, 4,
* There is a classical U(1) symmetry given by 1; = e'*2,
* Broken by usual anomaly: ) R
J,J" =2n,No, K*
* We can define the operator:
j = jr — 2n NR¥
e Operator is conserved, but not gauge invariant
* However, the operator

. 2T ~0
Q= elanNf J5

Is gauge invariant and generates the unbroken subgroup ZanN



Center-parity anomaly

 Notice that

T_[jo-i2nfK®  is=Z_[ }O

v 2n N 2neN (7—1
X=e“" =e Vor

* Hence, since J° only depends on fermion operators, and fermion
operators are unaffected by T;:

* Hence



Implications "
|5>/ \|1>

* Again consider m = (0,0, 1) X |

* This gives e
4
X|es) = |ez — 1) \|3>/

* No e; eigenstates can be invariant under this and it forces a minimum
N-fold degeneracy

12)

* Hence, there is are at least N vacua related by chiral symmetry, so we
have spontaneous chiral symmetry (partial) breaking



Results for all gauge groups

Center, Z(G) Parity breaking? Chiral symmetry Minimal
degeneracy in chiral

theory
SU(N) Ly Only for N even ZanN N
Sp(2k+ 1) Ly Yes Zan(2k+2) 2
Spin(4N) Ly X or Yes Zan(4N_2) 2
Spin(4N + 2) Z4 Yes Lgn N 4
Ee L3 No Loan 3
E- 4 Yes Z36nf 2




Summary

* New anomalies can be understood in Hamiltonian formalism

* We showed that anomalies imply exact degeneracies at any finite volume
(unexpected without anomalies)

* Can more concrete calculations of the IR spectra reveal something about
how the anomalies force cancellation of semiclassical effects (dYM)?

* Could more degeneracy be implied by anomalies of non-invertible
symmetries?



Thank you!



