From Mini to Micro: New physics explanations of MiniBooNE at the MicroBooNE experiment

University of Toronto HEP seminar

UNIVERSITY OF MINNESOTA

Perimeter Institute and University of Minnesota

Matheus Hostert

This talk

- Basics of accelerator neutrino experiments
- Short-baseline oscillations?
- Interpreting recent MicroBooNE results
- Alternative directions going beyond oscillations.

Collaborators

Argüelles et al, <u>arXiv:2111.10359</u>

Carlos Argüelles Harvard University

Ivan Estebán Ohio State University

Kevin Kelly CERN

Joachim Kopp CERN

Pedro Machado Fermilab

Ivan Martinez-Soler Harvard University

Yuber F. Perez-Gonzalez Durham University

A. Abdullahi, MH, S. Pascoli arxiv:2007.11813, arXiv:220x.xxxx

Asli Abdullahi Fermilab

Daniele Massaro Uni of Bologna

Silvia Pascoli Uni of Bologna

Near detector

Standard oscillations, e.g. $u_{\mu}
ightarrow
u_{e, au}$

Far detector

Near detector

Standard oscillations, e.g. $\nu_{\mu} \rightarrow \nu_{e,\tau}$

Far detector

 \widehat{PI} M. Hostert

Near detector

Standard oscillations, e.g. $\nu_{\mu} \rightarrow \nu_{e,\tau}$

Far detector

 \widehat{PI} M. Hostert

PI M. Hostert

Absorption NuSTEC White Paper 1706.03621 Exclusive final states $(1e \ 1\pi, \pi^0 p^+, \text{ etc})$ not necessarily from underlying "hard process"

Short-baseline: search for oscillations that develop before atmospheric and solar frequencies.

$$\frac{L}{E} \sim \frac{100 \text{m}}{100 \text{MeV}}$$

Can develop due to a light mostly-sterile neutrino:

$$\Delta m_{41}^2 \sim \mathcal{O}(1) \mathrm{eV}^2$$

Near detector	Standard oscillations, e.g. $ u_{\mu} ightarrow u_{e, au}$	Far detector

Short-baseline: search for oscillations that develop before atmospheric and solar frequencies.

$$\frac{L}{E} \sim \frac{100 \text{m}}{100 \text{MeV}}$$

Can develop due to a light mostly-sterile neutrino:

$$\Delta m_{41}^2 \sim \mathcal{O}(1) \mathrm{eV}^2$$

Effectively a 2-neutrino oscillation system: $\Delta \equiv 1.27 \frac{\Delta m^2 [eV^2] L[m]}{E[MeV]}$

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^{2}2\theta_{\mu\mu}\sin^{2}\Delta = 1 - 4|U_{\mu4}|^{2}(1 - |U_{\mu4}|^{2})\sin^{2}\Delta$$

$$P_{\nu_{e} \to \nu_{e}} = 1 - \sin^{2}2\theta_{ee}\sin^{2}\Delta = 1 - 4|U_{e4}|^{2}(1 - |U_{e4}|^{2})\sin^{2}\Delta$$

$$P_{\nu_{\mu} \to \nu_{e}} = \sin^{2}2\theta_{e\mu}\sin^{2}\Delta = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\Delta$$

The Short-Baseline Puzzle

oscillation?

LSND & KARMEN

π DAR source

$$\begin{array}{c} + & + & \nu_{\mu} \\ + & + & \nu_{e} & + & \overline{\nu}_{\mu} \\ \\ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \end{array}$$

Inverse-Beta-decay detection

LSND: 1993 - 1998

Phys.Rev.D 64 (2001) 112007

- 1) 800 MeV proton beam, 1.8e23 POT.
- π DAR and DIF:12° nu/p beam angle. 2)
- π^- contamination: $ar{
 u}_e/ar{
 u}_\mu \sim 8 imes 10^{-4}$ 3)
- Baseline of 30 m 4)
- ~167 tonnes of liquid scintillator 5)
- 6) 8.3 m long detector.

oscillation?

Inverse-Beta-decay detection

LSND & KARMEN

π DAR source

$$\begin{array}{c} + & + & \nu_{\mu} \\ + & + & \nu_{e} & + & \overline{\nu}_{\mu} \\ \\ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \end{array}$$

LSND: 1993 - 1998

Phys.Rev.D 64 (2001) 112007

- 800 MeV proton beam, 1.8e23 POT. 1)
- π DAR and DIF:12° nu/p beam angle. 2)
- π^- contamination: $\bar{\nu}_e/\bar{\nu}_\mu \sim 8 \times 10^{-4}$ 3)
- Baseline of 30 m 4)
- ~167 tonnes of liquid scintillator 5)
- 8.3 m long detector. 6)

oscillation?

LSND & KARMEN

KARMEN: 1990 - 2001

Phys.Rev.D 65 (2002) 112001

- 800 MeV proton beam, 6e22 POT. 1)
- π mostly DAR. Detector 90° from p beam. 2)
- π^{-} contamination: $\bar{\nu}_{e}/\bar{\nu}_{\mu} = 6.4 \cdot 10^{-4}$ 3)
- Baseline of 17.7 m 4)
- ~57 tonnes of liquid scintillator 5)
- 6) 3.5 m long detector.

 $\overline{\nu}_{\mu} \to \overline{\nu}_{e}$

More data was needed

No excess observed, but could not exclude LSND results.

The MiniBooNE excess

Latest MiniBooNE results:

MiniBooNE coll., Phys. Rev. D 103, 052002 (2021)

 \widehat{PI} M. Hostert

The MiniBooNE excess

Î M. Hostert

The MiniBooNE excess

PI M. Hostert

Data-driven background estimates

Î M. Hostert

1) Significance increases when restricting to smaller fiducial volume

Selection	Excess	Significance
R < 5 m	560.6 ± 119.6	4.7σ
R < 4 m	$458.6\pm81.9.5$	5.6σ
R < 3 m	190.1 ± 41.2	4.6σ

2) Excess overlaps w/ beam time

ve from μ decay is constrained by *in situ*

v_µ CCQE measurement

ve from K decay

constrained from in situ high energy events + SciBooNE high energy v_{μ} event rate

Data-driven background estimates

An Altarelli Cocktail for the MiniBooNE Anomaly?

Vedran Brdar^{1, 2, a} and Joachim Kopp^{3, 4, b}

arxiv:2109.08157

Selection	Excess	Significance
R < 5 m	560.6 ± 119.6	4.7σ
R < 4 m	$458.6\pm81.9.5$	5.6σ
R < 3 m	190.1 ± 41.2	4.6σ

2) Excess overlaps w/ beam time

ve from μ decay is constrained by in situ v_µ CCQE measurement

ve from K decay constrained from in situ high energy events +

SciBooNE high energy v_µ event rate

We find that not even a combination of uncertainties in different channels adding up unfavorably (an "Altarelli cocktail") appears to be sufficient to resolve the MiniBooNE anomaly. Varying the radiative branching ratios of the $\Delta(1232)$ and N(1440) resonances by $\pm 2\sigma$, however, reduces its significance from 4σ to less than 3σ .

Is there enough evidence for a sterile neutrino?

A $\nu_{\mu} \rightarrow \nu_{e}$ appearance oscillation implies

 ${\cal V}_e$ and u_μ disappearance.

 \widehat{PI} M. Hostert

Is there enough evidence for a sterile neutrino?

10⁻¹

sin²2θ

10⁻²

 10^{-3}

No ν_{μ} disappearance is observed,

Reactors and gallium experiments have been seeing (different) deficits in neutrino flux.

No single experiment gives conclusive evidence.

Inconclusive.

Is there enough evidence for a sterile neutrino?

PI M. Hostert

Inconclusive.

Latest results from MicroBooNE

MiniBooNE

MicroBooNE Disentangling the final states behind the low-energy excess

PI M. Hostert

Liquid-Argon Time-Projection-Chamber (TPC)

3D images of charged particles produced in neutrino interactions

MicroBooNE is able to differentiate between electrons and photons:

I) vertex-shower separation

ii) dE/dx at the beginning of the shower

Single-photon search Δ (1232) radiative decay

Conclusion:

 $\Delta(1232)$ radiative constrained as an explanation of MiniBooNE:

$$x_{\Delta} = \frac{\mathscr{B}_{\text{eff}}(\Delta \to \gamma N)}{\mathscr{B}(\Delta \to \gamma N)}, \quad x_{\Delta} < 2.3(90\% \text{CL})$$

Other single-photon interpretations still untested:

- coherent photons
- new particles decaying to single photons ٠

Electron-neutrino searches at MicroBooNE

Instead of an oscillation search, MicroBooNE performed a dedicated search for what they call:

the electron low-energy-excess signal model, a.k.a.

What does it mean?

the eLEE template

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

"Unfold" detector resolution, selection cuts, and efficiencies into a true ν_e spectrum.

Energy dependent modification to the intrinsic ν_e rate.

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

"Unfold" detector resolution, selection cuts, and efficiencies into a true ν_e spectrum.

Energy dependent modification to the intrinsic ν_{ρ} rate.

MicroBooNE selection

Use unfolded eLEE template to predict the event rate in a given MicroBooNE analysis.

eLEE template

Central value of

 $(data)_i$ - $(background)_i$

"Unfold" detector resolution, selection cuts, and efficiencies into a true ν_e spectrum.

Energy dependent modification to the intrinsic ν_e rate.

Use unfolded eLEE template to predict the event rate in a given MicroBooNE analysis.

Electron-neutrino searches at MicroBooNE MicroBooNE's three-prong approach

Different reconstruction algorithms and focus on different event classes

(except π)

Electron-neutrino searches at MicroBooNE MicroBooNE's three-prong approach

PI M. Hostert

Different reconstruction algorithms and focus on different event classes

Electron-neutrino searches at MicroBooNE The technical conclusion

For instance, in the Inclusive analysis:

No excess observed

+ slight deficit of events.

"... MicroBooNE rejects the hypothesis that ν_e CC interactions are fully responsible for that excess at > 97% CL for both exclusive (1e1p CCQE, 1eNp0 π) and inclusive (1eX) event classes."

From *MicroBooNE* coll., arXiv:2110.14054

Electron-neutrino searches at MicroBooNE

Headlines:

Neutrino result heralds new chapter in physics B B C

Scientists find no hint of sterile neutrino PHYS ORG

MicroBooNE experiment's first results show no hint of a **Fermilab** sterile neutrino

Sterile neutrinos ruled out by MicroBooNE, but mysterious excess remains unexplained physicsworld

But several questions remain:

1. How about MiniBooNE systematics?

3. Are all explanations disfavored?

Q1

How about MiniBooNE systematics?

Interpreting the MicroBooNE results in light of MiniBooNE systematics New templates

By how much can we deviate from the central value of the eLEE?

What we call "the MiniBooNE excess" is very dependent on the background systematic uncertainties

Interpreting the MicroBooNE results in light of MiniBooNE systematics New templates

By how much can we deviate from the central value of the eLEE?

What we call "the MiniBooNE excess" is very dependent on the background systematic uncertainties

Interpreting the MicroBooNE results in light of MiniBooNE systematics Generalizing the template analysis

Our new approach:

Using a toy MCMC we generalize the MicroBooNE analysis to include systematic uncertainties:

- Vary the normalization of 4 classes of MiniBooNE backgrounds,
- Compute the MiniBooNE p-value, 2)
- Compute the MicroBooNE prediction with unfolding method, 3)
- 4) Compute the χ^2 of the new template at MicroBooNE

Interpreting the MicroBooNE results in light of MiniBooNE systematics Generalizing the template analysis

Our new approach:

Using a toy MCMC we generalize the MicroBooNE analysis to include systematic uncertainties:

- Vary the normalization of 4 classes of MiniBooNE backgrounds,
- Compute the MiniBooNE p-value, 2)
- Compute the MicroBooNE prediction with unfolding method, 3)
- 4) Compute the χ^2 of the new template at MicroBooNE

PI M. Hostert

What are the limits on sterile neutrinos?

Q2

Using MicroBooNE data releases:

(Inclusive* and CCQE)

we perform an oscillation analysis to derive the limits on sterile neutrinos. Oscillation search for **appearance only**:

$$\nu_{\mu} \rightarrow \nu_{e}$$

PI M. Hostert

Eve

* efficiencies are derived from digitized smearing matrices.

Using MicroBooNE data releases:

(Inclusive* and CCQE)

we perform an oscillation analysis to derive the limits on sterile neutrinos. Oscillation search for **appearance only**:

$$\nu_{\mu} \rightarrow \nu_{e}$$

PI M. Hostert

* efficiencies are derived from digitized smearing matrices.

Using MicroBooNE data releases:

(Inclusive* and CCQE)

we perform an oscillation analysis to derive the limits on sterile neutrinos. Oscillation search for **appearance only**:

$$\nu_{\mu} \rightarrow \nu_{e}$$

PI M. Hostert

Eve

* efficiencies are derived from digitized smearing matrices.

 10^{2}

Oscillation Sensitivity vs limit

A lot of samples were used to derive the final ν_e spectrum.

A consistent oscillation model can modify all of these samples due to disappearance:

$$u_{\mu} \rightarrow \nu_{s}$$

 $\nu_e \rightarrow \nu_s$

Fully consistent oscillation search:

 $\begin{array}{l} \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{\mu} \rightarrow \nu_{e} \\ \nu_{e} \rightarrow \nu_{e} \end{array}$

Backgrounds are "oscillated".

A sterile neutrino interpretation of the MiniBooNE anomaly is still allowed by MicroBooNE data at 3σ

Sterile neutrinos at MicroBooNE "Joint fit" of MiniBooNE and MicroBooNE

To properly assess the impact of MicroBooNE on steriles, we need a "joint fit" w/

MicroBooNE + MiniBooNE data.

A "joint fit" performed by MiniBooNE collaboration, using MicroBooNE's CCQE data (the less sensitive one).

Suggests that MicroBooNE's data does **not** have a big impact on the MiniBooNE regions of preference.

No correlations included.

This is important (same beam, "similar" cross sections).

Can the deficit of ν_{e} events at MicroBooNE be interpreted as evidence for ν_e disappearance?

Can the deficit of ν_{ρ} events at MicroBooNE be interpreted as evidence for ν_{ρ} disappearance?

We conclude that our results are consistent with no ν_e disappearance.

The discrepancy with P. Denton may arise from:

i) Including all "side-band" samples and their correlations ii) Implementing detector smearing consistently

Q3

Are all explanations disfavored?

Dark neutrino sectors Heavy neutrinos interacting via the dark photon

PI M. Hostert

Dark neutrino sectors Heavy neutrinos interacting via the dark photon

PI M. Hostert

A. Abdullahi, J. Hoefken, MH, D. Massaro, S. Pascoli, in progress

Upcoming: dedicated MC generator for new physics in neutrino-nucleus scattering $\Delta \chi^2$ for E_{ν} , MiniBooNE, Dirac, 3+1 Short lived $N_4 \rightarrow \nu(Z' \rightarrow e^+e^-)$ HNL region Fit for E_{ν} , 3+2, $m_{Z'} = 1.25$ GeV, $\Delta = 0.5$, MiniBooNE, Dirac 10^{5} 1σ Long lived 2σ HNL region 10^{4} 3σ 1σ $N_5 \rightarrow N_4 e^+ e^ N_4 \rightarrow \nu e^+ e^ 2 \sigma$ 10^{3} Ŋ 3σ $/ 10^{-1}$ 10^{-1} 10^{0} 10^2 $m_{Z\prime}[{ m GeV}]$ $V_{\mu 5}^2$ 10^{1} 10^{0} 10^{-} 10^{-1} 10^{0} $m_5 \; [{ m GeV}]$

New generation of Liquid Argon detectors at Fermilab can search for (e+e-) events and will test MiniBooNE results.

Currently investigating these signatures in LAr together with microBooNE single-photon group.

MicroBooNE searches for e+e-

Conclusions

For the first time, MicroBooNE has shed light on the origin of the excess in a LArTPC.

While a significant result, MicroBooNE still does not rule out most explanations to the MiniBooNE excess (including $\nu_{\mu} \rightarrow \nu_{e}$ oscillations).

> Other models still untested, including e+e- pairs, single (coherent) photons, and other ν_e models.

The MiniBooNE "electron-like" excess remains unexplained.

Thank you!

