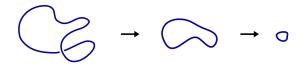
1-form symmetry vs. large N QCD

Theo Jacobson, University of Minnesota



Based on arXiv:2209.00027 with Aleksey Cherman and Maria Neuzil

Two (opposing) facts about confinement

Quarks are confined in SU(N) QCD at large N Confinement is associated with a (unbroken) 1-form symmetry

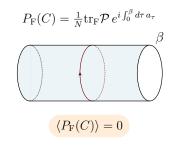
- the standard story in pure YM
 - indicators of confinement
 - connection to \mathbb{Z}_N 1-form symmetry
- ▶ why large N QCD confines
- obstructions to 1-form symmetries
 - 2d example

Confinement in pure gauge theory

Pure SU(N) YM theory **confines** fundamental-rep probe quarks

$$W_{\rm F}(C) = \frac{1}{N} {\rm tr}_{\rm F} \mathcal{P} \, e^{i \int_C a}$$
$$\bigcup_{|C| \to \infty} \langle W_{\rm F}(C) \rangle = 0 \qquad \text{in any scheme}$$

linear confining potential between far-separated \bar{q} and q



free energy of an isolated quark is infinite

Symmetries of SU(N) gauge theory

 $W_{\rm F}$ and $P_{\rm F}$ are **order parameters** for a symmetry

- **center** symmetry: acts on Polyakov loops
- ▶ 1-form symmetry: acts on all Wilson loops

Polyakov, 't Hooft late '70s Weiss, Gross-Pisarski-Yaffe '81

Gaiotto, Kapustin, Seiberg, Willett '14

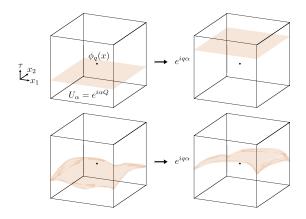
Why is this useful?

- sharp definition of confinement/deconfinement
- couple to backgrounds, 't Hooft anomalies
- part of nonperturbative definition of the theory
- easily derive selection rules

Modern perspective: 0-form symmetry

Ordinary, '0-form' symmetry: e.g. U(1) symmetry

operators which measure the charges of local operators



Modern perspective: 1-form symmetry

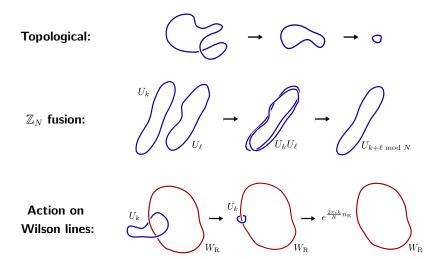
1-form symmetry in SU(N) gauge theory

operators which measure the charges (representations) of Wilson lines modulo screening by gluons (adjoint rep)

- ► to measure the charge of a line, operator must be supported on a codimension-2 closed manifold
- ► the operators can only detect the N-ality of a line (Z_N-valued)

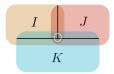
 \mathbb{Z}_N 1-form symmetry **generated by** $U_k(M_{d-2})$, with $k = 0, \ldots, N-1$

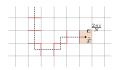
Modern perspective: 1-form symmetry



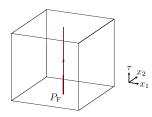
Topological symmetry operators

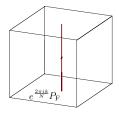
- ► Gukov-Witten operator: remove C from spacetime and impose 'twisted' BC's
- relax cocycle condition for gauge field transition functions
 - 't Hooft flux
- on the lattice, 'thin center-vortex:' modify plaquettes pierced by closed codim-2 manifold on dual lattice
- couple to background 2-form \mathbb{Z}_N gauge field B

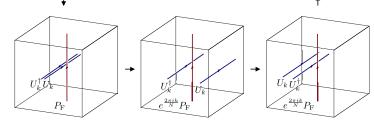




Selection rules from topological operators







 $\langle P_{\rm F} \rangle = e^{\frac{2\pi i k}{N}} \langle P_{\rm F} \rangle \quad \Longrightarrow \quad \langle P_{\rm F} \rangle = 0$

Motivating example: 2d YM

Tempting to say: if \exists a selection rule, then \exists a symmetry explanation

Selection rules in 2d YM

$$\begin{array}{c} \langle W_{\rm F}(C)\rangle = e^{-g^2 c_{\rm F} A[C]} \\ \langle P_{\rm F}\rangle = 0 \end{array} \end{array} \right\} \, \mathbb{Z}_N \, \, \mbox{1-form symmetry} \label{eq:prod}$$

$$\begin{array}{c} \langle W_{\rm adj}(C)\rangle = e^{-g^2 c_{\rm adj} A[C]} \\ \langle P_{\rm adj}\rangle = 0 \end{array} \end{array} \right\} \begin{array}{c} \textit{non-invertible 1-form symmetry} \\ ({\rm Nguyen, Tanizaki, Ünsal '20}) \end{array}$$

QCD has no 1-form symmetry

e.g. 'real-world' QCD with light fundamental quarks

Effect on Wilson loops:

Effect on symmetry operators:

confining strings can break: perimeter-law for large loops some operators become ill-defined, the rest are no longer *topological*

Expect *approximate* symmetry when quarks are heavy:

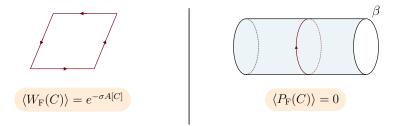
$$\langle W(C) \rangle = e^{-\sigma A} + c \, e^{-2m_q L}$$

Area law dominates: $\Lambda^{-1} \ll L \ll \frac{2m_q}{\Lambda} \Lambda^{-1}$

Some codim-2 operator should be topological at long distances $\gg m_q^{-1}$ (Córdova, Ohmori, Rudelius '22)

Confinement in large N QCD

't Hooft large N limit $(N \to \infty, g^2 N = \lambda = \text{fixed}, n_f = O(1))$



Screening by dynamical quarks is 1/N-suppressed: To leading order, gluonic observables don't see quarks \implies Large N QCD has the same selection rules as pure YM!

Is there any (emergent) 1-form symmetry in large N QCD?

Obstructions to 1-form symmetry in large N QCD

Expectation:

There exist operators $U_k(M_{d-2})$ in QCD which are topological up to 1/N corrections

Obstructions:

(Existence of open Wilson lines)

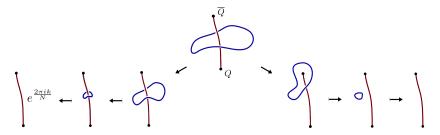
(Failure of quark loop suppression)

Endability

Higher-form symmetries are broken when charged operators are 'endable' (Rudelius, Shao '20)

Wilson lines are **endable** in QCD:
$$W_{xy} = \frac{1}{N} \overline{Q}(x) e^{i \int_x^y a} Q(y)$$

Suppose a codim-2 operator is topological in the planar limit:



Consistent if $\langle W_{xy} \rangle = O(\frac{1}{N})$. In reality, $\langle W_{xy} \rangle = O(1)$.

Quark loop non-suppression

Standard large N counting: $\langle \mathcal{O}_{glue} \rangle_{QCD} = \langle \mathcal{O}_{glue} \rangle_{YM} + O(\frac{1}{N})$

What are the interesting operators \mathcal{O}_{glue} at large N?

Wilson loops $W_{\rm R}(C)$ Symmetry generators $U_k(M_{d-2})$ ${\rm R} \in {\rm F}^m \otimes \bar{{\rm F}}^\ell, m, \ell = O(1)$ k = O(N)Ensures that $n_{\rm R} = O(1)$ Ensures that operator
acts non-trivially $U_k(M_{d-2})W_{\rm R}(C) = \exp\left(\frac{2\pi i k n_{\rm R}}{N}\right) W_{\rm R}(C)$ To have a non-trivial \mathbb{Z}_N 1-form symmetry,

require that U_k with $k \sim N$ are topological

Quark loop non-suppression

With an exact \mathbb{Z}_N symmetry:

$$\langle U_k \rangle = \langle U_1^k \rangle = \langle U_1 \rangle^k$$

Generically,
$$\langle U_k(M_{d-2})\rangle = e^{\frac{2\pi i k}{N}\ell} \in \mathbb{Z}_N$$

If M_{d-2} is contractible, $\langle U_k(M_{d-2})\rangle = 1$.

In large N QCD, expect:

$$\langle U_1 \rangle = 1 + O(\frac{1}{N}), \quad \langle U_1^2 \rangle = \langle U_1 \rangle \langle U_1 \rangle + O(\frac{1}{N})$$

What about U_k , k = O(N)? $\langle U_k \rangle \sim \langle \underbrace{U_1 U_1 \cdots U_1}_k \rangle = \langle U_1 \rangle^k + O(\frac{k^2}{N})$

Quark loops are **not** suppressed, and
expectation values deviate from
$$\mathbb{Z}_N$$
-constraints:
 $\langle U_k \rangle - \langle U_1 \rangle^k = \begin{cases} O(1) & \text{for } k \sim \sqrt{N}, \\ O(N) & \text{for } k \sim N \end{cases}$

Recap

- ▶ in pure YM theory, confinement is associated to a Z_N 1-form symmetry
- \blacktriangleright large N QCD also confines, but

There is no emergent \mathbb{Z}_N 1-form symmetry which acts on Wilson loops

(There are no codimension-2 topological operators in large N QCD)

Simplest example: 2d scalar QCD

Regulate on the lattice: links u_ℓ , plaquettes u_p , sites ϕ_x

$$Z = \prod_{\ell} \int du_{\ell} \prod_{x} \int d\phi_{x} d\phi_{x}^{\dagger} \prod_{p} e^{-s_{\mathsf{YM}}(u_{p})} \prod_{\ell} e^{-s_{\mathsf{H}}(\phi_{x}^{\dagger}u_{\ell}\phi_{x'})} \prod_{x} e^{-m^{2}\phi_{x}^{\dagger}\phi_{x}}$$

Large mass phase:

Expand in 'hopping' parameter $s_{\rm H} = -\kappa \phi_x^{\dagger} u_\ell \phi_{x'} + {\rm h.c.}$

Far from continuum limit, but allows controlled expansion:

$$\left(\langle \mathcal{O}_{\mathsf{glue}} \rangle = \langle \mathcal{O}_{\mathsf{glue}} \rangle_{\mathsf{YM}} + \sum_{\substack{\mathsf{hopping loops}\\\Gamma}} \left(\frac{\kappa}{m^2} \right)^{|\Gamma|} \left\langle \mathcal{O}_{\mathsf{glue}} \operatorname{tr} \prod_{\ell \in \Gamma} u_\ell \right\rangle_{\mathsf{YM}} \right)$$

Look at $\mathcal{O}_{\text{glue}} \longrightarrow W_{\mathrm{F}}(C), U_k(\tilde{x})$ Small $\kappa \iff$ large m^2 in lattice units

Simplest example: 2d scalar QCD

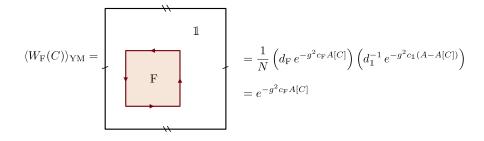
$$Z = \prod_{\ell} \int du_{\ell} \prod_{x} \int d\phi_{x} d\phi_{x}^{\dagger} \prod_{p} e^{-s_{\mathsf{YM}}(u_{p})} \prod_{\ell} e^{-s_{\mathsf{H}}(\phi_{x}^{\dagger}u_{\ell}\phi_{x'})} \prod_{x} e^{-m^{2}\phi_{x}^{\dagger}\phi_{x}}$$
$$\left(\langle \mathcal{O}_{\mathsf{glue}} \rangle = \langle \mathcal{O}_{\mathsf{glue}} \rangle_{\mathsf{YM}} + \sum_{\substack{\mathsf{hopping loops} \\ \Gamma}} \left(\frac{\kappa}{m^{2}} \right)^{|\Gamma|} \left\langle \mathcal{O}_{\mathsf{glue}} \operatorname{tr} \prod_{\ell \in \Gamma} u_{\ell} \right\rangle_{\mathsf{YM}} \right)$$

To compute pure YM correlation functions, use heat-kernel action:

$$e^{-s_{\rm YM}(u_p)} = \sum_{\rm irreps \ \alpha} d_\alpha \ \chi_\alpha(u_p) \ e^{-g^2 c_\alpha} \qquad \underset{\rm Witten \ '91}{\rm Migdal \ '75, \ Menotti-Onofri \ '81, \ Witten \ '91}$$

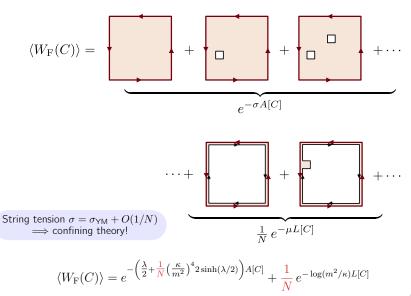
Subdivision-invariant \implies continuum answers on coarse lattices

Wilson loop in pure YM



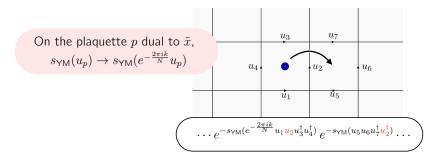
Despite absence of propagating gluons, pure YM in 2d confines: string tension $\sigma = \lambda/2$ at large N

Wilson loop and quark suppression



Center-vortices

On the lattice, 1-form symmetry generators of YM are realized as 'center-vortices' $U_k(\tilde{x})$:



 $\langle U_k(\tilde{x}) \rangle_{\mathsf{YM}} = 1$ on \mathbb{R}^2

Center-vortices and quark non-suppression

$$\langle U_k(\tilde{x})\rangle = \frac{\langle \langle U_k(\tilde{x})\rangle\rangle}{Z} = \frac{\bullet + (A-1)\bullet\Box + \bullet + \cdots}{1+A\Box + \cdots}$$

• = 1
•
$$\Box$$
 = 2 $N \left(\frac{\kappa}{m^2}\right)^4 e^{-g^2 c_{\rm F}}$
• = 2 $N \left(\frac{\kappa}{m^2}\right)^4 e^{-g^2 c_{\rm F}} \cos\left(\frac{2\pi k}{N}\right)$

$$= 1 - \left(\frac{\kappa}{m^2}\right)^4 2N \left(1 - \cos\left(\frac{2\pi k}{N}\right)\right) + O(\kappa^6)$$

Already see that quark loops are not suppressed for $k\sim \sqrt{N}$

Center-vortices and quark non-suppression

Resum single plaquette contributions:

$$\mathsf{Large } N: \langle U_k(\tilde{x}) \rangle = \begin{cases} e^{-\#\frac{1}{N}} \to 1 & \text{for } k \sim 1, \\ e^{-\#} \in [0,1] & \text{for } k \sim \sqrt{N}, \\ e^{-\#N} \to 0 & \text{for } k \sim N. \end{cases}$$
Smooth large N limit, but trivial but trivial solution \mathbb{Z}_N fusion \mathbb{Z}_N for $k \sim N$.

Quark loops are not suppressed for center-vortex operators \implies no emergent \mathbb{Z}_N 1-form symmetry

Outlook

Is there a symmetry principle that explains the selection rules in large N QCD?

If **yes**, it would be some further generalization. Color-flavor-center symmetry? Something genuinely new?

Our considerations also apply to

- emergent non-invertible symmetry in large N YM
- emergent \mathbb{Z}_N 1-form symmetry from orientifold equivalence

Is this specific to large N?

► Yaffe '82: large *N* as classical dynamics—symmetry operators are not part of description!