Monopoles, scattering, generalized symmetries.

D. Delmastro

23-Oct-2023
arXiv:2306.07318 with M. van Beest, P. Boyle Smith, Z. Komargodski, D. Tong.

screen

Background.

Background.

- Consider $4 d$ fermions with a $U(1)$ flavor symmetry. Then,

- The conservation law for the current is anomalous. We call this an 't Hooft anomaly.

Background.

- More generally, we can have a symmetry G generated by j^{μ}. Then, $\partial_{\mu} j^{\mu}=0$ if and only if
- The symmetry G can be gauged.
- The system admits G-preserving deformation to the empty theory.
- One can latticize in a G-preserving way.
- There exists at least one G-preserving boundary condition.
- Etc.

Background.

- Even more information if we consider multiple symmetries at the same time.
- For example, if we have two symmetries $U(1)_{1} \times U(1)_{2}$, we can consider mixed anomalies, where we put different currents j_{1}, j_{2} at each vertex.
- If $\left\langle j_{1} j_{1} j_{1}\right\rangle$ is non-anomalous, we can gauge this symmetry. The fate of $U(1)_{2}$ depends on mixed anomalies:
- If $\left\langle j_{1} j_{2} j_{2}\right\rangle$ is anomalous, the symmetry $U(1)_{2}$ becomes part of a 2-group.
- If $\left\langle j_{1} j_{1} j_{2}\right\rangle$ is anomalous, the symmetry $U(1)_{2}$ becomes non-invertible.
[Córdova-DumitrescuIntriligator]
[Choi-Lam-Shao,
Córdova-Ohmori]

Background.

- A symmetry is in a 2-group if it mixes with a one-form symmetry. In $U(1)_{1} \times U(1)_{2}$, it is the magnetic one-form symmetry.
- "Sometimes conserved, sometimes not".
- Constraints on UV completions: $U(1)_{2}$ is always emergent.
- Constraints on IR dynamics: $T_{\mathrm{SF}} \geq T_{\mathrm{Sc}}$.
- A symmetry is non-invertible if there is no U^{-1} such $U U^{-1}=1$. In $U(1)_{1} \times U(1)_{2}$, the symmetry acts invertibly on fermions but non-invertibly on monopoles.
- We can cancel the anomaly by decorating $U(1)_{2}$ with a $3 d$ TQFT (the Hall state, a.k.a. the boundary state of $\theta F \wedge F$).
- The symmetry attaches a Wilson line to the monopole. Ultimately, just the Witten effect.

Monopole scattering.

Monopole scattering.

- Motivation is twofold: historical and modern.
- In the 80 s people realized that monopoles induce proton decay (much larger rate than the BSM scale). [Callan, Rubakov]
- Interestingly, the scattering process has a very strange feature: the explicit computation indicates that a proton decays to half a positron plus half a pion!

$$
\begin{aligned}
& \mathrm{u}_{1 \mathrm{R}}+\mathrm{M} \rightarrow \frac{1}{2}\left(\mathrm{u}_{1 \mathrm{~L}} \overline{\mathrm{u}}_{2 \mathrm{R}} \overline{\mathrm{~d}}_{3 \mathrm{~L}} \mathrm{e}_{\mathrm{L}}^{+}\right)+\mathrm{M} \text {, }
\end{aligned}
$$

- What exactly did people mean by fractional particles?

Monopole scattering.

- The set of symmetries of gauge theories is much larger than people thought initially, newly discovered generalized symmetries are quite ubiquitous.
- Symmetries of QED:
- 1940's: $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R} \times U(1)_{A}$.
- 1960's [ABJ]: a mixed anomaly breaks $S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \rightarrow S U\left(N_{f}\right)_{V}$ and $U(1)_{A} \rightarrow \varnothing$.
- 2014 [GKSW]: there is a one-form symmetry $U(1)^{(1)}$ that acts on 't Hooft line operators.
- 2018 [CDI]: $\operatorname{SU}\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$ is not broken, instead it is part of a 2-group with $U(1)^{(1)}$.
- 2022 [CLS-CO]: $U(1)_{A}$ is not broken either, but it is non-invertible and it acts on 't Hooft lines.
- All the original symmetries are resurrected, but they have a non-trivial interplay with magnetic charges.
- In regular scattering theory, with only electrically charged particles, the generalized symmetries behave like regular symmetries (usual Ward identities).
- In monopole scattering, these new features play an essential role, we need to understand them properly if we are to study the experiment we are after.

A simple toy model.

A simple toy model.

- Consider a bunch of free fermions in $1+1$ dimensions. $2 d$ fermions come in two chiralities, left-handed and right-handed; the Dirac equation for these reads

$$
\left(\partial_{t}-\partial_{x}\right) \psi_{L}=0 \quad\left(\partial_{t}+\partial_{x}\right) \psi_{R}=0
$$

Left-handed particles move to the left, and right-handed particles to the right.

- Take two left- and two right-movers, all complex. Then there is a $O(4)_{L} \times O(4)_{R}$ symmetry rotating them.
- Let us put the system on the half line, with some boundary condition at $x=0$

A simple toy model.

- If we send ψ_{L} towards the boundary, it will bounce off and become some function of ψ_{R}

$$
\psi_{L} \longrightarrow \mathcal{O}\left(\psi_{R}\right)
$$

whose details depend on the choice of boundary condition.

- Naive puzzle: such scattering processes seem incompatible with $O(4)_{L} \times O(4)_{R}$ conservation. The in-state is charged under $O(4)_{L}$ but not $O(4)_{R}$, and the other way around for the out-state. It is impossible to write an operator $\mathcal{O}\left(\psi_{R}\right)$ that has the same quantum numbers as ψ_{L}.
- The resolution is straightforward: the symmetry $O(4)_{L} \times O(4)_{R}$ has an 't Hooft anomaly, hence there are no symmetric boundary conditions. The boundary explicitly breaks this symmetry.

A simple toy model.

- A more subtle puzzle: consider the following subgroup of $O(4)_{L} \times O(4)_{R}$:

	ψ_{1}	ψ_{2}	$\tilde{\psi}_{1}$	$\tilde{\psi}_{2}$
$U(1)_{1}$	3	4	5	0
$U(1)_{2}$	4	-3	0	5

- This subgroup is anomaly-free:

$$
\begin{aligned}
& \partial\left\langle j_{1} j_{1}\right\rangle \propto 3^{2}+4^{2}-5^{2}-0^{2} \equiv 0 \\
& \partial\left\langle j_{1} j_{2}\right\rangle \propto 3 \times 4+4 \times(-3)-5 \times 0-0 \times 5 \equiv 0 \\
& \partial\left\langle j_{2} j_{2}\right\rangle \propto 4^{2}+(-3)^{2}-0^{2}-5^{2} \equiv 0
\end{aligned}
$$

- As such, it does admit symmetric boundary conditions. It is possible to conserve this symmetry in scattering processes.

A simple toy model.

- Let us see if we can find the correct out-state,

$$
\psi_{1} \longrightarrow n_{1} \tilde{\psi}_{1}+n_{2} \tilde{\psi}_{2}
$$

- Conservation of $U(1)_{1} \times U(2)_{2}$ implies the following constraints:

$$
\begin{aligned}
& 3=5 n_{1}+0 n_{2} \\
& 4=0 n_{1}+5 n_{2}
\end{aligned}
$$

with solution $n_{1}=3 / 5, n_{2}=4 / 5$.

- In other words, the scattering process apparently has a fractional out-state!

$$
\psi_{1} \longrightarrow \frac{3}{5} \tilde{\psi}_{1}+\frac{4}{5} \tilde{\psi}_{2}
$$

- There is no operator in the Fock space of ψ_{R} with charges 3 or 4,

$$
Q\left(\psi_{R} \cdots \psi_{R}\right) \propto 5
$$

A simple toy model.

- Resolution: the spectrum of local excitations is much larger than the Fock space of ψ_{L}, ψ_{R}.
- In string theory, these additional states are known as the twisted sector, and their defining property is that they are multi-valued (their correlation functions have branch cuts).
- Impose twisted boundary conditions:

$$
\begin{aligned}
\tilde{\psi}_{1}(\sigma+2 \pi) & =e^{2 \pi i / 10} \tilde{\psi}_{1}(\sigma) \\
\tilde{\psi}_{2}(\sigma+2 \pi) & =e^{6 \pi i / 10} \tilde{\psi}_{2}(\sigma)
\end{aligned}
$$

- The branch cut adds charge to the endpoint:

$$
Q(\sim \sim \mathcal{O})=\sim_{\sim} \mathcal{O}=Q(\mathcal{O})+\text { Disc. }
$$

A simple toy model.

- One can show that there is a unique twist operator with the same charge as ψ_{1}, namely $\sim \sim \tilde{\psi}_{1} \tilde{\psi}_{2}$.
- The scattering process then looks like this:

- The S-matrix is somewhat non-standard: it turns regular (local) operators into twist fields.
- This is fine: twist fields behave, for the most part, like regular fields, the only difference are extra phases as we move them around each other.

A simple toy model.

Conclusions:

- Anomalous symmetries are explicitly broken by boundaries. They are not conserved in scattering experiments.
- Anomaly-free symmetries can be preserved by boundaries. If we choose symmetric boundary conditions, then the scattering process conserves charge.
- If the chiral fields carry different quantum numbers under the symmetry, the scattering process is subtle: usually, no operator in the out-going Fock space carries the same charges as the in-going states.
- Naive charge conservation seems to lead to fractional out-states. The correct interpretation is the appearance of branch cuts, which add charge to the endpoints.
- The twist fields are locally indistinguishable from regular fields, but they live in a different sector of the theory.

Monopole scattering.

Monopole scattering.

- Consider N_{f} Dirac fermions in $3+1 d$. The symmetries are

$$
\left(S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R} \times U(1)_{A}\right) \ltimes U(1)_{m}^{(1)}
$$

- A Dirac fermion has two chiral components, e_{L}, e_{R}, whose charges under the gauge group and symmetry group are

	e_{L}	e_{R}
$U(1)_{\mathrm{EM}}$	1	-1
$S U\left(N_{f}\right)_{L}$	\square	\bullet
$S U\left(N_{f}\right)_{R}$	\bullet	\square
$U(1)_{A}$	1	1

Monopole scattering.

- Let us take a heavy monopole and place it at the origin. We send a lepton, either e_{L} or e_{R}, and measure the outcome. The scattering process is

$$
\psi+M \longrightarrow M+\mathcal{O}
$$

where \mathcal{O} is some operator with the same charges as ψ. Our task is to identify this operator.

- The Dirac equation reads

$$
\left(i \not \partial+q_{i} A\right) \psi_{i}=0, \quad A_{\phi}=\frac{m}{r}(1-\cos \theta)
$$

where $m \in \mathbb{Z}$ is the magnetic charge of the monpole and q_{i} are the electric charges of the fermions.

- No gauge fluctuations around monopole. We could add those, no big changes.

Monopole scattering.

- If we were doing regular scattering theory we would look at plane waves of the form

$$
\int e^{i p x} a_{p} \psi(x)
$$

- The monopole breaks translation invariance. We only have rotations and energy conservation,

$$
\int e^{i E t} Y_{j \mu}(\Omega) a_{E j \mu} \psi(t, r, \Omega)
$$

where Y are the spherical harmonics. Angular momentum is bounded by $j \geq \frac{|q m|-1}{2}$.

- Key aspect of monopole scattering: the mode with the lowest angular momentum, $j=j_{0}$, satisfies

$$
\left(\partial_{t}+\operatorname{sign}(q m) \partial_{r}\right) \int_{S^{2}} \psi \equiv 0
$$

so this mode describes incoming radiation if $q m>0$ and outgoing radiation if $q m<0$.

Monopole scattering.

- The j_{0} wave carries the following quantum numbers:

| | $U(1)_{\mathrm{EM}}$ | $S U\left(N_{f}\right)_{L}$ | $S U\left(N_{f}\right)_{R}$ | $U(1)_{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Incoming: $\int_{S^{2}} e_{L}$ | 1 | \square | \bullet | 1 |
| Outgoing: $\int_{S^{2}} e_{R}$ | -1 | \bullet | \square | 1 |

- Formally identical to our toy model: we have perturbations that move in a single direction, but they carry different quantum numbers. The monopole plays the role of the boundary.
- Here we face out first puzzle. The incoming wave is charged under $\operatorname{SU}\left(N_{f}\right)_{L}$, but the outgoing one is not, so the out-state will never conserve $\operatorname{SU}\left(N_{f}\right)_{L} \times \operatorname{SU}\left(N_{f}\right)_{R}$!

Monopole scattering.

- Resolution: the symmetry $S U\left(N_{f}\right)_{L} \times S U\left(N_{f}\right)_{R}$ is in a 2-group with $U(1)^{(1)}$.
- This implies that the symmetry is not conserved in scattering processes involving magnetically charged matter. The monopole explicitly breaks this symmetry.
- Only the anomaly-free subgroup $S U\left(N_{F}\right)_{V}$ is conserved. So we should look at

	$U(1)_{\mathrm{EM}}$	$S U\left(N_{f}\right)_{V}$	$U(1)_{A}$	
Incoming: $\int_{S^{2}} e_{L}$	1	\square	1	
Outgoing:	$\int_{S^{2}} e_{R}$	-1	\square	1

- Hence, the first puzzle disappears: we do have candidate out-states that conserve $S U\left(N_{f}\right)_{V}$, for example

$$
M+e_{L} \longrightarrow M+e_{R}
$$

Monopole scattering.

- But this does not work either, because even though $S U\left(N_{f}\right)_{V}$ is conserved, electric charge is not: the in-state has charge +1 while the out-state has charge -1 .
- We could fix this by writing instead

$$
M+e_{L} \longrightarrow M+e_{R}^{\dagger}
$$

but this does not preserve $S U\left(N_{f}\right)_{V}$ nor $U(1)_{A}$. It seems impossible to conserve all symmetries at the same time!

Monopole scattering.

- Exact same puzzle as in the toy model. People in the 80 s proposed fractional out-states.
- Our claim: the out-state is a twist field. We propose an out-state of the form

Monopole scattering.

- In the interior of S^{2} we place a topological defect that implements a rotation

$$
e_{L} \mapsto e^{2 \pi i / m N_{f}} e_{L}, \quad e_{R} \mapsto e^{2 \pi i / m N_{f}} e_{R}
$$

- The defect is just an axial rotation by an angle $1 / m N_{f}$. This defect is generically non-invertible.
- In the paper we give two arguments for this: 1) we compute the charge carried by Wilson lines in the $3 d$ Hall state TQFT and 2) we reduce on S^{2} to yield a $2 d$ problem essentially identical to the toy model from before.

Monopole scattering.

- The take-home-message is: monopole scattering requires the full machinery of generalized symmetries.
- Without these new symmetries there is an apparent paradox in which there is no possible out-state consistent with the conservation laws.
- If we take into account the full set of symmetries, a consistent answer does exist, albeit a rather non-trivial one: the S-matrix maps the regular Fock space into a twisted Fock space.
- In other words, incoming radiation formed by regular leptons becomes outgoing radiation formed by a field in a twisted sector, and there is a topological defect trailing it.
- This defect is non-invertible and hosts a $3 d$ TQFT inside (the Hall state).

Monopole scattering.

Thanks!

Extra slides.

Non-invertible symmetry.

- The $U(1)_{A}$ symmetry had a mixed anomaly in $\left\langle j_{E M} j_{E M} j_{A}\right\rangle$, which gives rise to an anomalous conservation law

$$
\mathrm{d} j_{A}=\frac{N_{f}}{2 \pi} \mathrm{~d} A \wedge \mathrm{~d} A
$$

- As j_{A} is not conserved, the associated charge is not topological

$$
U_{\theta}=\exp \left(2 \pi \theta \int j_{A}\right)
$$

- Topological superconductors provide a fix. If $\theta \in \mathbb{Q}$, there exists a $3 d$ TQFT (the Hall state),

$$
L[a, A]:=\frac{1}{4 \pi} a^{t} K \mathrm{~d} a-\frac{1}{2 \pi} v a \wedge \mathrm{~d} A
$$

where a is a $3 d U(1)$ gauge field, K is a certain integral matrix and v an integral vector, such that $\theta=v^{t} K^{-1} v$.

Non-invertible symmetry.

- We can consider a defect

$$
D_{\theta}:=U_{\theta} \int[\mathrm{d} a] \exp \left(2 \pi i 2 N_{f} \int L[a, A]\right)
$$

- The equations of motion for a are $K a-v A=0$, i.e., $a=K^{-1} v A$. Plugging this back into $L[a, A]$ yields

$$
D_{\theta} \sim \exp \left(2 \pi \theta \int\left(j_{A}-\frac{N_{f}}{2 \pi} A \wedge \mathrm{~d} A\right)\right)
$$

- This is now topological since the current $j_{A}-\frac{N_{f}}{2 \pi} A \wedge \mathrm{~d} A$ is conserved.

Non-invertible symmetry.

- The TQFT commutes with local operators so D_{θ} acts on them the same way U_{θ} would, i.e., a regular axial rotation. But the TQFT does not commute with 't Hooft lines, so it acts on them in a non-trivial way.
- Consider a monopole singularity in $A, A_{\phi} \sim m / r$. This gives $\int_{S^{2}} \mathrm{~d} A=2 \pi m$, and therefore

$$
\int_{\mathbb{R} \times S^{2}} L[a, A]=\int_{\mathbb{R} \times S^{2}} \frac{1}{4 \pi} a^{t} K \mathrm{~d} a-m v \int_{\mathbb{R}} a
$$

- The monopole in A gives rise to a Wilson line in a, with coefficient $2 m N_{f} v$. Given that $a=K^{-1} v A$, this Wilson line couples to A with coefficient $2 m N_{f} v K^{-1} v \equiv 2 m N_{f} \theta$.
- This shows that the defect D_{θ} acts on an 't Hooft line as $H \mapsto H W$, where W is a Wilson line with charge $2 m N_{f} \theta$.
- Given that the electric charge of e_{L} differs from the electric charge of e_{R} by two units, this Wilson line must carry the missing charge, and therefore $\theta=1 / m N_{f}$, as claimed.

