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QUANTUM FIELD THEORY

2

Quantum field theory works great!

Perturbation theory (Feynman 
diagrams) allow us to describe a huge 
range of phenomena.

David Tong
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QUANTUM FIELD THEORY

2

Quantum field theory works great!

Perturbation theory (Feynman 
diagrams) allow us to describe a huge 
range of phenomena.

What about theories with ? 

Cannot use perturbation theory. 

α ∼ 4π

QCD is such a theory. 

David Tong
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RUNNING COUPLINGS
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Theory of strong interactions.

• Exponentially separated scales from the choice of an 
order one number    .

• A strong coupling results in bound (composite) states.

gstrong

g0

ΛUV

gstrong(µ)

µ
ΛQCD

100 MeV π±...

GeV More composite resonaces

quark and gluon: q g

K, η, ρ, ...

Asymptotic freedom

Thursday, August 9, 12

Theory of strong interactions.

• Exponentially separated scales from the choice of an 
order one number    .

• A strong coupling results in bound (composite) states.

gstrong

g0

ΛUV

gstrong(µ)

µ
ΛQCD

100 MeV π±...

GeV More composite resonaces

quark and gluon: q g

K, η, ρ, ...

Asymptotic freedom

Thursday, August 9, 12

Dimensional 

Strong coupling is quite generic in 
gauge theories. 

Depends on sign of   . 

For QCD we have data. 

General case is an important open 
problem. 

βg

Politzer PRL ’73. Gross & Wilczek PRL ’73.
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FIRST THEORY
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What are the low energy dynamics of the 
following theory? 

• SU(5) gauge theory 

• 3 fermions in the  representation 

• 3 fermions in the  representation  

5̄

10

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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WHY SU(5)?
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Fermion content of this theory  
I am working with has same  
fermion content as original 
SU(5) GUT.  

Theory has rich global symmetry.  

Low energy theory of GUT if all 
scalars stabilized at the origin. 

Georgi, Glashow, PRL ’74.

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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WHY SU(5)?

5

Fermion content of this theory  
I am working with has same  
fermion content as original 
SU(5) GUT.  

Theory has rich global symmetry.  

Low energy theory of GUT if all 
scalars stabilized at the origin. 

Same global symmetry group as QCD!

Georgi, Glashow, PRL ’74.

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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CHIRAL THEORY
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This is a chiral theory. 

Very difficult to solve on the lattice. 

No renormalizable operators 
consistent with gauge symmetry. 

Only interaction is gauge interaction. 

Gauge coupling is only parameter of 
the theory.

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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ANOMALIES
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’T HOOFT ANOMALY MATCHING

8

Most robust tool to analyze strong interactions is 
’t Hooft anomaly matching. ’t Hooft ’80.

Energy

Weakly coupled 
UV theory

Strong dynamics

G, A(G)
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’T HOOFT ANOMALY MATCHING

8

Most robust tool to analyze strong interactions is 
’t Hooft anomaly matching. 

Theories with ’t Hooft anomalies in the UV must 

have massless states.

’t Hooft ’80.

Energy

Weakly coupled 
UV theory

Strong dynamics

G, A(G)

Weakly coupled 
IR theory with 
massless states
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’T HOOFT ANOMALY MATCHING

8

Most robust tool to analyze strong interactions is 
’t Hooft anomaly matching. 

Theories with ’t Hooft anomalies in the UV must 

have massless states.

•Option 1: there are massless fermions to satisfy 
’t Hooft anomalies in the IR. 

•Option 2: there are massless Goldstone bosons 
as a result of spontaneous symmetry breaking.

’t Hooft ’80.

Energy

Weakly coupled 
UV theory

Strong dynamics

G, A(G)

Weakly coupled 
IR theory with 
massless states
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WARM UP: 1 GENERATION SU(5)
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One generation theory:

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(5)] U(1)B

A 10 1

F 5 �3

Table 2: 1 flavour.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 3: QCD

1

UV ’t Hooft anomaly for : U(1) × grav2

10 ⋅ 1 + 5 ⋅ (−3) = − 5

UV ’t Hooft anomaly for : U(1)3

10 ⋅ 13 + 5 ⋅ (−3)3 = − 125
Dimopoulos, Raby, Susskind, NPB ’80. 
Seiberg, Stings 2019. 
Csaki, Murayama, Telem, arXiv:2104.10171.
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WARM UP: 1 GENERATION SU(5)

9

One generation theory:

Low energy theory contains: 

 bound state with B=-5.AF̄F̄

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(5)] U(1)B

A 10 1

F 5 �3

Table 2: 1 flavour.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 3: QCD

1

UV ’t Hooft anomaly for : U(1) × grav2

10 ⋅ 1 + 5 ⋅ (−3) = − 5

UV ’t Hooft anomaly for : U(1)3

10 ⋅ 13 + 5 ⋅ (−3)3 = − 125
Dimopoulos, Raby, Susskind, NPB ’80. 
Seiberg, Stings 2019. 
Csaki, Murayama, Telem, arXiv:2104.10171.
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WARM UP: 1 GENERATION SU(5)

9

One generation theory:

Low energy theory contains: 

 bound state with B=-5.AF̄F̄

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(5)] U(1)B

A 10 1

F 5 �3

Table 2: 1 flavour.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 3: QCD

1

UV ’t Hooft anomaly for : U(1) × grav2

10 ⋅ 1 + 5 ⋅ (−3) = − 5

UV ’t Hooft anomaly for : U(1)3

10 ⋅ 13 + 5 ⋅ (−3)3 = − 125

IR ’t Hooft anomaly for : U(1) × grav2

−5

IR ’t Hooft anomaly for : U(1)3

(−5)3 = − 125

Dimopoulos, Raby, Susskind, NPB ’80. 
Seiberg, Stings 2019. 
Csaki, Murayama, Telem, arXiv:2104.10171.
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LESSON FROM 1G THEORY
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Find gauge invariant fermionic composite that satisfies ’t Hooft anomalies.  

Example of “s-confinement”: theory confines but does not break any global 
symmetries.  

Not a proof that this is the low energy theory: 

• Could be other solutions to ’t Hooft anomaly matching. 

• Could be spontaneous symmetry breaking. 

Seiberg, hep-th/9402044, hep-th/9411149. 
Csaki, Schmaltz, Skiba, hep-th/9610139.
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ANOMALY MATCHING 3G THEORY
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Six non-trivial ’t Hooft anomalies:

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

A [SU(3)3
A] = 10

A [SU(3)3
F̄] = 5

A [grav2 × U(1)B] = − 15

A [U(1)3
B] = − 375

A [SU(3)2
A × U(1)B] = 10

A [SU(3)2
F × U(1)B] = − 15
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IR ANOMALY MATCHING

12

Need to build gauge invariant 
fermionic bound states:

F5

A F F

A4F3

A5

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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IR ANOMALY MATCHING

12

Need to build gauge invariant 
fermionic bound states:

F5

A F F

A4F3

A5

A A F†

A3F†4

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

NB: No SUSY (yet).
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IR ANOMALY MATCHING

12

Need to build gauge invariant 
fermionic bound states:

F5

A F F

A4F3

A5

A A F†

A3F†4

…

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

NB: No SUSY (yet).
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Need to build gauge invariant 
fermionic bound states:

F5

A F F

A4F3

A5

A A F†

A3F†4

…

Need to solve 6 linear equations 
over integers.  

There are infinitely many solutions. 

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

NB: No SUSY (yet).
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Solutions are quite 
complicated.  

A relatively simple example:

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 5: One possible solution to the anomaly matching conditions.

[SU(5)] SU(3)A SU(3)F U(1)B

(F
5
)† 1 1 3 15

A5 or (A4F
3
)† 1 6 1 5

F (A2)† 1 3 3 -5

(A3)†F
4

1 1 3 -15

Table 6: A second possible solution to the anomaly matching conditions. Note that the F
5
state

requires an orbital angular momentum among the constituents.

The attractiveness of a channel with condensation in the pattern r1 ⌦ r2 ! rc is given by

�C2 ⌘ C2(r1) + C2(r2)� C2(rc) . (1)

C2 values for di↵erent representations are given in App. A. The MAC for the theory (for any

number of generations) is 10⇥10 ! 5, with the next MAC is 10⇥5 ! 5. Under both the gauge

and global symmetry, the order parameter for the MAC is (5, 6, 1)2.

Motivated by the complimentary conjecture [? ], the symmetry breaking can be equivalently

achieved by the Higgs mechanism with H† 2 (5, 6, 1)2. We label the order parameter field as Ha
ij

with a = 1, · · · 5 as the gauge index and i, j = 1, 2, 3 as symmetric flavour indices. Unlike the

the one-generation case, there is no unique symmetry-breaking pattern. One could write down

the most general renormalizable potential for Ha
ij and vary the parameters. Here, we list a few

interesting possible vacua as well as the subsequent IR spectra.

MAC-I: hHa
iji = �a5�ij f , which leads to the unbroken symmetry as [SU(4)]1 ⇥ SO(3)A ⇥

1
As above, square brackets denote gauge symmetries.

3

IR ANOMALY MATCHING
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Another example:

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 5: One possible solution to the anomaly matching conditions.

[SU(5)] SU(3)A SU(3)F U(1)B

(F
5
)† 1 1 3 15

A5 or (A4F
3
)† 1 6 1 5

F (A2)† 1 3 3 -5

(A3)†F
4

1 1 3 -15

Table 6: A second possible solution to the anomaly matching conditions. Note that the F
5
state

requires an orbital angular momentum among the constituents.

The attractiveness of a channel with condensation in the pattern r1 ⌦ r2 ! rc is given by

�C2 ⌘ C2(r1) + C2(r2)� C2(rc) . (1)

C2 values for di↵erent representations are given in App. A. The MAC for the theory (for any

number of generations) is 10⇥10 ! 5, with the next MAC is 10⇥5 ! 5. Under both the gauge

and global symmetry, the order parameter for the MAC is (5, 6, 1)2.

Motivated by the complimentary conjecture [? ], the symmetry breaking can be equivalently

achieved by the Higgs mechanism with H† 2 (5, 6, 1)2. We label the order parameter field as Ha
ij

with a = 1, · · · 5 as the gauge index and i, j = 1, 2, 3 as symmetric flavour indices. Unlike the

the one-generation case, there is no unique symmetry-breaking pattern. One could write down

the most general renormalizable potential for Ha
ij and vary the parameters. Here, we list a few

interesting possible vacua as well as the subsequent IR spectra.

MAC-I: hHa
iji = �a5�ij f , which leads to the unbroken symmetry as [SU(4)]1 ⇥ SO(3)A ⇥

1
As above, square brackets denote gauge symmetries.

3
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Another example:

Looks simpler, but  state 

is problematic.
(F̄5)†

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 5: One possible solution to the anomaly matching conditions.

[SU(5)] SU(3)A SU(3)F U(1)B

(F
5
)† 1 1 3 15

A5 or (A4F
3
)† 1 6 1 5

F (A2)† 1 3 3 -5

(A3)†F
4

1 1 3 -15

Table 6: A second possible solution to the anomaly matching conditions. Note that the F
5
state

requires an orbital angular momentum among the constituents.

The attractiveness of a channel with condensation in the pattern r1 ⌦ r2 ! rc is given by

�C2 ⌘ C2(r1) + C2(r2)� C2(rc) . (1)

C2 values for di↵erent representations are given in App. A. The MAC for the theory (for any

number of generations) is 10⇥10 ! 5, with the next MAC is 10⇥5 ! 5. Under both the gauge

and global symmetry, the order parameter for the MAC is (5, 6, 1)2.

Motivated by the complimentary conjecture [? ], the symmetry breaking can be equivalently

achieved by the Higgs mechanism with H† 2 (5, 6, 1)2. We label the order parameter field as Ha
ij

with a = 1, · · · 5 as the gauge index and i, j = 1, 2, 3 as symmetric flavour indices. Unlike the

the one-generation case, there is no unique symmetry-breaking pattern. One could write down

the most general renormalizable potential for Ha
ij and vary the parameters. Here, we list a few

interesting possible vacua as well as the subsequent IR spectra.

MAC-I: hHa
iji = �a5�ij f , which leads to the unbroken symmetry as [SU(4)]1 ⇥ SO(3)A ⇥

1
As above, square brackets denote gauge symmetries.

3
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Another example:

Looks simpler, but  state 

is problematic.
(F̄5)†

Color     = anti-symmetric 
Flavour = anti-symmetric 
Spin       = ? 
Not enough states to satisfy 
Fermi statistics.

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 5: One possible solution to the anomaly matching conditions.

[SU(5)] SU(3)A SU(3)F U(1)B

(F
5
)† 1 1 3 15

A5 or (A4F
3
)† 1 6 1 5

F (A2)† 1 3 3 -5

(A3)†F
4

1 1 3 -15

Table 6: A second possible solution to the anomaly matching conditions. Note that the F
5
state

requires an orbital angular momentum among the constituents.

The attractiveness of a channel with condensation in the pattern r1 ⌦ r2 ! rc is given by

�C2 ⌘ C2(r1) + C2(r2)� C2(rc) . (1)

C2 values for di↵erent representations are given in App. A. The MAC for the theory (for any

number of generations) is 10⇥10 ! 5, with the next MAC is 10⇥5 ! 5. Under both the gauge

and global symmetry, the order parameter for the MAC is (5, 6, 1)2.

Motivated by the complimentary conjecture [? ], the symmetry breaking can be equivalently

achieved by the Higgs mechanism with H† 2 (5, 6, 1)2. We label the order parameter field as Ha
ij

with a = 1, · · · 5 as the gauge index and i, j = 1, 2, 3 as symmetric flavour indices. Unlike the

the one-generation case, there is no unique symmetry-breaking pattern. One could write down

the most general renormalizable potential for Ha
ij and vary the parameters. Here, we list a few

interesting possible vacua as well as the subsequent IR spectra.

MAC-I: hHa
iji = �a5�ij f , which leads to the unbroken symmetry as [SU(4)]1 ⇥ SO(3)A ⇥

1
As above, square brackets denote gauge symmetries.

3
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Another example:

Looks simpler, but  state 

is problematic.
(F̄5)†

Color     = anti-symmetric 
Flavour = anti-symmetric 
Spin       = ? 
Not enough states to satisfy 
Fermi statistics.

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 5: One possible solution to the anomaly matching conditions.

[SU(5)] SU(3)A SU(3)F U(1)B

(F
5
)† 1 1 3 15

A5 or (A4F
3
)† 1 6 1 5

F (A2)† 1 3 3 -5

(A3)†F
4

1 1 3 -15

Table 6: A second possible solution to the anomaly matching conditions. Note that the F
5
state

requires an orbital angular momentum among the constituents.

The attractiveness of a channel with condensation in the pattern r1 ⌦ r2 ! rc is given by

�C2 ⌘ C2(r1) + C2(r2)� C2(rc) . (1)

C2 values for di↵erent representations are given in App. A. The MAC for the theory (for any

number of generations) is 10⇥10 ! 5, with the next MAC is 10⇥5 ! 5. Under both the gauge

and global symmetry, the order parameter for the MAC is (5, 6, 1)2.

Motivated by the complimentary conjecture [? ], the symmetry breaking can be equivalently

achieved by the Higgs mechanism with H† 2 (5, 6, 1)2. We label the order parameter field as Ha
ij

with a = 1, · · · 5 as the gauge index and i, j = 1, 2, 3 as symmetric flavour indices. Unlike the

the one-generation case, there is no unique symmetry-breaking pattern. One could write down

the most general renormalizable potential for Ha
ij and vary the parameters. Here, we list a few

interesting possible vacua as well as the subsequent IR spectra.

MAC-I: hHa
iji = �a5�ij f , which leads to the unbroken symmetry as [SU(4)]1 ⇥ SO(3)A ⇥

1
As above, square brackets denote gauge symmetries.

3

Can work with orbital angular 
momentum, but weird. 
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Is one of these the IR spectrum of the theory?

Probably not, but I cannot rule it out. 
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CONCLUSIONS?

15

Is one of these the IR spectrum of the theory?

Probably not, but I cannot rule it out. 

Other alternative is to consider spontaneous symmetry breaking… 
so many options. 
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the spherical cows of quantum 
field theory. 

SUSY version of our model can 
be solved. 

Deform away from SUSY. 

Keenan Crane, Wikipedia. 
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Supersymmetric theories are 
the spherical cows of quantum 
field theory. 

SUSY version of our model can 
be solved. 

Deform away from SUSY. 

Keenan Crane, Wikipedia. 
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SUSY GG MODEL
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Additional gaugino and 
additional global symmetry. 

The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
3

B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5
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SUSY GG MODEL

18

Additional gaugino and 
additional global symmetry. 

Holomorphy + extra symmetry 
means solution is unique. 

The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
3

B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5
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possible.
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is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.
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Additional gaugino and 
additional global symmetry. 

Holomorphy + extra symmetry 
means solution is unique. 

Symmetry preservation is 
possible.

Dynamical superpotential is 
generated at low energy.
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next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
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B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5

Wdyn = λ M3 + ζ B2 M B1

Csaki, Schmaltz, Skiba, hep-th/9610139.
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First question: why didn’t we find 
this solution to the anomaly 
equations before? 

 so it is a boson, does 

not contribute to anomalies.  

Mesino with at least one squark 
needed to satisfy anomalies. 

M = A3F̄

SU(3)A SU(3)F U(1)B U(1)R

M 8 3 0 2
3

B1 3 3 �5 4
3

B2 6 1 5 0

Table 8: susy ir

constraint of holomorphy [? ? ] for low-energy dynamics gives a unique answer for anomaly

matched IR theory. The IR theory has a dynamical superpotential given by

Wdyn =
1

⇤9

⇥
M3 +B2 M B1

⇤
, (4)

where M and Bi are the gauge invariant composites shown in Table 7. For an s-confining theory,

the Kähler potential is expected to be regular at the origin. There are, however, expected higher-

dimensional Kähler operators suppressed by powers of the dynamical scale ⇤. For energies small

compared to ⇤, those e↵ects are irrelevant and one can go to the canonically normalized field

basis and have the superpotential:

Wdyn = �M3 + ⇣ B2 M B1 , (5)

where � and ⇣ are unknown coe�cients. In the supersymmetric limit, the theory has a rich

moduli space which we do not further explore here.

In order to parameterize the vacuum with SUSY breaking e↵ects, we assume that U(1)B
will not be spontaneously broken as is the case of SQCD Nf = Nc + 1 in Ref. [? ] and also

true in chiral gauge theories with a large number of colors [? ]. Therefore, we assume that the

non-trivial vacuum happens in the meson direction M , while B1 and B2 do not get VEVs. 2 The

field Mai has a = 1, 2 · · · 8 for the SU(3)A adjoint index and i = 1, 2, 3 for SU(3)F fundamental

index, and we can write the superpotential as

Wdyn =
1

18
� fabc ✏ijk Mai M bj M ck . (6)

The factor of 1/18 is chosen for later convenience.

2
We are not able to exclude the possibility of spontaneous breaking of U(1)B . In fact, the soft SUSY potential

studied later could be general enough to break U(1)B .

6

Cannot get fermionic state with 
B=0 in non-SUSY theory. 
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Assume vacuum doesn’t break B:

. 

Assume SUSY breaking is soft.

⟨B1⟩ = ⟨B2⟩ = 0
SU(3)A SU(3)F U(1)B U(1)R

M 8 3 0 2
3

B1 3 3 �5 4
3

B2 6 1 5 0

Table 8: susy ir

constraint of holomorphy [? ? ] for low-energy dynamics gives a unique answer for anomaly

matched IR theory. The IR theory has a dynamical superpotential given by

Wdyn =
1

⇤9

⇥
M3 +B2 M B1

⇤
, (4)

where M and Bi are the gauge invariant composites shown in Table 7. For an s-confining theory,

the Kähler potential is expected to be regular at the origin. There are, however, expected higher-

dimensional Kähler operators suppressed by powers of the dynamical scale ⇤. For energies small

compared to ⇤, those e↵ects are irrelevant and one can go to the canonically normalized field

basis and have the superpotential:

Wdyn = �M3 + ⇣ B2 M B1 , (5)

where � and ⇣ are unknown coe�cients. In the supersymmetric limit, the theory has a rich

moduli space which we do not further explore here.

In order to parameterize the vacuum with SUSY breaking e↵ects, we assume that U(1)B
will not be spontaneously broken as is the case of SQCD Nf = Nc + 1 in Ref. [? ] and also

true in chiral gauge theories with a large number of colors [? ]. Therefore, we assume that the

non-trivial vacuum happens in the meson direction M , while B1 and B2 do not get VEVs. 2 The

field Mai has a = 1, 2 · · · 8 for the SU(3)A adjoint index and i = 1, 2, 3 for SU(3)F fundamental

index, and we can write the superpotential as

Wdyn =
1

18
� fabc ✏ijk Mai M bj M ck . (6)

The factor of 1/18 is chosen for later convenience.

2
We are not able to exclude the possibility of spontaneous breaking of U(1)B . In fact, the soft SUSY potential

studied later could be general enough to break U(1)B .

6

V ∼ m2 |M |2 + (κ M3 + h.c) + |λ |2 |M |4

Wdyn = λ M3 + ζ B2 M B1

  ensures “small” SUSY breaking.  |m2 | , |κ |2 ≪ Λ2
dyn
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V = m2 |M |2 + (κ M3 + h.c.) + |λ |2 |M |4

= |λ |2 tr [(M2 +
κ*

|λ |2 M*) ((M2)† +
κ

|λ |2 MT)]
+ (m2 −

|κ |2

|λ |2 ) tr [MM†]

Rewrite the potential 
as the sum of 
squares. 

 is a 

sufficient condition 

for .

|λ |2 m2 ≥ |κ |2

⟨M⟩ = 0
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The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
3

B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5

�

�
Figure 1: Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass meq and the gaugino mass mfW for ||2  81�3m2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both meq and mfW are of order the confinement scale ⇤.
The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V ⇥U(1)B vacuum symmetry and described around Eq. (8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the
same as the left but for ||2 > 81�3m2. No phase transition is anticipated for this case.

gaugino, fW , one could replace the fermionic quark A by AfW with the scalar contraction under

spin, which is still 10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AfW )3F

has the right quantum number (8, 3)0,�1/3. So, for the small gaugino mass limit, the global-

symmetry-unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with

an additional massless fermion fW ↵ in the adjoint of [SU(5)]. This cross over is denoted at the

bottom right part of the left panel in Fig. 1. Note that the axes of the phase digram are the soft

terms in the UV theory, but the condition in Eq. (15) is in terms of IR soft terms. Because of

non-perturbative strong dynamics, we do not know the exact relation between UV and IR soft

terms.

In the other corner of the parameter space (left and upper corner of the left panel in Fig. 1)

with meq/⇤ ⌧ 1 and as we increase the gaugino mass mfW , we also anticipate no phase boundary

because the IR spectrum can still contain (8, 3)0, (3, 3)�5 and (6, 1)5 and has the anomaly

matched without a good U(1)R symmetry. For this case, light scalars can help constructing a

fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of Fig. 1, when one increases both mfW and

meq, the situation is di↵erent and a phase boundary must exist. The reason is that when both

gauginos and squarks decouple, there is no fermionic state with (8, 3)0 constructed from fermionic

13

If condition is satisfied, no symmetry 
breaking in SUSY model. 
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The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
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Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the
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Figure 1: Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass meq and the gaugino mass mfW for ||2  81�3m2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both meq and mfW are of order the confinement scale ⇤.
The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V ⇥U(1)B vacuum symmetry and described around Eq. (8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the
same as the left but for ||2 > 81�3m2. No phase transition is anticipated for this case.

gaugino, fW , one could replace the fermionic quark A by AfW with the scalar contraction under

spin, which is still 10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AfW )3F

has the right quantum number (8, 3)0,�1/3. So, for the small gaugino mass limit, the global-

symmetry-unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with

an additional massless fermion fW ↵ in the adjoint of [SU(5)]. This cross over is denoted at the

bottom right part of the left panel in Fig. 1. Note that the axes of the phase digram are the soft

terms in the UV theory, but the condition in Eq. (15) is in terms of IR soft terms. Because of

non-perturbative strong dynamics, we do not know the exact relation between UV and IR soft

terms.

In the other corner of the parameter space (left and upper corner of the left panel in Fig. 1)

with meq/⇤ ⌧ 1 and as we increase the gaugino mass mfW , we also anticipate no phase boundary

because the IR spectrum can still contain (8, 3)0, (3, 3)�5 and (6, 1)5 and has the anomaly

matched without a good U(1)R symmetry. For this case, light scalars can help constructing a

fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of Fig. 1, when one increases both mfW and

meq, the situation is di↵erent and a phase boundary must exist. The reason is that when both

gauginos and squarks decouple, there is no fermionic state with (8, 3)0 constructed from fermionic

13

If I take the gaugino mass to be large, 
anomalies can still match, no phase 
transition is expected. 
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The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
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B1 ⌘ AF F 3 3 �5 4
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B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the
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Figure 1: Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass meq and the gaugino mass mfW for ||2  81�3m2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both meq and mfW are of order the confinement scale ⇤.
The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V ⇥U(1)B vacuum symmetry and described around Eq. (8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the
same as the left but for ||2 > 81�3m2. No phase transition is anticipated for this case.

gaugino, fW , one could replace the fermionic quark A by AfW with the scalar contraction under

spin, which is still 10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AfW )3F

has the right quantum number (8, 3)0,�1/3. So, for the small gaugino mass limit, the global-

symmetry-unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with

an additional massless fermion fW ↵ in the adjoint of [SU(5)]. This cross over is denoted at the

bottom right part of the left panel in Fig. 1. Note that the axes of the phase digram are the soft

terms in the UV theory, but the condition in Eq. (15) is in terms of IR soft terms. Because of

non-perturbative strong dynamics, we do not know the exact relation between UV and IR soft

terms.

In the other corner of the parameter space (left and upper corner of the left panel in Fig. 1)

with meq/⇤ ⌧ 1 and as we increase the gaugino mass mfW , we also anticipate no phase boundary

because the IR spectrum can still contain (8, 3)0, (3, 3)�5 and (6, 1)5 and has the anomaly

matched without a good U(1)R symmetry. For this case, light scalars can help constructing a

fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of Fig. 1, when one increases both mfW and

meq, the situation is di↵erent and a phase boundary must exist. The reason is that when both

gauginos and squarks decouple, there is no fermionic state with (8, 3)0 constructed from fermionic

13

If I keep the gaugino mass small but 
take squark masses to be large: 

Replace mesino with , satisfy 

anomalies. 

(AW̃)3F̄

See also Dimopoulos & Preskill, NPB 1982.

PHASE DIAGRAM
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The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
3

B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5

�

�
Figure 1: Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass meq and the gaugino mass mfW for ||2  81�3m2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both meq and mfW are of order the confinement scale ⇤.
The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V ⇥U(1)B vacuum symmetry and described around Eq. (8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the
same as the left but for ||2 > 81�3m2. No phase transition is anticipated for this case.

gaugino, fW , one could replace the fermionic quark A by AfW with the scalar contraction under

spin, which is still 10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AfW )3F

has the right quantum number (8, 3)0,�1/3. So, for the small gaugino mass limit, the global-

symmetry-unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with

an additional massless fermion fW ↵ in the adjoint of [SU(5)]. This cross over is denoted at the

bottom right part of the left panel in Fig. 1. Note that the axes of the phase digram are the soft

terms in the UV theory, but the condition in Eq. (15) is in terms of IR soft terms. Because of

non-perturbative strong dynamics, we do not know the exact relation between UV and IR soft

terms.

In the other corner of the parameter space (left and upper corner of the left panel in Fig. 1)

with meq/⇤ ⌧ 1 and as we increase the gaugino mass mfW , we also anticipate no phase boundary

because the IR spectrum can still contain (8, 3)0, (3, 3)�5 and (6, 1)5 and has the anomaly

matched without a good U(1)R symmetry. For this case, light scalars can help constructing a

fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of Fig. 1, when one increases both mfW and

meq, the situation is di↵erent and a phase boundary must exist. The reason is that when both

gauginos and squarks decouple, there is no fermionic state with (8, 3)0 constructed from fermionic

13

If I take both SUSY breaking parameters 
to be large, cannot satisfy anomalies in 
same way. 

Must have a phase transition. 

PHASE DIAGRAM
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SYMMETRY BREAKING

26

Let’s now assume that condition is not 
satisfied, symmetry breaking will happen 
even for small SUSY breaking.  

Which direction is symmetry broken? 

Not enough symmetries to diagonalize M. 

Let’s guess.

( )
3

8Mai =
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SUSY - I

27

One option:

⟨Mai⟩ =

0 0 0
f 0 0
0 0 0
0 0 0
0 f 0
0 0 0
0 0 f
0 0 0

SU(3)A × SU(3)F̄ × U(1)B → SO(3)V × U(1)B

Can compute fermion spectrum from superpotential: 

Massless fermion: 

Massless bosons:

(3)−5 ⊂ B1 = A F̄ F̄

(5)0 + (5)0 + (3)0 ⊂ M
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SUSY - I EVIDENCE

28

We think SUSY I the minimum for small SUSY breaking. The evidence: 

•Spectrum satisfies ’t Hooft anomaly constraints.  

•3 generation analogue of 1 generation answer.  

•Appears to be global minimum of potential as long as there is any 
symmetry breaking.  Tried many other possibilities, did not find lower 
one. 

More in the paper. 
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PHASE DIAGRAM
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The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
3

B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5

With SUSY I, only  states are 

massless.  

Can be anywhere in the plane. 

B1

�

�
Figure 1: Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass meq and the gaugino mass mfW for ||2  81�3m2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both meq and mfW are of order the confinement scale ⇤.
The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V ⇥U(1)B vacuum symmetry and described around Eq. (8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the
same as the left but for ||2 > 81�3m2. No phase transition is anticipated for this case.

gaugino, fW , one could replace the fermionic quark A by AfW with the scalar contraction under

spin, which is still 10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AfW )3F

has the right quantum number (8, 3)0,�1/3. So, for the small gaugino mass limit, the global-

symmetry-unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with

an additional massless fermion fW ↵ in the adjoint of [SU(5)]. This cross over is denoted at the

bottom right part of the left panel in Fig. 1. Note that the axes of the phase digram are the soft

terms in the UV theory, but the condition in Eq. (15) is in terms of IR soft terms. Because of

non-perturbative strong dynamics, we do not know the exact relation between UV and IR soft

terms.

In the other corner of the parameter space (left and upper corner of the left panel in Fig. 1)

with meq/⇤ ⌧ 1 and as we increase the gaugino mass mfW , we also anticipate no phase boundary

because the IR spectrum can still contain (8, 3)0, (3, 3)�5 and (6, 1)5 and has the anomaly

matched without a good U(1)R symmetry. For this case, light scalars can help constructing a

fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of Fig. 1, when one increases both mfW and

meq, the situation is di↵erent and a phase boundary must exist. The reason is that when both

gauginos and squarks decouple, there is no fermionic state with (8, 3)0 constructed from fermionic

13
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ANOMALY MEDIATED SUSY BREAKING

31

Simplest method of breaking SUSY is anomaly mediation (AMSB). 

All soft parameters dictated by one parameter:  . 

Soft parameters are RG invariant and UV insensitive. 

m3/2

Randall, Sundrum, hep-th/9810155. 
Giudice, Luty, Murayama, Rattazzi, hep-ph/9810442.

Vtree = m3/2 (ϕi
∂W
∂ϕi

− 3W)
Pomarol, Rattazzi, hep-ph/9903048. 
Boyda, Murayama, Pierce, hep-ph/0107255.
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AMSB + STRONG COUPLING
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All consistent with smooth extrapolation to large  .m3/2

AMSB + STRONG COUPLING
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All consistent with smooth extrapolation to large  .m3/2
See also Dine, Yu, arXiv:2205.00115 and  
Karasik, Onder, Tong, arXiv:2208.07842.

AMSB + STRONG COUPLING
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AMSB SCALAR POTENTIAL 

34

Can compute full potential analytically.  

Can do same complete the square technique. 

The SUSY preserving F -terms and the SUSY breaking A-terms can both be written in terms

of the derivatives of the superpotential with respect to the fields:

dW�

dMai
=

3

18
� fabc✏ijkM bjM ck ,

dW⇣

dMai
= ⇣✏↵�� B��

2 (T a)↵� B
�
1 i ,

dW⇣

dB��
2

= ⇣ ✏↵��Mai(T a)↵� B
�
1 i ,

dW⇣

dB�i
1

= ⇣ ✏↵�� B��
2 Mai (T a)↵� . (44)

The supersymmetric potential is

Vsusy =

✓
dW�

dMai
+

dW⇣

dMai

◆✓
dW�

dMai
+

dW⇣

dMai

◆⇤

+
dW⇣

dB�i
1

✓
dW⇣

dB�i
1

◆⇤

+
dW⇣

dB��
2

✓
dW⇣

dB��
2

◆⇤

. (45)

The soft terms are

V /susy =

✓
A1

18
� fabc ✏ijk Mai M bj M ck + A2 ⇣ ✏

↵�� B��
2 Mai(T a)↵� B

�
1 i + h.c.

◆

+m2
1

X

�i

|B�
1 i|2 +m2

2

X

��

|B��
2 |2 +m2

3

X

ai

|Mai|2 (46)

=

✓
1

3
A1 M

ai dW�

dMai
+ A2 B

��
2

dW⇣

dB��
2

+ h.c.

◆
+m2

1

X

�i

|B�
1 i|2 +m2

2

X

��

|B��
2 |2 +m2

3

X

ai

|Mai|2 ,

where the Ai and mi parameters can be read from Eq. (27). The sum of the two potentials can

be rewritten as

Vsusy + V /susy =

����
dW�

dMai
+

dW⇣

dMai
+

1

3
A⇤

1M
ai⇤
����
2

+

����
dW⇣

dB��
2

+ (A⇤
2 �

1

3
A⇤

1)B
��⇤
2

����
2

+

����
dW⇣

dB�i
1

����
2

+m2
1

X

�i

|B�
1 i|2 +

 
m2

2 �
����A2 �

1

3
A1

����
2
!
X

��

|B��
2 |2 +

 
m2

3 �
����
1

3
A1

����
2
!
X

ai

|Mai|2 . (47)

The su�cient condition for no symmetry breaking is then

m2
1 � 0 ,

m2
2 �

����A2 �
1

3
A1

����
2

� 0 ,

m2
3 �

����
1

3
A1

����
2

� 0 . (48)

Plugging in the formulae for m1,2,3 and A1,2 from Eqs. (19)–(21) and (24)–(26), the inequalities

22
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Can compute full potential analytically.  

Can do same complete the square technique. 

The SUSY preserving F -terms and the SUSY breaking A-terms can both be written in terms

of the derivatives of the superpotential with respect to the fields:

dW�

dMai
=

3

18
� fabc✏ijkM bjM ck ,

dW⇣

dMai
= ⇣✏↵�� B��

2 (T a)↵� B
�
1 i ,

dW⇣

dB��
2

= ⇣ ✏↵��Mai(T a)↵� B
�
1 i ,

dW⇣

dB�i
1

= ⇣ ✏↵�� B��
2 Mai (T a)↵� . (44)

The supersymmetric potential is

Vsusy =

✓
dW�

dMai
+

dW⇣

dMai

◆✓
dW�

dMai
+

dW⇣

dMai

◆⇤

+
dW⇣

dB�i
1

✓
dW⇣

dB�i
1

◆⇤

+
dW⇣

dB��
2

✓
dW⇣

dB��
2

◆⇤

. (45)

The soft terms are

V /susy =

✓
A1

18
� fabc ✏ijk Mai M bj M ck + A2 ⇣ ✏

↵�� B��
2 Mai(T a)↵� B

�
1 i + h.c.

◆

+m2
1

X

�i

|B�
1 i|2 +m2

2

X

��

|B��
2 |2 +m2

3

X

ai

|Mai|2 (46)

=

✓
1

3
A1 M

ai dW�

dMai
+ A2 B

��
2

dW⇣

dB��
2

+ h.c.

◆
+m2

1

X

�i

|B�
1 i|2 +m2

2

X

��

|B��
2 |2 +m2

3

X

ai

|Mai|2 ,

where the Ai and mi parameters can be read from Eq. (27). The sum of the two potentials can

be rewritten as

Vsusy + V /susy =

����
dW�

dMai
+

dW⇣

dMai
+

1

3
A⇤

1M
ai⇤
����
2

+

����
dW⇣

dB��
2

+ (A⇤
2 �

1

3
A⇤

1)B
��⇤
2

����
2

+

����
dW⇣

dB�i
1

����
2

+m2
1

X

�i

|B�
1 i|2 +

 
m2

2 �
����A2 �

1

3
A1

����
2
!
X

��

|B��
2 |2 +

 
m2

3 �
����
1

3
A1

����
2
!
X

ai

|Mai|2 . (47)

The su�cient condition for no symmetry breaking is then

m2
1 � 0 ,

m2
2 �

����A2 �
1

3
A1

����
2

� 0 ,

m2
3 �

����
1

3
A1

����
2

� 0 . (48)

Plugging in the formulae for m1,2,3 and A1,2 from Eqs. (19)–(21) and (24)–(26), the inequalities

22

Sufficient condition for 
no symmetry breaking:

The SUSY preserving F -terms and the SUSY breaking A-terms can both be written in terms

of the derivatives of the superpotential with respect to the fields:

dW�

dMai
=

3

18
� fabc✏ijkM bjM ck ,

dW⇣

dMai
= ⇣✏↵�� B��

2 (T a)↵� B
�
1 i ,

dW⇣

dB��
2

= ⇣ ✏↵��Mai(T a)↵� B
�
1 i ,

dW⇣

dB�i
1

= ⇣ ✏↵�� B��
2 Mai (T a)↵� . (44)

The supersymmetric potential is

Vsusy =

✓
dW�

dMai
+

dW⇣

dMai

◆✓
dW�

dMai
+

dW⇣

dMai
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+
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dB�i
1

✓
dW⇣

dB�i
1

◆⇤

+
dW⇣

dB��
2

✓
dW⇣

dB��
2

◆⇤

. (45)

The soft terms are

V /susy =

✓
A1

18
� fabc ✏ijk Mai M bj M ck + A2 ⇣ ✏

↵�� B��
2 Mai(T a)↵� B

�
1 i + h.c.
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+m2
1

X
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2

X
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=

✓
1
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2

X
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3

X

ai

|Mai|2 ,

where the Ai and mi parameters can be read from Eq. (27). The sum of the two potentials can

be rewritten as

Vsusy + V /susy =

����
dW�

dMai
+

dW⇣

dMai
+

1

3
A⇤

1M
ai⇤
����
2

+

����
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dB��
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2 �

1

3
A⇤

1)B
��⇤
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dB�i
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1
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X
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|B��
2 |2 +

 
m2

3 �
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1

3
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ai

|Mai|2 . (47)

The su�cient condition for no symmetry breaking is then

m2
1 � 0 ,

m2
2 �

����A2 �
1

3
A1

����
2

� 0 ,

m2
3 �

����
1

3
A1

����
2

� 0 . (48)

Plugging in the formulae for m1,2,3 and A1,2 from Eqs. (19)–(21) and (24)–(26), the inequalities

22
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Can compute full potential analytically.  

Can do same complete the square technique. 

The SUSY preserving F -terms and the SUSY breaking A-terms can both be written in terms

of the derivatives of the superpotential with respect to the fields:

dW�

dMai
=

3

18
� fabc✏ijkM bjM ck ,

dW⇣

dMai
= ⇣✏↵�� B��

2 (T a)↵� B
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1 i ,
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2 Mai (T a)↵� . (44)

The supersymmetric potential is

Vsusy =
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dW�
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. (45)

The soft terms are

V /susy =
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where the Ai and mi parameters can be read from Eq. (27). The sum of the two potentials can
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The su�cient condition for no symmetry breaking is then
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Plugging in the formulae for m1,2,3 and A1,2 from Eqs. (19)–(21) and (24)–(26), the inequalities
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Sufficient condition for 
no symmetry breaking:
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The su�cient condition for no symmetry breaking is then
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Plugging in the formulae for m1,2,3 and A1,2 from Eqs. (19)–(21) and (24)–(26), the inequalities

22

in Eq. (48) can be written in terms of the unknown couplings in the superpotential. We get:

69|⇣|4 + 4|⇣|2|�|2 � 0 ,

19|⇣|4 + 4 |⇣|2|�|2 � 0 ,

1161|⇣|4 + 216|⇣|2|�|2 + 80|�|4 � 0 , (49)

which are all satisfied for any values of ⇣ and �. This completes the proof that potential in

the AMSB scenario cannot have global symmetry breaking including U(1)B or the B1 and B2

directions.
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There is no symmetry breaking in 

AMSB with . 

This conclusion is exact, in the 
sense of the other AMSB papers.  

Must be a phase transition as  

is increased. 

m3/2 ≪ Λ

m3/2

�

�

Figure 1: Left panel: schematic plot to show the phase diagram of the theory in terms of the
squark mass meq and the gaugino mass mfW for ||2  81�3m2 (this condition is satisfied for
anomaly-mediated SUSY breaking.). A phase boundary separating the symmetry-breaking and
symmetry-preserving phases exists when both meq and mfW are of order the confinement scale ⇤.
The detailed parameter dependence for the phase boundary is unknown. The SUSY-I vacuum
with SO(3)V ⇥U(1)B vacuum symmetry and described around Eq. (8) is conjectured to be the
global vacuum for the non-supersymmetric theory in the upper right corner. Right panel: the
same as the left but for ||2 > 81�3m2. No phase transition is anticipated for this case.

gaugino, fW , one could replace the fermionic quark A by AfW with the scalar contraction under

spin, which is still 10 under [SU(5)] and has U(1)R charge zero. The fermionic state (AfW )3F

has the right quantum number (8, 3)0,�1/3. So, for the small gaugino mass limit, the global-

symmetry-unbroken vacuum is smoothly connected to the UV non-supersymmetric theory with

an additional massless fermion fW ↵ in the adjoint of [SU(5)]. This cross over is denoted at the

bottom right part of the left panel in Fig. 1. Note that the axes of the phase digram are the soft

terms in the UV theory, but the condition in Eq. (15) is in terms of IR soft terms. Because of

non-perturbative strong dynamics, we do not know the exact relation between UV and IR soft

terms.

In the other corner of the parameter space (left and upper corner of the left panel in Fig. 1)

with meq/⇤ ⌧ 1 and as we increase the gaugino mass mfW , we also anticipate no phase boundary

because the IR spectrum can still contain (8, 3)0, (3, 3)�5 and (6, 1)5 and has the anomaly

matched without a good U(1)R symmetry. For this case, light scalars can help constructing a

fermionic state with the right quantum number as (8, 3)0.

Around the diagonal direction in the left panel of Fig. 1, when one increases both mfW and

meq, the situation is di↵erent and a phase boundary must exist. The reason is that when both

gauginos and squarks decouple, there is no fermionic state with (8, 3)0 constructed from fermionic

13
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Now understand SU(5) theory for 

. What about others?   

2 flavour theory has different 
anomaly matching.

NF = 1, 3

MSc thesis by Jonathan Ponnudurai.

Witten, PLB 1982.

In non-SUSY theory can match 
anomalies with two states. 

In SUSY case, anomaly 
matching is impossible. 

Proves SB!χ
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This theory is qualitatively 
different than with .Nc ≥ 3 [SU(2)] SU(6) U(1)R

q 2 6 1/3

W↵ 3 1 1

M = q2 15 2/3

Table 4: 2 colour sqcd

[SU(3)] [SU(2)L] [U(1)Y ] U(1)B�L

QL 3 2 1/6 1/3

uR 3 1 �2/3 �1/3

dR 3 1 1/3 �1/3

LL 1 2 �1/2 �1

eR 1 1 1 +1

Table 5: SM

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

Our conventions for the generators as well as the anomaly coe�cients of various representations

are given in App. ??.

We attempt to construct an IR theory of massless gauge-invariant fermionic composites

that match the anomalies. There are an infinite number of such composites: AF F , A5, A4F 3

etc., and one can also construct composites using Hermitian conjugate fields such as A2F
†
,

A3(F
†
)4, etc. In App. ??, we will show that all fermionic gauge-invariant bound states have

U(1)B quantum number that is an odd integer. Given the infinite number of possible bound

states, there are infinitely many solutions to the anomaly matching equations. We present

two of the simplest solutions in Tables ?? and ??. Note that for the (F
5
)† state in Table ??,

additional angular momentum among the constituents is required to have a 3 representation

under SU(3)F and a fully-anti-symmetric wave function. From this analysis, we cannot rule out

a low energy theory with no global symmetry breaking, although the spectra of the IR baryonic

states in Table ?? and Table ?? are quite complicated and we consider this possibility somewhat

2
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†
,
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)4, etc. In App. ??, we will show that all fermionic gauge-invariant bound states have

U(1)B quantum number that is an odd integer. Given the infinite number of possible bound

states, there are infinitely many solutions to the anomaly matching equations. We present

two of the simplest solutions in Tables ?? and ??. Note that for the (F
5
)† state in Table ??,

additional angular momentum among the constituents is required to have a 3 representation

under SU(3)F and a fully-anti-symmetric wave function. From this analysis, we cannot rule out

a low energy theory with no global symmetry breaking, although the spectra of the IR baryonic

states in Table ?? and Table ?? are quite complicated and we consider this possibility somewhat

2

Wdyn = ϵabcdef MabMcdMef ≡ Pf M

Seiberg, hep-th/9402044.
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AMSB + SQCD WITH 2 COLOURS
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Wdyn = κ Pf M

V = |κ |2 ∂Pf M
∂Mij

2

+
27 |κ |4

1024π4
|m3/2 |2 |M |2 −

9
32π2

κ m3/2 Pf M

Add anomaly meditated SUSY breaking to theory. Need one loop correction.

Can use complete the square trick and get sum of positive terms: 

⟨M⟩ = 0 .

Hassan Easa PhD thesis,  Csaki et. al., arXiv:2212.03260. de Lima, DS, arXiv:2307.13154.
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NON-SUSY QCD WITH 2 COLOURS
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With only quarks, gauge invariant 
bound states have even number 
of fermions.  

Gauge invariant bound states all 

bosonic, no way to satisfy  

’t Hooft anomaly.  

Must be symmetry breaking. 

SU(6)

[SU(2)] SU(6) U(1)R

q 2 6 1/3

W↵ 3 1 1

M = q2 15 2/3

Table 4: 2 colour sqcd

[SU(3)] [SU(2)L] [U(1)Y ] U(1)B�L

QL 3 2 1/6 1/3

uR 3 1 �2/3 �1/3

dR 3 1 1/3 �1/3

LL 1 2 �1/2 �1

eR 1 1 1 +1

Table 5: SM

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

Our conventions for the generators as well as the anomaly coe�cients of various representations

are given in App. ??.

We attempt to construct an IR theory of massless gauge-invariant fermionic composites

that match the anomalies. There are an infinite number of such composites: AF F , A5, A4F 3

etc., and one can also construct composites using Hermitian conjugate fields such as A2F
†
,

A3(F
†
)4, etc. In App. ??, we will show that all fermionic gauge-invariant bound states have

U(1)B quantum number that is an odd integer. Given the infinite number of possible bound

states, there are infinitely many solutions to the anomaly matching equations. We present

two of the simplest solutions in Tables ?? and ??. Note that for the (F
5
)† state in Table ??,

additional angular momentum among the constituents is required to have a 3 representation

under SU(3)F and a fully-anti-symmetric wave function. From this analysis, we cannot rule out

a low energy theory with no global symmetry breaking, although the spectra of the IR baryonic

states in Table ?? and Table ?? are quite complicated and we consider this possibility somewhat

2

This theory also has a phase 

transition as you increase .m3/2



DANIEL STOLARSKI     Feb 7, 2025      U of Toronto
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Result is leading order in . 

Next term in perturbation 
expansion appears in Kahler 
potential:  

 

Can we see phase transition at 
NLO?

m3/2/Λ

K ∼
(M†M)2

Λ2
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Result is leading order in . 

Next term in perturbation 
expansion appears in Kahler 
potential:  

 

Can we see phase transition at 
NLO?

m3/2/Λ

K ∼
(M†M)2

Λ2

J
H
E
P
1
0
(
2
0
2
3
)
0
2
0

Figure 4. Phase diagram at one-loop including the first order Kähler correction for Nc = 2 Nf = 3
for m3/2 = 0.1Λ. The large red region is s-confining, the green triangle on the upper right is
diagonal breaking: ξ1 = ξ2 = ξ3 = φ ̸= 0 and |φ| < 1, and the hashed black region are symmetry
breaking points outside the EFT (We here consider a more conservative condition of |φ| > 0.5Λ).
The symmetry breaking solution has a feature that as we change m3/2, we preserve the shape of
this curve by rescaling κ → κm3/2/(0.1Λ), obtaining then the phase diagram for any m3/2.

We can have a better understanding of the boundary between the s-confining region
and symmetry breaking by using Sturm’s theorem [53] and obtaining the following no
symmetry breaking condition:

−29792c312m6
12 − 18c212κ2m4

3/2(435γV + 226γ̇V − 336)

+27c12κ4m2
3/2
(
81γ2

V + 420γV + 32γ̇V + 248
)
+ 864κ6 > 0 . (5.11)

For one-loop and small κ we have the solution:

c12 ≈
3
(
9 + 2

√
462

)
κ2

266m2
3/2

. (5.12)

We can see this peculiar effect that the symmetry breaking solutions for small couplings
are moving outside of the EFT signaling that this region is still sensitive to higher-order
terms and nothing can be said at this truncation level. Additionally, the existence of a
small region with χSB inside the EFT regime looks promising, but at the same time, the
values necessary of the Wilson coefficient could be a signal that we are outside of the
convergence of the EFT and once again signaling the sensitivity of what happens at higher
orders. As we vary m3/2, the symmetry breaking solution maintains the same shape while
undergoing rescaling wherein κ transforms to κm3/2/(0.1Λ). Consequently, we obtain the
phase diagram corresponding to any value of m3/2 from figure 4.

As in the Nc = 3 case from section 4, there is no clear way to perform matching of
the Lagrangian parameters at Λ to have an accurate better picture of what happens in the
theory. Exploring higher-order terms could help better explore the phase diagram as we

– 17 –

Kind of.

de Lima, DS, arXiv:2307.13154.
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QCD WITH MORE FLAVOURS

42

QCD with  is also s-confining and described by dynamical 

superpotential in terms of mesons and baryons. 

Perturbative analysis points to QCD-like vacuum: 

 and .

Nf = Nc + 1

⟨M⟩ ∼ 1 ⟨B⟩ = ⟨B̄⟩ = 0

Seiberg, hep-th/9402044.

Wdyn = κ BMB̄ −
λ

ΛNf −3 det M

Murayama, 2104.01179. Csaki et. al., arXiv:2212.03260.
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Explore potential numerically:

NUMERICAL EXPLORATION

Appears to be no dependence on . No direct dependence on ! 

A phase boundary in .

λ m3/2

κ

J
H
E
P
1
0
(
2
0
2
3
)
0
2
0

Figure 1. Phase diagram of κ vs λ for Nc = 3 (top) and Nc = 8 (bottom) at one and three-loops
(left to right). The two-loop result has χSB for all values of κ as explained in the text. These
results are the boundary obtained from the numerical minimizations and they do not depend on
m3/2. In red, at the top, we have the region with unbroken symmetry. The brown middle region
also has its minimum at the origin, but it contains a local minimum with QCD-like χSB. In the
green region, the QCD-like χSB vacuum is the global minimum. The line indicates the RG flow
from the NDA value at Λ. The star indicates the value of the couplings which starts at NDA and
ends at m3/2 = 0.1Λ.

phase to s-confining. The change in sign of γ̇M is a clear indication that we are moving
outside the regime of validity of perturbation theory.

In figure 1 we applied the NDA value as the upper bound on κ, but since we have
the higher-loop information we can do better. As we include both two and three-loop
contributions to the anomalous dimensions, we can then compute a perturbativity bound
by restricting that a given contribution is always larger than the next loop order. This
pertubativity bound depends on which observable we are interested in. Since the QCD-like
χSB vacuum is mostly sensitive to γ̇M , we use this as our important observable. We then
compare different orders of the perturbation theory and whenever equality occurs in any
of these comparisons, we have a guarantee that perturbation theory ceases to be a good
description. The strongest bound we obtain is from comparing the one-loop and two-loop
coefficients and gives us the following perturbativity upper bound on κ:

κ < 2π

√
4Nc + 6

5N2
c + 14Nc + 9 . (3.1)

We can visualize the perturbativity bound and the phase diagram as a function of Nc

in figure 2. The phase diagram for arbitrary Nc in figure 2 is obtained from the analytic
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green region, the QCD-like χSB vacuum is the global minimum. The line indicates the RG flow
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ends at m3/2 = 0.1Λ.
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de Lima, DS, arXiv:2307.13154.
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Can extend analysis to higher loops:

Does not change conclusions. 
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Figure 1. Phase diagram of κ vs λ for Nc = 3 (top) and Nc = 8 (bottom) at one and three-loops
(left to right). The two-loop result has χSB for all values of κ as explained in the text. These
results are the boundary obtained from the numerical minimizations and they do not depend on
m3/2. In red, at the top, we have the region with unbroken symmetry. The brown middle region
also has its minimum at the origin, but it contains a local minimum with QCD-like χSB. In the
green region, the QCD-like χSB vacuum is the global minimum. The line indicates the RG flow
from the NDA value at Λ. The star indicates the value of the couplings which starts at NDA and
ends at m3/2 = 0.1Λ.
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Can compare perturbative series order by order:

PERTURBATIVITY?

Phase transition does not appear to be under control. J
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Figure 2. Phase diagram of κ vs Nc, for one and three-loops respectively. The phase diagram
does not depend on m3/2. We use the same colors as in figure 1. The hashed region is outside the
regime of perturbativity which we set by looking at the size of the coefficients of γ̇M .

understanding of the QCD-like vacuum in the next subsection. The phase transition from
the QCD-like χSB to the s-confining vacuum occurs outside the regime of validity of per-
turbation theory. This means that the s-confining vacuum may not be realized in the full
theory.

Furthermore, the possibility that the QCD-like χSB vacuum in the SUSY and non-
SUSY theories are simply connected in theory space as m3/2 is varied remains quite likely.
Additionally, the pertubativity boundary for the two-loop result is exactly when γ̇M changes
sign, which is the reason why there is no s-confining regime at the two-loop level. This
boundary is recovered when we include the three-loop result and there is no more sign
change even when we cross this perturbativity regime.

We can also explore how far we need to flow from Λ starting at the NDA values of
the couplings to reach the perturbative boundary. This result is an extrapolation of the
regime of applicability of these results, as is the NDA in nature, but can be useful to have
an expected value to consider m3/2 small. At one-loop, we can exactly solve the RG flow
of the couplings and we reach the perturbative boundary from NDA for:

log
m3/2

Λ ≈ −15 + 26Nc + 10N2
c

2 (3 + 2Nc)2
. (3.2)

For Nc = 3 we have m3/2
Λ ≈ 0.32 and the value for the ratio slowly gets smaller as we

increase Nc until the saturation point at Nc → ∞ where m3/2
Λ ≈ 0.28. We can see that

flowing from NDA we would be inside the perturbativity region for the values of m3/2 that
we explore. In figure 1 the star indicates the value of the couplings assuming NDA values
and flowing down up to m3/2 = 0.1Λ.

While not shown in figures 1 and 2, our numerical analysis showed that for small
enough λ, the χSB solution becomes a runaway outside of the validity of the EFT. This
signals that the size of the vev scales with a negative power of λ. This is indeed what we
find analytically, and this result still holds in the κ → 0 limit. In the next subsection, we
analytically explore the QCD-like χSB vacuum to derive an expression for both boundaries.
The phase diagram is also independent of m3/2, but thus far we have ignored higher order

– 10 –
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What about higher order terms in ?m3/2/Λ

NLO KAHLER?

Six new parameters 😢. 

Let’s do a numerical scan varying parameters between 0 and 1. 
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We can solve for κ to obtain the lower boundary of the brown region in figures 1 and 2.
For example, at one-loop, we have the global QCD-like χSB vacuum at:

0 ≤ κ <
4π

√
Nc − 2

((Nc + 1)2(2Nc + 3))1/4
. (3.11)

The one-loop boundary goes to zero at Nc → ∞ and the behavior is similar at three-loops.
More importantly, the perturbativity boundary is always lower than the s-confining region
at this loop order.

From this analysis, we can see that without the perturbativity bound, naively one
would expect a phase transition from the QCD-like χSB vacuum to the s-confining one to
occur as we increase m3/2. This ends up not happening because we reach the perturbativity
bound earlier. It is also important to reinforce that the existence of the QCD-like χSB
vacuum is independent of m3/2 at with a leading order Kähler potential.

4 Kähler corrections for Nc = 3 with Nf = 4

Now, let us explore the next order Kähler correction for Nc = 3. This case was the only
one where the perturbativity limit was close to the χSB vacuum, and one could wonder
if perturbations could change this picture. The form of the first correction of the Kähler
potential is independent of Nc and respects the discrete charge conjugation symmetry [46].
Here we are only interested in the contributions to the Kähler potential that contribute to
the scalar potential. Therefore we are left with:

Λ2K6 =
cM1

N2
f

Tr
(
M †M

)2
+ cM2

Nf
Tr
(
M †MM †M

)
+ cB

Nf

(
(B†B)2 + (B̃†B̃)2

)

+ cBB̃

Nf
(B†B)(B̃†B̃) + cMB

N2
f

Tr
(
M †M

) (
B†B + B̃†B̃

)

+ cBMMB

Nf

(
BMM †B† + B̃MM †B̃†

)
, (4.1)

where we normalized the Wilson coefficients such that they are finite in the large Nf limit.
Using NDA we can expect that these coefficients are of order cO ≈ (4π)2 at the strong
scale. Since these are higher dimensional operators they will run faster to zero than the
leading parameters. Inside the perturbativity region, we should expect them to be small.

One thing to notice is that once we write the scalar potential from K6, we get terms
that scale as cO/Λ2, c2O/Λ4 and c3O/Λ6. One must then be careful in enforcing the correct
truncation of the EFT since there are also non-renormalizable terms in the superpotential.
From power counting alone it seems that the inclusion of these Kähler terms is required for
the consistency of the series for higher values of Nc. In this work, we expand the potential
in the Wilson coefficients and keep only the linear contribution.

We again explore this potential using numerical analysis, similar to what was done
in section 3. For simplicity we assume that all the Wilson coefficients are positive to
enforce boundness from below.3 We also consider that the theory does not break the

3We could have cMB and cMB̃ being small and negative numbers, but we do not consider this region.
It is also important to note that boundness from below is not required in an EFT, and there could be an
unstable local minimum in the theory at this truncation level.
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Can see a modified vacuum structure. 

NLO KAHLER?
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Figure 3. Phase diagram for the global minimum in the κ vs λ plane for a random scan of the
coefficients of K6 for fixed m3/2 = 0.1Λ. The different phases are separated into different panels
for better visualization, we have the s-confining vacuum on the left, the broken baryon vacuum in
the middle, and the QCD-like χSB vacuum on the right. The hashed region is the perturbativity
bound on κ.

charge conjugation symmetry between B and B̃ which means that we can still consider the
minimization in the same directions as before. This simplifies the analysis since we keep
only three non-trivial directions, (b, v, x), defined in eq. (2.22).

We conduct numerical investigations on the impact of K6 for Nc = 3 at one-loop.
Since K6 introduces six extra parameters, the resulting phase diagram in the κ vs. λ plane
becomes just a slice of the full phase diagram. To mitigate this problem, we avoid showing
different phases in the same box so we can still distinguish between the various regions.
We investigated the parameter space with this in mind, exploring different hierarchies by
using different samples.

In figure 3 we can see the numerical scan considering a flat prior in all the parameters
for m3/2 = 0.1Λ while restricting the Wilson coefficients to be smaller than one. We also
explored the same diagram for m3/2 = 0.001Λ which we do not show here since it is similar
to figure 3, but with a closer appearance to figure 1. This indicates that as we dial down
m3/2 we are returning to the leading result from figure 1.

One interesting result of the scan is the appearance of a region where baryon number
is spontaneously broken. This does not mean that the theory has a broken baryon phase
since we do not know which point in the κ vs. λ plane is realized. These solutions occur for
small κ and are not deformation from the second global minimum explored in appendix B.

One important feature that becomes difficult to visualize in these figures is the modi-
fication of the runaway solutions which were present for small λ. With the inclusion of the
leading order Kähler correction, all these solutions now become s-confining, and we can
see that in the small λ region we start to populate the s-confining phase for some portion
of the parameter space. This can be seen by the simultaneous increase of the s-confining
solution close to the origin and the absence of χSB solutions in the same region. This is
explored further in appendix B.

We can say that from the numerical analysis, the points which live closer to the per-
turbative boundary were in the QCD-like χSB vacuum. We expect from NDA that the
theory is in this phase, meaning that the NLO corrections did not significantly alter the
theory. In general, it is difficult to draw any significant conclusion without knowing at
least the expected hierarchy of the couplings. If it were possible to calculate some of the
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Nc = 3
m3/2

Λ
= 0.1

No SBχ QCD-likeSpontaneous baryon 
number violation

Hard to draw concrete conclusions without knowing .κ, λ
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HOLOGRAPHY?

48

AdS/CFT correspondence says conformal 
field theories are dual to gravitational 
theories in 5 dimensions. 
Maldacena, hep-th/9711200. Witten, hep-th/9802150.

Work in progress with Cyrus Robertson Orkish. 

Very supersymmetric theories work great in 
AdS/CFT.

What is gravitational dual of Anomaly 
mediation?
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FINITE BARYON DENSITY
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PHASE DIAGRAM
What is the phase diagram of QCD?

Fukushima and Hatsuda, ’11. 

Longstanding difficult 
problem with only partial 
results.
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PHASE DIAGRAM
What is the phase diagram of QCD?

Fukushima and Hatsuda, ’11. 

Longstanding difficult 
problem with only partial 
results.

Focus on . T = 0
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BARYON CHEMICAL POTENTIAL
Look at s-confining SQCD + AMSB + finite baryon density. 

Adding baryon chemical potential gives negative mass squared to 
scalars containing baryon number. 
Harnik, Larsen, Murayama, ’03. 

Start in low energy (hadron) theory:

m2
B =

9
64π4

|κ |4 |m3/2 |2 − 9μ2
B .

QCD-like vacuum destabilized for sufficiently large .μB

Fix  and Nc = 3 Nf = 4
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BARYON VEV
To find baryon vev, need quartic, comes from F-term:

withV = m2
B ( |B |2 + | B̃ |2 ) + κ B B̃

2
m2

B < 0
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To find baryon vev, need quartic, comes from F-term:

withV = m2
B ( |B |2 + | B̃ |2 ) + κ B B̃
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m2

B < 0

Problem: potential is unstable in the  direction!B̃
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BARYON VEV
To find baryon vev, need quartic, comes from F-term:

withV = m2
B ( |B |2 + | B̃ |2 ) + κ B B̃

2
m2

B < 0

Problem: potential is unstable in the  direction!B̃

What now?
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QUARK PHASE
Theory runs to high energy quark phase. AMSB still predicts the potential:

V = m2
q ( |q |2 + | q̄ |2 ) +

g2

6 (q†Taq − q̄†Taq̄)2

m2
q =

5g4

24π4
|m3/2 |2 − μ2

B ≲ 0

Same problem in the direction where .  

Theory appears to run to infinity!

⟨q⟩ = ⟨q̄⟩
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KAHLER TERMS
Maybe we were too quick going over the transition.  

As we approach , higher order Kahler terms become important.B ≃ Λ
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We can solve for κ to obtain the lower boundary of the brown region in figures 1 and 2.
For example, at one-loop, we have the global QCD-like χSB vacuum at:

0 ≤ κ <
4π

√
Nc − 2

((Nc + 1)2(2Nc + 3))1/4
. (3.11)

The one-loop boundary goes to zero at Nc → ∞ and the behavior is similar at three-loops.
More importantly, the perturbativity boundary is always lower than the s-confining region
at this loop order.

From this analysis, we can see that without the perturbativity bound, naively one
would expect a phase transition from the QCD-like χSB vacuum to the s-confining one to
occur as we increase m3/2. This ends up not happening because we reach the perturbativity
bound earlier. It is also important to reinforce that the existence of the QCD-like χSB
vacuum is independent of m3/2 at with a leading order Kähler potential.

4 Kähler corrections for Nc = 3 with Nf = 4

Now, let us explore the next order Kähler correction for Nc = 3. This case was the only
one where the perturbativity limit was close to the χSB vacuum, and one could wonder
if perturbations could change this picture. The form of the first correction of the Kähler
potential is independent of Nc and respects the discrete charge conjugation symmetry [46].
Here we are only interested in the contributions to the Kähler potential that contribute to
the scalar potential. Therefore we are left with:

Λ2K6 =
cM1

N2
f

Tr
(
M †M

)2
+ cM2

Nf
Tr
(
M †MM †M

)
+ cB

Nf

(
(B†B)2 + (B̃†B̃)2

)

+ cBB̃

Nf
(B†B)(B̃†B̃) + cMB

N2
f

Tr
(
M †M

) (
B†B + B̃†B̃

)

+ cBMMB

Nf

(
BMM †B† + B̃MM †B̃†

)
, (4.1)

where we normalized the Wilson coefficients such that they are finite in the large Nf limit.
Using NDA we can expect that these coefficients are of order cO ≈ (4π)2 at the strong
scale. Since these are higher dimensional operators they will run faster to zero than the
leading parameters. Inside the perturbativity region, we should expect them to be small.

One thing to notice is that once we write the scalar potential from K6, we get terms
that scale as cO/Λ2, c2O/Λ4 and c3O/Λ6. One must then be careful in enforcing the correct
truncation of the EFT since there are also non-renormalizable terms in the superpotential.
From power counting alone it seems that the inclusion of these Kähler terms is required for
the consistency of the series for higher values of Nc. In this work, we expand the potential
in the Wilson coefficients and keep only the linear contribution.

We again explore this potential using numerical analysis, similar to what was done
in section 3. For simplicity we assume that all the Wilson coefficients are positive to
enforce boundness from below.3 We also consider that the theory does not break the

3We could have cMB and cMB̃ being small and negative numbers, but we do not consider this region.
It is also important to note that boundness from below is not required in an EFT, and there could be an
unstable local minimum in the theory at this truncation level.
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KAHLER TERMS
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The one-loop boundary goes to zero at Nc → ∞ and the behavior is similar at three-loops.
More importantly, the perturbativity boundary is always lower than the s-confining region
at this loop order.

From this analysis, we can see that without the perturbativity bound, naively one
would expect a phase transition from the QCD-like χSB vacuum to the s-confining one to
occur as we increase m3/2. This ends up not happening because we reach the perturbativity
bound earlier. It is also important to reinforce that the existence of the QCD-like χSB
vacuum is independent of m3/2 at with a leading order Kähler potential.
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Now, let us explore the next order Kähler correction for Nc = 3. This case was the only
one where the perturbativity limit was close to the χSB vacuum, and one could wonder
if perturbations could change this picture. The form of the first correction of the Kähler
potential is independent of Nc and respects the discrete charge conjugation symmetry [46].
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where we normalized the Wilson coefficients such that they are finite in the large Nf limit.
Using NDA we can expect that these coefficients are of order cO ≈ (4π)2 at the strong
scale. Since these are higher dimensional operators they will run faster to zero than the
leading parameters. Inside the perturbativity region, we should expect them to be small.

One thing to notice is that once we write the scalar potential from K6, we get terms
that scale as cO/Λ2, c2O/Λ4 and c3O/Λ6. One must then be careful in enforcing the correct
truncation of the EFT since there are also non-renormalizable terms in the superpotential.
From power counting alone it seems that the inclusion of these Kähler terms is required for
the consistency of the series for higher values of Nc. In this work, we expand the potential
in the Wilson coefficients and keep only the linear contribution.

We again explore this potential using numerical analysis, similar to what was done
in section 3. For simplicity we assume that all the Wilson coefficients are positive to
enforce boundness from below.3 We also consider that the theory does not break the
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Only one term affects runaway direction. 
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KAHLER TERMS
Have 5 parameters: 

•  

•  

•  

•  

•  

κ
λ
cB
m3/2
μB

M =

x 0 0 0
0 v 0 0
0 0 v 0
0 0 0 v

B =

b
0
0
0

B̃ =
b̃
0
0
0

Have (at least) 4 field directions.

Intractable analytically, 
annoying numerically.
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1.0
Vaccua we found:

• QCD-like

• Baryon-number breaking 

• SU(4)2 → SU(3)2

• SU(4)2 → SU(3)

Last two are not in the QCD 
literature (I think).

Preliminary
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CONCLUSIONS

57

Explored interesting chiral SU(5) theory: likely vacuum has 
SO(3)xU(1) symmetry with 3 fermions and 13 bosons.  

If SUSY theory is coupled to anomaly mediation, there must be a 

phase transition as  increases. 

Explored dynamics of s-confining SQCD-like theories including 
higher order Kahler terms and finite baryon density. Find some 
interesting  phases. 

Finite temperature likely also interesting; to do!

m3/2



THANK
YOU
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WHY LOW ENERGY?

59

“Low energy” is where we do experiments.  

Can ignore non-renormalizable “irrelevant” operators.  

Ultimately this is our goal as field theorists. 

Dynamics almost always become simpler at low energy.  

•QED -> free Maxwell theory. 

•QCD -> theory of pions -> trivial theory.
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VECTOR VS CHIRAL

60

QCD is a vector-like theory. 

• Mass terms are allowed 

• Can make progress on the lattice. 

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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VECTOR VS CHIRAL

61

QCD is a vector-like theory. 

Electroweak theory is chiral. 

• Mass terms forbidden. 

• Interesting dynamics if it confines.

[SU(3)] [SU(2)L] [U(1)Y ] U(1)B�L

QL 3 2 1/6 1/3

uR 3 1 �2/3 �1/3

dR 3 1 1/3 �1/3

LL 1 2 �1/2 �1

eR 1 1 1 +1

Table 3: SM

Our conventions for the generators as well as the anomaly coe�cients of various representations

are given in App. A.

We attempt to construct an IR theory of massless gauge-invariant fermionic composites

that match the anomalies. There are an infinite number of such composites: AF F , A5, A4F 3

etc., and one can also construct composites using Hermitian conjugate fields such as A2F
†
,

A3(F
†
)4, etc. In App. B, we will show that all fermionic gauge-invariant bound states have

U(1)B quantum number that is an odd integer. Given the infinite number of possible bound

states, there are infinitely many solutions to the anomaly matching equations. We present two

of the simplest solutions in Tables 4 and 5. Note that for the (F
5
)† state in Table 5, additional

angular momentum among the constituents is required to have a 3 representation under SU(3)F
and a fully-anti-symmetric wave function. From this analysis, we cannot rule out a low energy

theory with no global symmetry breaking, although the spectra of the IR baryonic states in

Table 4 and Table 5 are quite complicated and we consider this possibility somewhat unlikely.

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 4: One possible solution to the anomaly matching conditions.

2

Kuzmin, Shaposhnikov, Tkachev, PRD ’92. 
Quigg, Shrock, 0901.3958.  
Konstandin, Servant, 1104.4791. 
Bai, Long, 1804.10249. 
And many others. 
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GEORGI GLASHOW GUT

62

Simplest “Grand Unified Theory” 
(GUT) is Georgi Glashow SU(5). 

SU(5) breaks down to 
SU(3)xSU(2)xU(1).

Georgi, Glashow, PRL ’74. ( )SU(5) 
gauge  
bosons

5

5

( )3

2

23

SU(3)

SU(2)
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GEORGI GLASHOW GUT

62

Simplest “Grand Unified Theory” 
(GUT) is Georgi Glashow SU(5). 

SU(5) breaks down to 
SU(3)xSU(2)xU(1).

Georgi, Glashow, PRL ’74. ( )SU(5) 
gauge  
bosons

5

5

( )3

2

23

SU(3)

SU(2)

U(1)
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SU(5) REPRESENTATIONS

63

All SM fermions fit into either  or 

 representation. 

Get exactly the SM fermions  
and no others. 

Scalars are a bit more complicated.

5̄
10
Georgi, Glashow, PRL ’74. 5̄ =

d1

d2

d3
L1
L2

10 =

0 u1 u2 Q11 Q12

−u1 0 u3 Q21 Q22

−u2 −u3 0 Q31 Q32

−Q11 −Q21 −Q31 0 e
−Q12 −Q22 −Q32 −e 0
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TRIANGLE ANOMALIES

64

Anomalies are a quantum breaking of a classical symmetry.  

Can be represented in terms of triangle diagrams. 

  

Computed by counting massless fermions  
charged under a symmetry. 



DANIEL STOLARSKI     Feb 7, 2025      U of Toronto

EXAMPLE: 2-FLAVOUR QCD (MASSLESS)

65

Energy

Quarks + gluons

Strong dynamics

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

In massless limit,  is exact.SU(2)L × SU(2)R

Both SU(2)’s have odd number of fermions so 
both have ’t Hooft anomalies.
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EXAMPLE: 2-FLAVOUR QCD (MASSLESS)

65

Energy

Quarks + gluons

Strong dynamics

Pions

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1

In massless limit,  is exact.SU(2)L × SU(2)R

Both SU(2)’s have odd number of fermions so 
both have ’t Hooft anomalies.

Break ,  pions 

are massless Goldstone bosons. 

SU(2)L × SU(2)R → SU(2)V
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ASIDE: GAUGE ANOMALIES

66

’t Hooft anomalies are not 
gauge anomalies. 

Gauge anomalies = bad. 

SM gauge anomaly cancellation 
appears miraculous. 

[SU(3)] [SU(2)L] [U(1)Y ] U(1)B�L

QL 3 2 1/6 1/3

uR 3 1 �2/3 �1/3

dR 3 1 1/3 �1/3

LL 1 2 �1/2 �1

eR 1 1 1 +1

Table 3: SM

Our conventions for the generators as well as the anomaly coe�cients of various representations

are given in App. A.

We attempt to construct an IR theory of massless gauge-invariant fermionic composites

that match the anomalies. There are an infinite number of such composites: AF F , A5, A4F 3

etc., and one can also construct composites using Hermitian conjugate fields such as A2F
†
,

A3(F
†
)4, etc. In App. B, we will show that all fermionic gauge-invariant bound states have

U(1)B quantum number that is an odd integer. Given the infinite number of possible bound

states, there are infinitely many solutions to the anomaly matching equations. We present two

of the simplest solutions in Tables 4 and 5. Note that for the (F
5
)† state in Table 5, additional

angular momentum among the constituents is required to have a 3 representation under SU(3)F
and a fully-anti-symmetric wave function. From this analysis, we cannot rule out a low energy

theory with no global symmetry breaking, although the spectra of the IR baryonic states in

Table 4 and Table 5 are quite complicated and we consider this possibility somewhat unlikely.

[SU(5)] SU(3)A SU(3)F U(1)B

(AF F )† 1 3 3 5

AF F 1 3 6 -5

A5 1 6 1 5

F
5

1 1 15 -15

A3F
†4

1 1 6 15

A3F
†4

1 1 15 15

2⇥ (A3F
†4
)† 1 1 3 -15

Table 4: One possible solution to the anomaly matching conditions.

2
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ASIDE: SU(N) GAUGE ANOMALIES

67

For general : 

 with        +        is (simplest?) anomaly  

free chiral gauge theory.      

 GUT can explain miraculous anomaly cancellation of SM.   

SU(N)

SU(5) = 10 + 5̄

SU(5)

A( ) = − 1

A( ) = N − 4
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ASIDE: AMSB IN THE MSSM

68

m2
i ∝ −

d γ(ϕi)
dt

∝ − gβg

AMSB is extremely predictive. 

  for SU(2) and U(1). 

Sleptons are tachnyonic,  AMSB is 
excluded.

βg > 0

UV insensitivity means it is very 
difficult to fix this problem. 
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AMSB FOR SU(5)

69

Start with small AMSB. 

Vtree = m3/2 (ϕi
∂W
∂ϕi

− 3W)
Wdyn = λ M3 + ζ B2 M B1

Vtree = 0
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AMSB FOR SU(5)

69

Start with small AMSB. 

Vtree = m3/2 (ϕi
∂W
∂ϕi

− 3W)
Wdyn = λ M3 + ζ B2 M B1

Vtree = 0

A = Scale anomaly, effect is due to 
change of couplings with scale. 

Yukawa couplings are marginal, do 
not change with scale at tree level. 

Do change at loop level.  
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HOW TO BREAK SUSY?

70

The model studied here was also analyzed in Section 8 of Ref. [? ]. They considered the

next-MAC order parameter that has quantum numbers (5, 3, 3)�2 parameterized as Ha
i↵ and

analyzed a potential vacuum of the form hHa
i↵i = �a5�i↵ f . This is quite similar to MAC-I,

breaking the symmetry down to [SU(4)] ⇥ SU(3) ⇥ U(1)B0 , where the SU(3) is the diagonal

combination of the two original SU(3) groups. The A decomposes as (6, 3)0 + (4, 3)5/2, while

F is (4, 3)�5/2 + (1, 3)�5, which allows two di↵erent condensates as in the MAC-I case, and the

6⇥6 condensate breaks SU(3) ! SO(3), but U(1) remains unbroken. The low energy spectrum

is thus identical to MAC-I.

While the MAC method gives the symmetry properties of a potential condensate, it gives

no guidance of the VEV of the condensate, and there are many possibilities when the order

parameter has complicated quantum numbers. We have explored several possibilities here with

di↵erent remnant gauge groups. These gives rise to distinct low energy theories, but this is by

no means a complete classification. If however, other methods to analyze the theory give similar

results, as we will see below for MAC-I, this lends plausibility to those vaccua.

1.3 Phases from SUSY-motivated order parameter

Another way to potentially obtain an understanding of the dynamics of the theory is to consider

the supersymmetric analogue, and then add SUSY-breaking deformations in a controlled way.

Following Refs. [? ? ], the three-generation SUSY GUT theory belongs to the s-confining

scenario (smooth confinement without chiral symmetry breaking), and the low-energy theory

can be fully described by three gauge-invariant composite superfields. The field content of the

UV and IR theories is shown Table 7.

[SU(5)] SU(3)A SU(3)F U(1)B U(1)R

A 10 3 1 1 0

F 5 1 3 �3 2
3

W ↵ 24 1 1 0 1

M ⌘ A3 F 8 3 0 2
3

B1 ⌘ AF F 3 3 �5 4
3

B2 ⌘ A5 6 1 5 0

Table 7: The anomaly-matched supersymmetric UV and IR theories. W↵ is the gauge superfield
whose lowest component is a fermion (gaugino). The R charge is that of the lowest component
of the given superfield.

In addition to the SU(3)A ⇥ SU(3)F ⇥ U(1)B global symmetry of the non-supersymmetric

theory, this theory also possesses a U(1)R theory. The additional symmetry along with the

5

In UV, can have squark mass 
and gaugino mass.  

In IR, scalar (hadrino) mass 
and A terms.  

Symmetry breaking condition 
depends on IR terms. 

Relation between IR and UV is 
non-perturbative. 

Wdyn = λ M3 + ζ B2 M B1
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AMSB AT 1 LOOP

71

Vsoft = m2
1 |B1 |2 + m2

2 |B2 |2 + m3 |M |2

A1 = − 3γ(M) m3/2

+ A1λ M3 + A2ζ B1MB2

A2 = − {γ(M) + γ(B1) + γ(B2)} m3/2

m2
i = −

d γ(ϕi)
dt

|m3/2 |2

All loop effects can be 
written in terms of 
anomalous dimensions. 

Straightforward to 
calculate.
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SUSY - II

72

Another option:

⟨Mai⟩ =

f 0 0
0 f 0
0 0 f
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

SU(3)A × SU(3)F̄ × U(1)B → SU(2)V × U(1)A × U(1)B

Massless fermions: (4)1,−5 ⊂ B1

(5)0,0 + (3)0,0 + (2)3,0

(1)−4,5 ⊂ B2

Massless bosons:

(3)0,0 ⊂ M
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SUSY - III

73

Another option:

⟨Mai⟩ =

0 0 0
0 0 0
0 0 f sin θ
0 0 0
0 0 0
0 0 0
0 0 0
0 0 f cos θ

SU(3)A × SU(3)F̄ × U(1)B

Massless fermions: 6 ⊂ B1

3 ⊂ B2

Massless bosons: 12 (one too many?)

12 ⊂ M

→ U(1)A3 × U(1)A8 × SU(2)F × U(1)B



DANIEL STOLARSKI     Feb 7, 2025      U of Toronto

MAXIMALLY ATTRACTIVE CHANNEL

74

Can estimate fermion condensate 
by seeing which of these diagrams 
is most negative (MAC).  

Can compute in terms of group 
theory factors. 

MAC = .⟨AA⟩ → 5̄

Dimopoulos, Raby, Susskind, NPB ’80.

max C2(r1) + C2(r2) − C2(rc)

r1 r2

See also Bolognesi, Konishi, arXiv:1906.01485.
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MAC + COMPLEMENTARITY

75

Can parameterize symmetry 
breaking by scalar with same 
quantum numbers.  

  order parameter. 

Not enough symmetries to 
diagonalize.

H ∼ (5̄,6,1)2

Fradkin, Shenker, PRD ’79. 

The gauge symmetry is asymptotically free and expected to confine. The IR theory has been

studied in Ref. [? ] and is very likely to have a unique vacuum with no spontaneous global

symmetry breaking. The ’t Hooft anomaly matching conditions are satisfied with a massless

fermionic gauge invariant bound state of the original fields given by AF F . This vacuum is

further supported by the large Nc analysis in Ref. [? ], which indicates that the global baryon

number symmetry (the only gauge-anomaly free global symmetry for the one-generation theory)

is not spontaneously broken, and also by an analysis using anomaly-mediated SUSY breaking [?

].

1 Three-generation confining SU(5) theory

The three-generation SU(5) chiral gauge theory with three flavors of A in 10 and F in 5 of

SU(5) has the gauge-anomaly-free global symmetry SU(3)A ⇥ SU(3)F ⇥ U(1)B. The matter

content and representations under the global symmetry are listed in Table 1.

[SU(5)] SU(3)A SU(3)F U(1)B

A 10 3 1 1

F 5 1 3 �3

Table 1: Matter content of the three-generation SU(5) chiral gauge theory. Here and throughout
we use square brackets [SU(5)] to denote gauge symmetries.

[SU(3)] SU(2)L SU(2)R U(1)B

QL = (uL dL) 3 2 1 1

QR = (uR dR) 3 1 2 �1

Table 2: QCD

1.1 Phase without any global symmetry breaking

Similar to the one-generation case, the IR vacuum could have no global symmetry breaking.

One looks for a consistent IR spectrum to match the ’t Hooft anomaly of the UV theory. For

the UV theory, there are six anomalies to be matched. They are

A(SU(3)A)3 = 10 , A(SU(3)F )3 = 5 , A(SU(3)A)2⇥U(1)B = 10 ,

A(SU(3)F )2⇥U(1)B = �15 , A(U(1)B)3 = �375 , Agrav.2⇥U(1)B = �15 .

1
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MAC I

76

⟨ Ha
ij ⟩ = δa5 δij f

Guess:

Breaking:

[SU(5)] × SU(3)2 × U(1) → [SU(4)] × SO(3)A × SU(3)F × U(1)B′ 

A = (6,3,1)0 + (4,3,1)5/2

F = (4̄,1,3)−5/2 + (1,1,3)−5

 is vectorlike and confines.  

Breaks global symmetry down to . 

MAC I = SUSY I.

[SU(4)]

SO(3)V × U(1)B
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MAC II

77

⟨ Ha
ij ⟩ = δa5 δi3 δj3 f

Guess:

Breaking:

[SU(5)] × SU(3)2 × U(1) → [SU(4)] × SU(2)A × SU(3)F × U(1)B′ 

A = (6,2,1)0 + (6,1,1)0 + (4,2,1)5/2 + (4,1,1)5/2

F = (4̄,1,3)−5/2 + (1,1,3)−5

 confinement further breaks to .[SU(4)] U(1)V × U(1)B′ 
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MAC II SPECTRUM

78

⟨ Ha
ij ⟩ = δa5 δi3 δj3 f

Guess:

Breaking:

[SU(5)] × SU(3)2 × U(1) → U(1)V × U(1)B′ 

Fermions:  (±1, − 5) + (0, − 5)

Bosons: 15 GBs.
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MAC III

79

⟨ Ha
ij ⟩ = δa

i δij f
Guess:

Breaking:

[SU(5)] × SU(3)2 × U(1) → [SU(2)] × SU(3)F × U(1)2
A × U(1)B′ 

 confines and could break .[SU(2)] SU(3)F → SU(2)F

Fermions: 15

Bosons: 11 GBs.
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SUSY QCD

80

Supersymmetric   gauge theory with   flavours of quarks and anti-

quarks understood by Seiberg long ago.  

SQCD + AMSB analyzed for  in first paper. 

If , theory is s-confining and described by dynamical 

superpotential in terms of mesons and baryons.  

SU(Nc) Nf

Nc ≥ 3

Nf = Nc + 1

Seiberg, hep-th/9402044.

Wdyn = BMB − det M

Murayama, 2104.01179.
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MESON AND BARYON

81

(M)i
j = q̄αiqαj

Bi = det q

B̄i = det q̄

For :Nf = Nc + 1 Wdyn = BMB − det M

In terms of the low energy fields, first 
term is tri-linear and classically scale 
invariant.  

2nd term:  .  Only scale 

invariant if   (and   ).

det M ∼ MNf

Nf = 3 Nc = 2
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SU(3) GELL MANN MATRICES

82


