An Experimental Investigation of the Scaling of Columnar Joints
An Experimental Investigation of the Scaling of Columnar Joints
Physical Review E74, 036115 (2006).
Lucas Goehring, Zhenquan Lin and Stephen W.
Morris
Department of Physics,
University of Toronto, 60 St. George St., Toronto, Ontario, Canada M5S 1A7.
Department of Physics, Wenzhou
University, Wenzhou 325027, Zhejiang, China
Columnar jointing is a fracture pattern common in igneous rocks in which cracks self-organize into a roughly hexagonal arrangement, leaving behind an ordered colonnade. We report observations of columnar jointing in a laboratory analog system, desiccated corn starch slurries. Using measurements of moisture density, evaporation rates, and fracture advance rates as evidence, we suggest an advective-diffusive system is responsible for the rough scaling behavior of columnar joints. This theory explains the order of magnitude difference in scales between jointing in lavas and in starches. We investigated the scaling of average columnar cross-sectional areas due to the evaporation rate, the analog of the cooling rate of igneous columnar joints. We measured column areas in experiments where the evaporation rate depended on lamp height and time, in experiments where the evaporation rate was fixed using feedback methods, and in experiments where gelatin was added to vary the rheology of the starch. Our results suggest that the column area at a particular depth is related to both the current conditions, and hysteretically to the geometry of the pattern at previous depths. We argue that there exists a range of stable column scales allowed for any particular evaporation rate.
Movies:
Movies of tomography of evolving columns in corn starch [YouTube]: [1][2][3].
The Experimental Nonlinear Physics Group / Dept. of Physics / University of Toronto / 60 St. George St. Toronto, Ontario, Canada, M5S 1A7. Phone (416) 978 - 6810