Experiments on the dynamic wetting of growing icicles

Experiments on the dynamic wetting
of growing icicles

New Journal of Physics, in press, (2021).

John Ladan and Stephen W. Morris


Department of Physics, University of Toronto,
60 St. George St., Toronto, Ontario, Canada M5S 1A7.

The distinctive shape of an icicle is the outcome of a highly non-equilibrium process involving heat and mass transport in the presence of fluid flowing over an evolving topography. It has previously been shown that the ripple patterns with a near universal wavelength that are observed on many icicles are correlated with small levels of impurities in the feed water. Models of icicle shape evolution, and of the origin of the ripple pattern, require a detailed understanding of how liquid water flows over a growing icicle. The impurity effect is not accounted for by any existing model of ripple formation. Here, we explore this flow dynamics using laboratory-grown icicles with a fluorescent dye as an impurity. Contrary to previous models, we find that the ice is incompletely wetted by the liquid phase, and that the whole process is much more stochastic than has been previously assumed. In addition, the presence of impurities modifies the wetting properties of the ice surface, while the emerging topography interacts with the liquid distribution. There is evidence for mixed-phase ice. These observations must inform any successful model of an impurity-driven rippling instability. Our results have general implications for the morphological evolution of many natural, gravity-driven, wet ice growth processes.

_____________________________________________________________________

Download this paper here: See the movies:

_____________________________________________________________________

Go back to the Nonlinear Physics Group papers page

_____________________________________________________________________

The Experimental Nonlinear Physics Group / Dept. of Physics / University of Toronto / 60 St. George St. Toronto, Ontario, Canada, M5S 1A7. Phone (416) 978 - 6810