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A thread of viscous fluid falling onto a moving surface exhibits a spectacular variety of types of
motion as the surface speed and nozzle height are varied. For modest nozzle heights, four clear
regimes are observed. For large surface speed, the thread is dragged into a stretched centenary con-
figuration which is confined to a plane. As the surface speed is lowered, this exhibits a supercritical
bifurcation to a meandering state. At very low surface speeds, the state resembles the usual coiling
motion of a viscous thread falling on a stationary surface. In between the meandering and coiling
regimes, a window containing a novel multifrequency state, previously called “figures of eight” is
found. Using an improved visualization technique and a fully automated apparatus, we made de-
tailed measurements of the longitudinal and transverse motion of the thread in all these states. We
found that the multifrequency state is characterized by a complex pattern of motion whose main
frequencies are locked in a 3:2 ratio. This state appears and disappears with finite amplitude at

sharp bifurcations without measurable hysteresis.

PACS numbers: 82.40.Bj, 47.20.Gv, 47.20.Ky

A thread of viscous fluid falling onto a surface, such as
honey falling onto a piece of toast, spontaneously wraps
itself into beautiful coils [1-3]. This “liquid rope coiling
instability” is due to the buckling that arrises from the
competition between axial compression and bending as
the thread impacts the surface [4]. Similar buckling in-
stabilities are responsible for folding patterns in sheets
of viscous fluid [5] for example in poured paint [6], flow-
ing cake mix or in certain lava flows [7]. Modifying the
coiling instability by moving the surface onto which the
thread is falling, say by translating the toast uniformly,
leads to a rich panoply of new states of motion. Such
a “fluid mechanical sewing machine” [8-11] is in many
ways more experimentally controllable than pure liquid
rope coiling, which can lead to tall, unstable stacks of
coiled material [1, 2, 12]. These stacks create an ill-
controlled lower boundary condition. Moving the surface
rapidly drags the thread into a stretched catenary [8]
which forms an especially simple, high symmetry basic
state of steady flow. The bifurcation from the catenary
to the single frequency meandering state as the transla-
tion speed is lowered has been examined in detail both
theoretically [9] and experimentally [10]. The meander-
ing state, in which the motion is a simple transverse os-
cillation, is in many ways a reduced symmetry version of
the classic liquid rope coiling instability, but one with a
very well controlled lower boundary condition.

In this paper, we extend the experimental study of the
bifurcations of a dragged viscous thread using a different,
more accurate technique for measuring the position of
the thread and more precise control of the experimental
parameters. We used this improved technique to quanti-
tatively examine the more complex nonlinear states that
occur as the speed is lowered further. To keep things sim-
ple, we confine ourselves to the region of nozzle heights
below which the higher pendulum modes of the thread
remain unexcited. In this regime, a window of fascinat-

ing multi-frequency motion, called “figures of eight” in
Refs [8, 10], appears between the meandering and trans-
lated coiling regimes. It consists of fluid loops falling on
alternate sides of the main thread. Using an automated
apparatus and an improved visualization technique, we
explored the region in and around the “figures of eight”
window. We measured the frequencies, amplitudes and
phase relationships between the longitudinal and trans-
verse motions of the thread and used this analysis to
objectively categorize the states. This makes possible a
much more detailed study of the state diagram and of the
frequency structure of the nonlinearly coupled modes of
the motion. We find, in particular, that despite its name,
the “figures of eight” state contains several modes with
an unexpected 3:2 frequency ratio. The thread executes a
surprisingly delicate and complex dance over the moving
surface to produce the alternating loop pattern.

I. EXPERIMENT

The apparatus, shown schematically in Fig. 1, is an im-
proved version of the one described in Ref. [10]. A 16 mm
wide toothed timing belt formed the moving surface. The
upper surface of the belt was smooth. As the belt passed
over the downstream pulley, a plastic scraper removed
the accumulated fluid, so that the belt returned carrying
only a very thin coating of oil. The removed fluid was
collected and recycled. The belt speed U was controlled
by a very fine 50 000 step/rotation indexed stepper motor
whose drive frequency was provided by a computer con-
trolled signal generator. The motor provided a belt speed
which was several orders of magnitude more precise than
the DC motor used in Ref. [10]. The fluid issued from
the same stainless steel nozzle used previously, whose di-
ameter was d = 8.004+0.02 mm. The vertical height H of
the nozzle above the belt was determined by screw-driven
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FIG. 1: (Color online) A schematic of the experimental appa-
ratus, showing side and top views. The belt moved at speed
U in the direction of the arrow. The camera simultaneously
collected z and y views by means of a 45° mirror.

computer controlled linear translation stage with a full
range of 14 cm. The precision of the stage was £0.5um,
although the absolute accuracy of H, which was mainly
limited by the need to physically locate the H = 0 nozzle
position, was somewhat less than this. Here, we consider
only the simplest motions, which occur for H < 6.0 cm.

The fluid was identical to that used in Ref. [10], namely
30000 ¢St Dow Corning 200@©) silicone oil. This oil is
known to be newtonian and its properties are only very
weakly temperature dependent. The relevant fluid prop-
erties of the oil are its density p, kinematic viscosity v
and surface tension o; these are tabulated in Ref. [10].

The volumetric flow rate @@ from the nozzle was set
by a computer controlled syringe pump. The syringe
could be periodically refilled from a reservoir via a valve
system, as shown in Fig. 1. Using an infuse rate of 1.81
mL/min, we produced a measured mass flux rate of pQ) =
0.027040.0008 g/s. This is, within uncertainty, the same
flux rate as was studied in Ref. [10], which used a gravity
feed system rather than a syringe pump. Although the
syringe pump allows computer controlled variation of p@,
which may lead to some interesting effects [13], in this
paper we kept this quantity fixed.

The various physical properties can be collected into
several dimensionless groups, as discussed in Ref. [10]. By
restricting H to be less than 6 cm, the present version
of the experiment covered a smaller range of states than
that described in Ref. [10]; all of the states that we discuss
below are in the gravitational (G) regime for pure viscous
coiling [13-15].

In previous studies [8, 10], the pattern of motion of
the thread was visualized by a camera looking down
onto the belt. Here, we use a side-view visualization
scheme similar to the one shown in preliminary form
in Fig. 9 of Ref. [10]. As shown in Figs. 1 and 2, a
computer-controlled camera simultaneously imaged the
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FIG. 2: (Color online) The two simultaneous views of the
thread, as seen by the camera. The belt moves to the left
with speed U. The righthand image is the view of the thread
transverse to the belt motion, seen in the mirror, while the
lefthand one is the longitudinal view, seen directly. The hor-
izontal line indicates the portion of the image used to deter-
mine the z and y positions of the thread. The thread is shown
in the catenary state just above the meandering transition.

viscous thread in both a side view (i.e. in the longi-
tudinal plane containing the midline of the belt) and a
front view (i.e. a transverse plane across the width of
the belt). The latter view was provided by a 45° mirror
positioned upstream of the contact point of the thread,
as shown in Fig. 1. The overall position and shape of the
thread was thus imaged in both the x (transverse) and y
(longitudinal) directions, as a function of time.

To image the thread with good contrast, a cool white
flat panel fibre optic light source was positioned off the
downstream end of the belt so that it formed a bright
background for both views in the mirror. The edges of
the transparent thread then show as sharp dark features,
as seen in Fig. 2.

For nozzle heights H < 6.0 cm, the overall shape of the
thread consists of a smooth curve with a single maximum
in the y direction — the maximum being the upstream
position of the “heel” that is formed by the buckled end
of the thread a few mm above the surface of the belt [11].
We selected a horizontal line from each image, as shown
in Fig. 2, and used image analysis along this line to lo-
cate the x and y positions of the thread. The centerline of
the thread was determined with sub-pixel resolution by
fitting to a model of the greyscale expected for a trans-
parent cylinder. These centerline positions are not iden-
tical to the actual contact point of the thread with the
belt, but they are proportional to them. From these po-
sitions, the x and y motion of the contact point can be
reconstructed [16].

This imaging scheme has several advantages over imag-
ing the pattern by viewing the belt from above as was
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FIG. 3: (Color online) The state diagram, obtained by automated variation of H and U, with automated state classification
based on the Fourier spectra of the  and y motions. The window of the alternating loop state (small circles) is bounded on
all sides by the meandering (triangles) and coiling (stars) states. The onset of fluid pendulum behavior occurs for H > 6 cm,

just beyond the righthand edge of this plot.

done previously [8, 10]. The z and y motions are eas-
ily separated and the contrast of the side-view images is
uncluttered by the mesh textures and lighting problems
associated with imaging the belt through the transparent
thread of fluid lying on top of it (c.f. Fig. 2 of Ref. [10]).

II. RESULTS AND DISCUSSION

The automated apparatus allows a systematic explo-
ration of the parameter space spanned by the nozzle
height H and the belt speed U. As in Ref. [10], we left
the other parameters constant and examined the states
of motion as U was increased and decreased, for fixed H.
At each H and U, a time series of images was taken after
a brief settling time. Fig. 3 shows the the resulting phase
diagram.

The various states of the motion of the thread were
automatically characterized by a Fourier technique de-
scribed below. This automated procedure makes it pos-

In the following, we deduce and classify the state of mo-
tion of the thread, as a function of H and U, using 150 s
time series of side view images taken at 25 frames per
second.

sible to obtain orders of magnitude more data than was
available in previous studies [8, 10]. Each data point
in Fig. 3 is the result of a quantitative, objective mea-
surement, rather than a state assigned by an “eyeball”
classification based on scrutinizing images [8, 10].

As has been observed previously, four distinct types of
motion exist over wide areas of the parameter space for
H < 6 cm. At high belt speed, the catenary base state
is found, in which the thread remains in a vertical plane.
As the belt speed is lowered, this bifurcates into a mean-
dering pattern. This non-hysteretic Hopf bifurcation [9]
was studied in detail in Ref. [10].

At the lowest belt speed, the thread executes a trans-
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FIG. 4: (Color online) The Fourier spectra of the z ( solid) and y ( dashed) motions for the (a) meandering (U = 2.23 cm/s),
(b) one side looping (U = 2.19 cm/s), (c) alternating loop (U = 1.60 cm/s) and (d) coiling states (U = 1.00 cm/s). Each panel
shows the power spectra, with a reconstruction of the pattern traced by the tip of the thread on the belt above and an inset
showing the corresponding Lissajous figure. For all these data, H = 5.00 cm. For the Lissajous figures, the upstream belt

direction is at the top.

lated version of the coiling state found for zero belt speed.
In between meandering and translated coiling, there ex-
ists an intriguing state which was called the “figure of
eight” state in previous work [8, 10], but which is bet-
ter termed the “alternating loop” state for reasons that
will become clear below. This state exists in a window
which is bounded above and below by the meandering
and translated coiling states. At the small H end of the
window, it appears to connect to a direct transition be-
tween meandering and coiling, although the very thick
thread and slow dynamics in that region makes precise
definitions difficult. At its high H end, the alternat-

ing loop window adjoins a region of hysteretic transi-
tions between meandering and coiling. The transitions
between the alternating loop and the meandering and
coiling states are direct and not measurably hysteretic.

The most straightforward way to characterize the tip
motion in the lab frame, given by the two time series x(t)
and y(t), is to examine their Fourier spectra. The spectra
associated with four different states are shown in Fig. 4,
for a traverse of the state diagram shown in Fig. 3 cor-
responding to the vertical line H = 5.0 cm. The trivial
catenary state is not shown. In addition to meandering,
alternating loops and coiling, we occasionally found one



side looping, or “kidney bean” states, but these motions
did not appear over any significant area of the state dia-
gram. They tended to occur near the boundaries of the
alternating loop window.

For each of the z(t) and y(¢) time series, the cor-
responding Fourier spectra, calculated with a Hanning
prefilter, are shown in Fig. 4. We can also reconstruct
the tip motion in the reference frame of the belt, and
thus the pattern of fluid left on the belt, by plotting
(x(¢),y(t) — Ut), using the measured belt speed U. These
belt-frame trajectories are also shown in Fig. 4 and re-
semble the top-view images of the pattern on the belt
which were shown in Ref. [10]. Unlike top-view images,
which in Ref. [10] were manually analyzed in the mean-
dering state only, the x(¢t) and y(¢) time series data are
quantitative measurements of the thread motion that can
be analyzed to extract amplitudes and frequencies of mo-
tion in all of the different states the system presents, not
just meandering. The x(t) and y(t) time series contain
information which would be very difficult to extract from
top-view images of the fluid left on the belt.

Finally, the Lissajous figure [17] traced by the tip of
the thread, (x(¢),y(¢)) is shown in the insets of Fig. 4.
Analyses of these kind were automatically carried out for
every point shown in the state diagram in Fig. 3. The
distinct features of the Fourier spectra, discussed below,
were used to automatically determine the state plotted
in the state diagram.

The Fourier spectra of the various states show clearly
the striking simplicity of the motions. The meandering
state shows the obvious cross-belt = oscillation at a fre-
quency related to the Hopf frequency w of the bifurca-
tion [10] locked to a 2w longitudinal y motion. The non-
linear origin of this 2:1 frequency locking was explained
in terms of a simple model in Ref. [10]. The nonlinearity
of the oscillation is manifest in the slight bending distor-
tion of the corresponding Lissajous figure. Similarly, the
spectra of the translated coiling state simply consist of a
single frequency oscillation in the x direction locked to a
m/2 out of phase mode with the same frequency in the
y direction. Its Lissajous figure is nearly a circle, as one
would expect.

The most interesting and surprising Fourier spectra are
those of the alternating side looping and of the rarer one
side looping states. The Fourier spectra of the alternat-
ing side looping state reveals a multimode motion whose
dominant frequencies are locked in a 3:2 ratio. The Lis-
sajous figure shows an unexpectedly complex structure
(which we colloquially call “the Toyota state”). The Lis-
sajous figure is reflection symmetric in the z, or cross-
belt, direction, but not symmetric in the y, or longitu-
dinal, direction. Its tighter upper loop, which describes
the rapid tip motion while the left and right alternating
loops are being executed, is at the upstream end of the
Lissajous figure.

The Lissajous figure for the one side looping, or “kid-
ney bean”, state shows a distorted circle with a sharp
reversal which resembles an x reflection symmetry bro-
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FIG. 5: (Color online) The frequencies of the main modes
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FIG. 6: (Color online) The ratio of the dominant frequencies
of the main x and y modes, vs. U, for H = 4.45 cm, using
the same data as Fig. 5. This shows clearly the 3:2 nature of
the alternating loop state.

ken version of the Lissajous figure for the alternating side
looping state. The Fourier spectrum of the one side loop-
ing state shows a 2:1 frequency locking, with a mixture
of mode amplitudes and phase relationships that is quite
different from the either the meandering or the one side
looping states. The one side looping state, which is only



found in isolated parameter regions, may be observed in
either left handed or right handed versions.

To determine the state plotted on the diagram shown
in Fig. 3, we employed a peak finding algorithm on the
Fourier spectra of the x and y motions and classified
the state according to the frequency ratios of the largest
peaks. Occasional ambiguous time series were classified
as “disordered”. Fig. 5 shows the frequencies of all the
major spectral peaks as a function of the belt speed U for
fixed H = 4.45 cm. It can be observed that no peak fre-
quency remains continuous throughout the variation of
U: small jumps in frequency occur at each state bound-
ary where additional new modes appear.

The meandering state is characterized by a dominant
x mode which appears at the Hopf frequency and there-
after decreases linearly with (U, — U), as discussed in
Ref. [10]. It is accompanied by a frequency doubled y
motion, as discussed above. Within the alternating side
looping window, the z and y motions each have three
dominant frequencies separated by equal frequency in-
crements. The main z mode in the meandering regime
experiences a small upward jump as the alternating side
looping window is entered from above and new x modes
appear at 1/3 and 5/3 of the dominant frequency. Mean-
while, y motions appear at 2/3, 4/3 and twice the fre-
quency of the dominant  mode. As the belt speed is re-
duced into the translated coiling regime, the extra peaks
disappear and the x and y modes lock to one frequency
with a small downward jump. As the U = 0 coiling state
is approached, the single dominant frequency returns to
very close to the Hopf frequency at which meandering
first appears. This agrees with previous calculations and
observations [9, 10] which noted the near coincidence of
these two frequencies.

Fig. 6 shows the ratios of the frequencies of the domi-
nant peaks in the spectra as a function of the belt speed
U. Tt is evident that the alternating looping state, which
was formerly known as the “figure of eight” state, was
poorly named, since its frequency content indicates that
it is nothing like the 2:1 resonance envisioned in Ref. [10].
This nomenclature was based on visual observations only.
In fact, it is the meandering state which exhibits the only
2:1 frequency ratio, while the alternating loop state very
clearly involves a 3:2 locking phenomenon. The x and
y motions in the translated coiling state are of course
locked in a 1:1 ratio.

Fig. 7 shows the amplitudes of the largest Fourier
modes as a function of U for fixed H, using the same
data plotted in the previous figure. The increase in the
amplitude of the z mode as U is decreased below the
onset of meandering was analyzed in detail in Ref. [10],
where it was shown that the amplitude is well described
by the square-root dependence expected for a forward
Hopf bifurcation [9]. Upon the transition into the al-
ternating loop window from meandering as U is further
decreased, the amplitude of the z motion exhibits a sharp
drop while the amplitude of the y motion increases. The
thread behaves as if it is almost inextensible because the
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FIG. 7: (Color online) The amplitudes of the largest x (open
circles) and y ( solid squares) Fourier modes as as a function
of U, for H = 4.45 cm, using the same data as the previous
two Figures.

degree of stretching is limited. Evidently, the amplitudes
must adjust themselves in order to provide the required
arc length without too much stretching as the alternat-
ing loops are traced out. Finally, the amplitudes become
nearly equal in the translated coiling regime, which re-
sembles the symmetric circular coiling found at U = 0.

III. CONCLUSIONS

We have constructed an automated apparatus to ex-
plore the complex motion of a viscous thread falling onto
a moving surface. Holding the nozzle diameter, the vol-
umetric flow rate and fluid parameters constant, we var-
ied the nozzle height H and belt speed U for the lower
range of speeds and heights H < 6.0 cm. This cor-
responds to the gravitational regime [13-15] below the
onset of multifrequency behavior where the pendulum
motions of the thread begin to interfere with the basic
coiling frequency. In this region, the states are relatively
simple and mostly non-hysteretic and the thread takes
on a monotonic shape. Using a side-view visualization
method, we measured the position of the tip of the thread
in the planes transverse and longitudinal to the motion of
the belt. Using a Fourier analysis of these two motions,
we were able to automatically classify the states of the
thread and make a more detailed state diagram based on
objective definitions of the states.

We mapped the catenary, meandering, alternating loop
and translated coiling states, as well as observing a novel
broken symmetry one side looping state that was only
found in isolated regions of the parameter space. The ori-
gin of the symmetry-breaking and the relationship of this
state to the nearby alternating loop state is not obvious.



Although their Lissajous figures appear to be symmetry-
related, their frequency structures are rather different.

Finally, the alternating loop state was revealed to
have a hitherto unsuspected structure in which the main
modes are locked in a 3:2 frequency ratio. The Lis-
sajous figure traced by the tip of the thread in this state
has an intriguing and unexpected multi-looped pretzel
shape. The reconstruction of this surprising shape was
only made possible by side-view visualization. This ob-
servation demonstrates that even the simplest states,
found well below the inertial-gravitational regime of noz-
zle heights for which thread’s higher pendulum modes
become active, can have complex multi-frequency struc-
tures.

At present, there is no detailed theoretical understand-
ing of all these states of motion and the bifurcations be-
tween them. The simplicity of their frequency structure

suggests that a model containing only a few coupled non-
linear modes within the gravitational regime might suffice
to explain the phenomena.
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