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Granular mixtures segregate radially by size when tumbled in a partially filled horizontal drum.
The smaller component moves toward the axis of rotation and forms a buried core, which then splits
into axial bands. Models have generally assumed that the axial segregation is opposed by diffusion.
Using narrow pulses of the smaller component as initial conditions, we have characterized axial
transport in the core. We find that the axial advance of the segregated core is well described by a
self-similar concentration profile whose width scales as tα, with α ∼ 0.3 < 1/2. Thus, the process
is subdiffusive rather than diffusive as previously assumed. We find that α is nearly independent
of the grain type and drum rotation rate within the smoothly streaming regime. We compare our
results to two one-dimensional PDE models which contain self-similarity and subdiffusion; a linear
fractional diffusion model and the nonlinear porous medium equation.

PACS numbers: 46.10.+z,64.75.+g

An interesting property of dry granular materials is
their tendency to separate by size and density under a
wide variety of flow conditions [1–4]. Granular segre-
gation is widely found in nature, and plagues industrial
processes as well. Probably the best controlled and most
widely studied example is segregation along the axis of
a partially filled, horizontal “drum mixer” [5–17]. After
hundreds of drum rotations, an initially mixed binary dis-
tribution of different-sized grains sorts itself into almost
periodic bands along the axis of the drum. These bands
are threaded by a radial core of the smaller grains which
develops prior to axial band formation [7, 8, 12, 15–17].
The radial core typically forms after just a few drum rota-
tions. Accounting for this rich dynamical behaviour has
been the goal of cellular automata models [18], molecular-
dynamics simulations [20] and several continuum theories
[21–27]. The axial bands must somehow be sustained
against being mixed away by the random motion of the
grains. Continuum models have generally assumed that
the random motions mimic normal diffusion, and there-
fore that normal Laplacian gradient terms determine the
short-wavelength cutoff of the axial band pattern. In
this Letter, we experimentally challenge this common as-
sumption. We find, surprisingly, that the axial transport
of the radially segregated core along the drum is slower
than diffusion, i.e. that it is subdiffusive. It is nev-
ertheless described by a self-similar profile which scales
approximately as t1/3. We also find that the self-diffusion
of the larger particles is subdiffusive. These results have
strong implications for models of axial segregation, and
possibly for other theories of granular mixing.

Early theoretical models regarded axial band forma-
tion as the result of a diffusion process with a negative
diffusion coefficient [21, 22, 24]. These models ignore the
radially segregated core, and they cannot account for the
oscillatory transient that precedes axial band formation
in some mixtures [10, 11, 13]. This oscillatory travelling
wave state apparently demands that the basic dynamics

be at least second order in time. A later model due to
Aranson et. al [25, 26] reproduced both axial segregation
as well as the oscillatory transient, while still ignoring the
core. However, we have recently shown that the core dy-
namic is also oscillatory and therefore, the above model
is not adequate [12]. Another model due to Elperin et.

al [27] regards axial segregation as resulting from a radial
core instability leading to a spatially periodic thickening
of the core. Unfortunately, this model cannot account
for the travelling wave state. In all cases, these models
explain the short wavelength cutoff of the axial band pat-
tern as the result of the supposed axial diffusion of the
smaller grains. Below, we show that axial transport is not
well-described by normal diffusion. This is true of either
the smaller grains in a binary mixture or of the larger
grains in a self-mixing process. This falsifies a common,
basic assumption of segregation models.

A few studies have investigated the axial transport of
grains experimentally [15–17, 19], but none have system-
atically investigated the effects of varying grain type and
drum rotation rate. Here we report experiments which
characterize the axial transport of radially segregated
grains using several different grain types and drum rota-
tion rates, starting with a narrow pulse initial condition.

The drum mixer used in all experiments consisted of
a horizontal Pyrex tube, 600 mm long with an inner di-
ameter of 28.5 mm, rotated about its long axis at a con-
stant rotation rate of 0.31 rev/s or 0.62 rev/s. The flow
was smoothly streaming without avalanches. The larger
grains were either cubic white table salt or transparent
glass spheres and had a size range of 300-420 µm. The
smaller grains were either irregularly shaped black hobby
sand or bronze spheres, with a size range of 177-212 µm.
The filled volume fraction of the drum was 28 %. In or-
der to reproducably fill the drum, the grains were loaded
into a long U-shaped channel, which was inserted length-
wise into the drum and rotated to deposit its contents.
This procedure ensures a uniform filling fraction of the
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FIG. 1: a) An image of the shadow of the radial core formed
by 177-212 µm sand grains within 300-420 µm salt grains.
b) The detected edge used to determine the vertical extent
h(x, t) of the core. c) The x integral of h is not constant
in time, and is thus not proportional to the volume of small
grains contained within the radial core. d) The integral of h2

is constant in time and is proportional to the desired concen-
tration.

drum. To obtain reproducible, quantitative dynamical
information, we used a pulse initial condition. The pulse
was made by placing thin spacers in the U-shaped chan-
nel 1.5 mm apart. The 1.5 mm space was filled with the
smaller grains, and the remaining space was filled with
the larger grains.

After a few drum revolutions, the pulse of small grains
forms a subsurface radial core and cannot be observed
using standard surface lighting and video imaging tech-
niques. Instead, we used a bulk visualisation technique
developed by Khan et al [12]. The large grains are
transluscent and the small grains are opaque. When a
bright light source is placed behind the rotating drum,
one can observe a shadow of the radial core on the front
face of the granular sample. This shadow is a two-
dimensional projection of the radial core. A computer
controlled high speed camera was used to observe the ra-
dial core shadow. Five images per drum revolution were
obtained and averaged to determine the evolution of the
radial core. Figure 1a shows a typical image of the radial
core shadow. Using edge detection, the radial core
height h(x, t) was measured as shown in figure 1b, and
expressed as a fraction of the full height of the material
in the drum. If we assume that any cross section of the
three dimensional structure of the radial core is an ellip-
soid, the square of the diameter of the radial core h2 is

FIG. 2: a) Concentration profiles of a spreading radial core
pulse of sand grains within salt grains at various times. b)
Power-law scaling of the FWHM of the radial core pulse.
From the linear fit (yellow line) we find that the width ∝ t0.38.
c) Collapsed concentration profiles of the radial core pulse cor-
responding to (a). The collapse parameter is α = 0.37.

TABLE I: Collapse parameters for the self-similar spreading
of radial cores in various grain types and rotation frequencies.

Large grains Small grains Rotation rate α

300-420 µm 177-212 µm (rev/s)

salt sand 0.31 0.38 ± 0.03

salt sand 0.62 0.37 ± 0.03

glass bronze 0.31 0.31 ± 0.04

glass bronze 0.62 0.29 ± 0.01

glass sand 0.31 0.35 ± 0.03

glass − 0.31 0.34 ± 0.04

salt − 0.31 0.29 ± 0.01

proportional to the volume of small grains contained in
the radial core at each axial position x. Figure 1c shows
the time evolution of the x integral of h, which increases
with time. Figure 1d shows that the x integral of h2 is
constant in time, as it should be for a conserved quantity.
This validates our assumption about the core shape, and
demonstrates that h2 can be used as a local concentration
measure. The error in measurement of h2 corresponding
to an error in h of ± 2 pixels.

For a normal diffusive process, the width of a nar-
row pulse initial condition grows as t1/2. In our experi-
ment, the pulse of small grains do not mix into the larger
ones, but instead the pulse sinks below the surface of the
larger grains forming a radial core, which then spreads
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axially. We can nevertheless ask if this axial spread-
ing is analogous to normal diffusion, as is assumed in
models[21, 22, 24–27]. Figure 2a shows the radial core
concentration profile at different times, for a mixture of
small sand grains and large salt grains. Plotting the
full-width at half-maximum of the concentration profile
against time, we determined the power-law dependence
of the radial core width with time, as shown in figure
2b. From this, we determined that the width scales as
tα, where α < 1/2. This analysis, however, only deter-
mines the power-law time dependence of one arbitrar-
ily chosen dimension of a pulse (here, the half-maximum
width) and not the whole pulse shape. For a symmetric
initial condition, data collapse can test the scaling of the
entire pulse. Figure 2c shows collapsed data correspond-
ing to the concentration profiles in 2a, where the axial
length scale was transformed as x → xt−α and the ax-
ial concentration of small grains C(x, t) was transformed
as C → Ctα. The pulse width increases at the same
rate as the pulse amplitude decreases, thus the spreading
process is self-similar. This implies that the integrated
concentration is constant and that no grains are lost from
the core. The average collapse parameter for large salt
grains and small sand grains with a drum rotation rate
of 0.62 rev/s is α = 0.37 ± 0.03, averaged over 10 runs.
Similar experiments were repeated for different combina-
tions of grains at two drum rotation rates. The results
are shown in table 1 I. We conclude that cores of small
grains spread axially as tα where α ∼ 1/3 < 1/2, inde-
pendent of grain type and drum rotation rate within the
smoothly streaming regime.

It is interesting to compare the spreading of radially
segregated cores of small grains with the non-segregating
self-diffusion of the large grains alone. To observe this
experimentally, some of the large grains were dyed black.
These dyed grains were loaded into a drum full of other-
wise identical white grains with a 1.5 mm wide pulse as
the initial condition. The space-time evolution was ob-
served using standard surface-lighting and imaging tech-
niques [10, 11]. Figure 3a shows the concentration profile
of dyed salt particles at various times. This data was col-
lapsed in a similar way as discussed previously, as shown
in figure 3b. Again, we find a collapse parameter α < 1/2.
For runs using salt grains, α = 0.29 ± 0.01 and for runs
using glass spheres, α = 0.34±0.04, each averaged over 5
runs. Thus, we conclude that the self-diffusion of grains
in the rotating drum is also subdiffusive, even when no
segregation is involved. We discuss some differences be-
tween these two cases below.

In addition to examining the temporal scaling of the
pulse, we can also measure in detail the functional shape
of the scaling solution. Here is it possible to distinguish
between different subdiffusive processes. We have inves-
tigated two candidate models for radial core spreading;
the fractional diffusion equation (FDE) and the porous
medium equation (PME). The fractional diffusion equa-

FIG. 3: a) Concentration profiles of a mixing pulse of dyed
black salt grains surrounded by white salt grains. b) Col-
lapsed concentration profiles corresponding to a). The col-
lapse parameter is α = 0.3.

tion is

∂γ

∂tγ
C(x, t) = D

∂2

∂x2
C(x, t), (1)

where γ = 2α denotes the order of a fractional time
derivative[28, 29]. Solutions of this linear equation have
the property that the width of a narrow pulse initial con-
dition grows as tα, where α ≤ 1/2. If α = 1/2, the
solution reduces to normal Fick diffusion. This FDE
model is often used to describe processes which occur in
spaces where there are temporal or spatial constraints,
such as the flow of tracers through porous media [30].
The FDE has an analytic series solution in terms of Fox’s
H-Functions [28, 29], which forms the self-similar scaling
solution. We also examined the porous medium equation
(PME),

∂

∂t
C(x, t) = D̃

∂2

∂x2
(C(x, t)2). (2)

This nonlinear model describes the spreading of a com-
pact mound, and has the property that for a narrow pulse
initial condition, the width grows as t1/3, and the scaling
solution has a parabolic profile[31].

We fit radial core concentration data collapsed with α
as a free parameter to the series solution of the FDE,
and data collapsed with α = 1/3 to a numerical solution
of the PME, as shown in figure 4a and b respectively.
We find that while both solutions model the collapsed
concentration profiles reasonably well within experimen-
tal error, the PME has a smaller systematic discrepancy,
since the profiles are better described as parabolic. The
FDE solution has exponential wings and inflection points
that are not obvious in the data. We note, however, that
our projection visualization technique may simply be too
insensitive to detect these tails.

We also fit the non-segregating self-diffusion of the
large grains to both models and find that the FDE gives
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a qualitatively better fit because in this case, the concen-
tration profiles have tails within experimental resolution,
while the parabolic PME solution does not. Examples
of these fits to collapsed concentration profiles of mixing
salt grains are shown in figures 4c-d. In all cases, how-
ever, fits to ordinary Fick diffusion with α = 1/2 are very
poor.

In conclusion, our results show that the axial transport
of grains in a rotating tube is a subdiffusive process. This
is true of both small particles comprising a segregated ra-
dial core as well as for surface mixing of larger grains. In
all cases, we find temporally self-similar concentration
profiles that scale approximately as t1/3. These conclu-
sions suggest that spontaneous axial segregation patterns
in such tubes are more weakly damped, in the sense that
they are sustained against slower mixing processes, than
has been previously supposed. The goal of our future
work is to elucidate the connection between axial band
formation and the axial transport of grains, which is still
unclear.

FIG. 4: Collapsed concentration profiles of a black sand ra-
dial core in salt grains fit to: a) the fractional diffusion equa-
tion (yellow line), b) the porous medium equation (yellow
line). Collapsed concentration profiles of mixing dyed black
salt grains fit to: c) the fractional diffusion equation (yellow
line), d) the porous medium equation (yellow line).
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