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Abstract

We present an approach for studying the primary, secondary and tertiary flow transitions in

sheared annular electroconvection. In particular, we describe a Newton-Krylov method based on

time-integration for the computation of rotating waves and amplitude-modulated rotating waves,

and for the continuation of these flows as a parameter of the system is varied. The method exploits

the rotational nature of the flows, and requires only a time-stepping code of the model differential

equations, i.e., it does not require an explicit code for the discretization of the linearized equations.

The linear stability of the solutions is computed to identify the parameter values at which the

transitions occur.

We apply the method to a model of electroconvection that simulates the flow of a liquid crystal

film in the smectic A phase suspended between two annular electrodes, and subjected to an electric

potential difference and a radial shear. Due to the layered structure of the smectic A phase, the

fluid can be treated as two-dimensional and is modeled using the 2-D incompressible Navier-

Stokes equations coupled with an equation for charge continuity. The system is a close analogue

to laboratory-scale geophysical fluid experiments, and thus represents an ideal system in which to

apply the method before its application to these other systems that exhibit similar flow transitions.

In the model for electroconvection, we identify the parameter values at which the primary tran-

sition from steady axisymmetric flow to rotating waves occurs, as well as at which the secondary

transition from the rotating waves to amplitude-modulated rotating waves occurs. In addition, we

locate the tertiary transition, which corresponds to a transistion from the amplitude-modulated

waves to a three-frequency flow. Of particular interest is that the method also finds a period-

doubling bifurcation from the amplitude-modulated rotating waves and a subsequent transition

from the flow resulting from this bifurcation.

I. INTRODUCTION

Much can be learned about the fundamental properties of geophysical fluid systems, such

as the atmosphere, by studying laboratory experiments that isolate certain key aspects of

the system and ignore others that do not determine the essential character of the flow. One

∗ Contact for G.M. Lewis: Greg.Lewis@ontariotechu.ca
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such classical example is the differentially heated rotating fluid annulus experiment [1–5], in

which a fluid is placed in a rotating cylindrical annulus while the inner and outer walls of the

annulus are held at different temperatures; the flows observed in these experiments resemble

those observed in the atmosphere [3]. In many such systems, the fluid flow undergoes a

common sequence of transitions upon variation of the system’s parameters, e.g. the mag-

nitude of the differential heating and/or the rotation rate [6]. In particular, transitions are

observed from axisymmetric flow to rotating waves, then to amplitude-modulated rotating

waves (often called amplitude vacillating flow) or other forms of modulated rotating waves,

and eventually to irregular flows [3].

Another example of such a system that has geophysical relevance is the sheared annular

electroconvection experiment. In this system, a thin liquid crystal film suspended between

two annular electrodes is driven to convection by an applied potential difference while a

shear is imparted through a rotation of the inner electrode. The system is a close analogue

of some laboratory-scale geophysical flow experiments, e.g. those mentioned above [1, 2]

(see also [7]), and to simplified models of the rotating equatorial regions of planetary atmo-

spheres and planetary interiors [8, 9]. The radial electrical forces of electroconvection play

the role of radial gravity-driven thermal buoyancy in a geophysical context, and all these

systems share an SO(2) symmetry. A crucial difference is in the two-dimensional nature of

electroconvection. In particular, the electroconvection experiments employ a liquid crystal

in smectic A phase, which can essentially be considered as a two-dimensional fluid.

The sheared annular electroconvection experiment exhibits a succession of flow transitions

similar to those observed in its geophysical counterparts. In particular, laboratory and

numerical studies of sheared annular electroconvection [10–17] have observed that under

small applied electric potential difference, the system exhibits axisymmetric flow in which

the velocity of the fluid is in the azimuthal direction and the electric current is carried only

by conduction between the annular electrodes, while the surface charge remains undisturbed

by the flow. At a critical potential difference, a primary transition occurs to rotating waves

in which the charge is also convected by the flow, increasing the total current beyond that

of pure conduction. Beyond this critical potential difference, it is observed that transitions

from the rotating wave state to modulated rotating waves [14], to localized vortices [15], and

subsequently to unsteady turbulent flow [16, 17], are observed. As such, in addition to being

an ideal system in which to study bifurcations in spatiotemporal pattern formation [18], it
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is, in particular, an ideal system in which to study transition phenomena of geophysical

relevance.

We propose to use numerical bifurcation methods to study flow transitions in such geo-

physical fluid systems. In particular, numerical continuation can be used to follow the

solutions corresponding to the steady axisymmetric flow, rotating waves, and amplitude-

modulated rotating waves, as a parameter of the system is varied, and linear stability anal-

ysis can be used to determine transitions from these solutions. The application of this

approach to a model of sheared annular electroconvection that we present here is an indica-

tion of its effectiveness. In relation to numerical experimentation, i.e. using time-stepping

simulations alone, such bifurcation techniques are able to compute unstable solutions, and

are able to unambiguously and accurately determine the range of parameters over which

a flow is stable, even when the ranges are small. Bifurcation methods can also determine

regions of bistability without relying on finding specific initial conditions that lead to the

different stable solutions. They can determine the type of bifurcation associated with the

transition, even in the case of subcritical bifurcations, and can determine the form of the

instability leading to the transition. Thus, a clearer picture of the dynamics of the system

can be discovered. However, the advantages of this approach are balanced by the increase

in the required computational resources in comparison with time-stepping methods alone.

Steady axisymmetric flows correspond to steady solutions of the model equations, while

the rotating waves and amplitude-modulated rotating waves correspond to periodic orbits

and invariant tori, respectively. Numerical methods have been developed for the parameter

continuation of such solutions in large-dimensional systems, with special interest in appli-

cations to fluid dynamics; see, e.g. [19] for a review. Some such methods, e.g., [20–22],

are based on time-integration of the dynamical system. These methods can be useful, in

particular, when a time-stepping (i.e. simulation) code is already available, as is often the

case. The method of Tuckerman and Barkley [22] effectively uses the linear part of the

time-stepping code as a preconditioner to solve for steady solutions of the model equations;

this method, however, cannot be generally used to compute periodic orbits. The approach of

Sanchez et al. [20, 21] formulates the solution of the relevant flows as fixed points of maps,

and can be used to compute steady solutions and periodic orbits, and can be extended for

the computation of invariant tori.

In many geophysical systems, it is possible to use the rotational property of the flow to aid
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in the reduction of the computational cost. In particular, our approach uses the observation

that the rotating waves are relative equilibria with respect to a rotating reference frame.

Consequently, the rotating waves can be computed as steady solutions with an additional

unknown, corresponding to the constant phase speed of the rotating wave. This approach

has been used extensively in the context of fluid dynamics; see, e.g., [19, 23–26]. Not

common is the application to amplitude-modulated rotating waves, which are periodic orbits

when viewed in an appropriately defined rotating reference frame [6]. This idea has been

used by [27] to compute such solutions in thermal convection in a spherical shell. We use

a similar approach here. In particular, we use a Newton-Krylov method based on time-

integration, in a formulation in which the rotating waves and modulated rotating waves

are computed as fixed points of a discrete dynamical system (a map) [20]. Stability of the

flows can be determined in terms of the stability of the fixed points of the map. Here,

unlike [27], we do not use an explicit implementation of the discretized linearized equations

in the computations, but instead use a finite-difference approximation of the action of the

linearized map. This requires the use of a different auxiliary condition than that of [27] for

the defining system used in the numerical continuation of the modulated rotating waves.

In particular, the advantage of our approach is that the numerical simulation code is only

required to act as a ‘black-box’, i.e. it can be used directly without modification, which

significantly simplifies the implementation. In addition, unlike [27], our computations, at

least in the application to the electroconvection problem, require the use of preconditioning

(see [20, 28] and Section IV C). Although, here, we present an application of the numerical

method to the electroconvection problem, the method can be applied in a straightforward

manner for the continuation of rotating waves and amplitude-modulated rotating waves in

other applications.

In Section II, we provide details of the electroconvection experiment and of the mathe-

matical and numerical models used in the study. In Section IV, we introduce the methods,

and discuss some details of the implementation. The results and discussion are presented in

Section V.

5



II. ELECTROCONVECTION

Electroconvection refers to fluid flows generated by electrical forces acting on space

charges within the fluid, or on surface charges at the interfaces between fluids [29]. Here, we

will be concerned with convection of thin liquid films driven by surface charges. Smectic A

liquid crystals are layered materials that naturally form stable suspended films composed of

weakly conducting organic liquids. In the smectic A phase, the elongated molecules arrange

themselves into layers with their long axes oriented perpendicular to the layers. A layer is of

nano-meter thickness and, within a layer, the oriented molecules move freely as in a normal

Newtonian viscous liquid, while molecular motion between layers is very restricted, as in a

soft solid. A suspended smectic A film has a submicron film thickness and consists of an

integer number of discrete molecular layers that move together as a nearly ideal 2-D fluid

and strongly resist variations in the film thickness. When suspended between electrodes,

the films readily form surface charges that interact with the electric field to produce flow;

the film can span a distance between electrodes on the order of millimeters.

Many laboratory experiments on electroconvecting smectic A films, using various geome-

tries, have been reported, including rectangular geometry [30–33], annular geometry [13],

and annular films with an applied shear [10–12, 34]; see also [35]. Here, we consider the

experiment of Tsai et al. [12] which employs a smectic A film suspended between two con-

centric annular electrodes. The inner electrode is rotated at a constant angular speed ωi,

imposing a radial shear, and a DC voltage V is applied between the two electrodes. See

Figure 1. The working fluid is 8CB (4-cyano-4’octylbiphenyl) [12], which is in the smectic A

phase at room temperature.

The standard experimental protocol of Tsai et al. [12] consisted of measuring the current I

between the electrodes as the applied DC voltage V is incremented from zero to a maximum

value in small steps, and then similarly decremented back to zero, with the inner anode

rotating at a prescribed constant angular speed ωi and the outer cathode stationary and

grounded. For relatively low voltage, the fluid flow is axisymmetric. In this state, the

velocity of the fluid is in the azimuthal direction where the flow lines are concentric circles

and the current passes between the electrodes by conduction. However, when the applied

voltage V exceeds a critical voltage Vc, the axisymmetry is broken and the fluid becomes

arranged into symmetric pairs of convective vortices. At higher voltages, more complicated
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FIG. 1. The geometry of sheared annular electroconvection. The liquid crystal is confined in an

annular region ri ≤ r ≤ ro, and the inner electrode rotates at a constant rate ωi.

flows are provoked.

It is shown in [11, 12], that, for various rotation rates ωi, the primary transition to

convection is supercritical, i.e. the amplitude of the observed convective vortices grows

monotonically from zero as the applied voltage V increases from Vc. Furthermore, the

rotation acts as a stabilizer of the flow, delaying the onset of convection.

These transitions have been reproduced with numerical simulations [14, 17]. The numer-

ical experiments consisted of long-time integrations using a random perturbation from the

base state solution (axisymmetric flow) as the initial condition. Simulations were conducted

for a wide range of applied voltage V for a fixed rotation rate ωi. In addition to reproducing

the transition from the axisymmetric flow to rotating waves, a secondary transition from

rotating waves to amplitude-modulated rotating waves was found.

A. The Mathematical Model

The mathematical model of electroconvection used in this paper is based on the one

described in [10]. We start with a summary of this model; for futher details see [10]. In

the physical experiment, the thin film is confined in an annular region defined in circular

cylindrical coordinates (r, θ, z) as, ri ≤ r ≤ ro; see Figure 1. The film is a liquid crystal in
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smectic A phase with uniform thickness s, and gap width d = ro − ri. Since s ≪ d, the

film is treated as a 2D electrically conducting Newtonian fluid lying in the plane z = 0.

The density, dynamic viscosity and conductivity of the fluid are denoted by ρ, η and σ

respectively. The inner electrode, 0 ≤ r ≤ ri, z = 0, is rotating at a constant angular speed

ωi and is held at a constant electric potential V . The outer electrode, r ≥ ro, z = 0, is held

at zero potential and does not rotate. The conservation of momentum and the conservation

of matter, given by the incompressible Navier-Stokes equations with an electric body force

qE, model the velocity field u(r, θ, t) = u(r, θ, t)r̂ + v(r, θ, t)θ̂, where r̂ is the unit vector in

the radial direction, θ̂ is the unit vector in the azimuthal direction, q is the surface charge

density, E = − (∇ψ) |z=0 is the electric field in the film plane z = 0, ∇ is the 2D gradient

operator, and ψ is the 3D electric potential which extends both above and below the film

[10, eqns (2.1), (2.2)]. The conservation of charge is expressed by a continuity equation

where the current density J is composed of an ohmic conduction term σE, and a convective

term qu due to the fluid motion [10, eqn (2.3)]. The 3D electric potential ψ satisfies the

Laplace equation in the charge-free region z ̸= 0 with a boundary condition that depends

on the surface charge density q [10, eqns (2.4) (2.5)].

The system is subject to the following boundary conditions. At each electrode, the

velocity field satisfies no-slip boundary conditions

u = ωiriθ̂, r = ri, (1a)

u = 0, r = ro. (1b)

The potential ψ is set to zero at infinity

lim
z→±∞

ψ(r, θ, z) = 0, (1c)

and, at z = 0, takes on the imposed voltage, so that

ψ(r, θ, 0) = ψ2(r, θ) =

V, for r ≤ ri,

0, for r ≥ ro,
(1d)

where ψ2 is the 2D electric potential in the z = 0 plane.

A stream function/vorticity formulation is used, where the stream function ϕ = ϕ(r, θ, t)

and vorticity ω = ω(r, θ, t) satisfy

u = ∇ϕ× ẑ, ∇× u = ωẑ. (2)
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In addition, we define a characteristic length, time and charge. If we let the imposed voltage

V denote a representative voltage over a length scale of d = ro − ri and a relaxation time

τc = ϵ0d/σ, where σ is the conductivity and ϵ0 is the permeability of free space, then we

obtain the following nondimensionalization

r = dr̃, ϕ =
σd

ϵ0
ϕ̃, ψ = V ψ̃, t = τct̃, q =

ϵ0V

d
q̃, (3)

where the tilde represents the dimensionless variables. Nondimensionalizing with (3), and

dropping the tildes, we obtain the system of equations describing the evolution of the di-

mensionless physical quantities, i.e. the vorticity ω, stream function ϕ, charge density q, the

2D potential in the fluid ψ2 and the 3D potential ψ:

∇2ϕ = −ω, (4a)

∂ω

∂t
+ (u · ∇)ω = P∇2ω + PR (∇ψ2 ×∇q) · ẑ, (4b)

∂q

∂t
+ (u · ∇) q = ∇2ψ2, (4c)(

∇2 +
∂2

∂z2

)
ψ = 0, q = −2

∂ψ

∂z

∣∣∣
z=0+

, (4d)

where the nondimensional parameter groups are defined as

R =
ϵ20V

2

ση
, P =

ϵ0η

ρσd
. (5)

The dimensionless parameter R, which is analogous to the dimensionless Rayleigh number

that arises in thermal convection, is proportional to the square of the applied voltage V and

describes the relative strength of the applied electric forcing to the viscous dissipation. The

dimensionless parameter P is analogous to the Prandtl number and is a fluid parameter

that describes the ratio of the charge relaxation time to the viscous relaxation time. For

simplicity, we will refer toR as the electric Rayleigh number, or simply the Rayleigh number,

and P as the electric Prandtl number, or simply the Prandtl number. However, we will use

the script letters to refer to these dimensionless parameters to highlight the differences with

their dimensionless counterparts that arise in thermal convection.

The dimensionless boundary conditions are

∂

∂r
ϕ(ro, θ) = 0, ϕ(ro, θ) = 0, (6a)

∂

∂r
ϕ(ri, θ) = −ωriϵ0

σ
= −ωiriτc, ϕ(ri, θ, t) = g(t), (6b)

ψ2(ri, θ) = 1, ψ2(ro, θ) = 0, (6c)
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ψ(r, θ, 0) =


1, for 0 ≤ r ≤ ri,

ψ2(r, θ), for ri ≤ r ≤ ro,

0, for r ≥ ro,

(6d)

lim
z→±∞

ψ(r, θ, z) = 0, (6e)

where g(t), which gives the value of the stream function ϕ on the inner electrode, must be

computed (see below). The width of the film in dimensionless units is ro − ri = 1. The

problem does not depend on ro and ri separately, rather it depends on the radius ratio

α = ri/ro. Indeed, the dimensionless radii can be expressed as

ri =
α

1− α
, ro =

1

1− α
. (7)

The experimental studies have radius ratio α = 0.56 [10] and α = 0.8 [12]. See [10] for a

study on how the linear stability of the base state depends on α.

The stream function ϕ is determined up to a (possibly time-dependent) constant, which

can be determined with a single additional condition of our choosing. The radial component

of the no-slip boundary condition (1a)–(1b) implies that the stream function is independent

of θ at the boundaries. Thus, if there were only one boundary, one could choose this unde-

termined constant using the condition that the stream function be zero at that boundary.

As there are two boundaries, we can choose the additional condition to be that the stream

function at the outer boundary be zero (as indicated in (6a)), but it remains to close the

system by determining the stream function at the inner boundary (i.e. the function g(t),

see (6b)). We do not have the freedom to determine g(t) using a second condition of our

choosing, and therefore it must be determined from the flow. In particular, g(t) is given by

the total azimuthal flux, and is determined from the azimuthal component of the velocity

as follows:∫ ro

ri

v(r, θ, t) dr = ϕ(ri, θ, t)− ϕ(ro, θ, t) = g(t)− 0 =⇒ g(t) =

∫ ro

ri

v̂
0
(r, t) dr, (8)

where an average in the azimuthal variable θ has been taken, the hat denotes an azimuthally

averaged quantity, and v̂
0
(r, t) satisfies the following partial differential equation

∂v̂
0

∂t
+

(
û
∂v

∂r

)
0

+
1

r
(ûv)

0
= P

(
1

r

∂v̂
0

∂r
+
∂2v̂

0

∂r2
− 1

r2
v̂
0

)
− P R

r

( ̂
q
∂ψ2

∂θ

)
0

, (9)
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which is found by computing the azimuthal average of the azimuthal component of the

incompressible Navier-Stokes equations with an electric body force [10, eqns (2.1), (2.2)].

Integrating (9) with respect to r yields an ODE for g(t), closing the system

dg

dt
=

∫ ro

ri

P (1

r

∂v̂
0

∂r
+
∂2v̂

0

∂r2
− 1

r2
v̂
0

)
− P R

r

( ̂
q
∂ψ2

∂θ

)
0

−
(
û
∂v

∂r

)
0

− 1

r
(ûv)

0

 dr. (10)

The PDEs (4a)–(4d), (10) with the boundary conditions (6a)–(6e) describe both sheared

and unsheared annular electroconvection. We note that, unlike in [10], no approximation

has been made for the stream function at the inner electrode. In that work, the authors

made the approximation of ϕ(ri, θ, t) = 0, and so no equation like (10) was needed to close

the system.

1. The deviation equations

The rotation of the inner electrode generates an axisymmetric steady Couette shear,

which is observed at low R. This flow is characterized by a dimensionless Reynolds number

Re =
riΩ

P , (11)

where Ω = τcωi is the dimensionless angular frequency of the inner electrode. We call

this flow the base state, and denote it by a superscript zero. This flow can be computed

analytically by considering only steady axisymmetric solutions of (4a)–(4d) with boundary

conditions (6a)–(6e). In particular, the base state is given by

∂ϕ(0)(r)

∂r
= ReP ri

r2o − r2i

(
r − r2o

r

)
, (12a)

ω0(r) = −2ReP
(

ri
r20 − r2i

)
, (12b)

q(0)(r) =
2

ln(ri/ro)

(
1

ro
F

(
1

2
,
1

2
; 1;

r2

r2o

)
− 1

r
F

(
1

2
,
1

2
; 1;

r2i
r2o

))
, (12c)

ψ
(0)
2 (r) =


1, for 0 ≤ r ≤ ri,

ln(r/ro)
ln(ri/ro)

, for ri ≤ r ≤ ro,

0, for r ≥ ro,

(12d)

ψ(0)(r, z) =

∫ ∞

0

A(k)J0(kr)e
−kzdk, (12e)
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see [10], where F is a hypergeometric function, J0 is the zeroth Bessel function and

A(k) = k

∫ ∞

0

ψ(0)(r, 0)J0(kr)rdr. (13)

Equation (12a) can be integrated from ri to ro to obtain an explicit form for ϕ(0) that satisfies

the boundary condition (6b) with

g(t) = g(0) = ReP
(
ri
2
− rir

2
o

r2o − r2i
ln

(
ro
ri

))
. (14)

We note that, in this experiment, the inner electrode is rotating at a constant rate while the

outer electrode is fixed. However, independent rotations of the electrodes can be dealt with

by applying a transformation to a rotating frame of reference, where the outer electrode is

stationary. The Coriolis forces introduced by the transformation can be absorbed into the

pressure term of the corresponding Navier-Stokes equations.

We can write the dependent variables in terms of their deviations from the base state:

q(r, θ, t) = q(0)(r) + q(1)(r, θ, t), (15)

and likewise for the other dependent variables, where the deviations are identified using a

superscript 1, e.g. q(1). It is convenient to rewrite the equations (4c)–(4d) in terms of the

deviations, ϕ(1), ψ(1) and q(1), instead of their counterparts, ϕ, ψ and q, respectively. Upon

applying this decomposition and substituting into (4c)–(4d), we obtain equations which

govern the evolution of the charge density deviation q(1) and the potential deviation ψ(1):

∂q(1)

∂t
+
1

r

(
∂q(0)

∂r

∂ϕ(1)

∂θ
+
∂q(1)

∂r

∂ϕ(1)

∂θ
− ∂ϕ(0)

∂r

∂q(1)

∂θ
− ∂ϕ(1)

∂r

∂q(1)

∂θ

)
−∇2ψ

(1)
2 = 0, (16a)(

∇2 +
∂2

∂z2

)
ψ(1) = 0, q(1) = −2

∂ψ(1)

∂z

∣∣∣
z=0

. (16b)

The deviation variables, ψ
(1)
2 and ψ(1), satisfy the following boundary conditions

ψ
(1)
2 (ri, θ) = ψ

(1)
2 (ro, θ) = 0, (17a)

ψ(1)(r, θ, 0) =


0, for 0 ≤ r ≤ ri,

ψ
(1)
2 (r, θ), for ri ≤ r ≤ ro,

0, for r ≥ ro,

(17b)

lim
z→±∞

ψ(1)(r, θ, z) = 0. (17c)
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Thus, equations (4a)–(4b), (10), (16a)–(16b) with boundary conditions (6a)–(6b), (17a)–

(17c) form a closed set of equations describing both sheared and unsheared annular electro-

convection.

III. THE NUMERICAL TIME-STEPPER

In this section, we provide a brief overview of the pseudo-spectral time-stepper for the

PDEs (4a)–(4b), (10), (16a)–(16b) with boundary conditions (6a)–(6b), (17a)–(17c). The

time-stepper is implemented in MATLAB and is, in many ways, very similar to that de-

scribed in [14, 17]. The 2D physical quantities, the stream function ϕ, the vorticity ω, the

charge density deviation q(1) and the electric potential deviation ψ
(1)
2 , are approximated us-

ing a truncated Fourier series {eimθ} in the θ̂ direction and a truncated Chebyshev series

{Tn(r)} in the r̂ direction. That is, we write

ϕ(r, θ, t) =
Nc∑
n=0

K∑
m=−K

ϕ̃nm(t)e
imθ Tn(x), (18)

and similarly for the other physical quantities, where K is the highest Fourier mode, Nc is

the order of the highest Chebyshev polynomial, and

x = 2
r − ri
ro − ri

− 1 (19)

linearly maps r ∈ [ri, ro] to x ∈ [−1, 1].

The AB/BDI2 time-stepping scheme

3u(k+1) − 4u(k) + u(k−1)

2δt
≈ ∂u

∂t
= L(u) +N ≈ L(u(k+1)) + 2N (k) −N (k−1), (20)

is implemented, where δt is a prescribed time step and u(k) is the spatially discretized

solution vector at the kth time-step (see e.g. [36]). This scheme is a second-order implicit-

explicit method, in which the nonlinear part N is treated explicitly and the linear part L(u)
is treated fully implicitly. It has also been referred to as SBDF (semi-implicit BDF) and as

extrapolated Gear [37, 38].

The charge density deviation q(1) and the potential deviation ψ
(1)
2 are nonlocally related to

one another via the three-dimensional Laplace equation (16b). Rather than computing this

three-dimensional elliptic problem, q(1) can be computed directly from ψ
(1)
2 using a Dirichlet-

to-Neumann map. Similarly, the stream function ϕ and the vorticity ω are nonlocally related
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via the vorticity equation (4a) and one can be recovered from the other using a linear map.

The time-stepper proceeds as follows: the potential deviation ψ
(1)
2 and the vorticity ω are

advanced by one time step, after which the charge deviation q(1) and the stream function ϕ

are computed at this new time using the newly-computed potential deviation and vorticity,

respectively. The Orszag 3/2 aliasing rule is performed when constructing the nonlinear

terms needed for (20). With appropriately chosen starting values, the method is second-

order accurate in time.

For more details on the time-stepper, the reader is referred to [14, 17]. The method we use

is essentially the same, except that in those works the authors time-step the stream function

deviation ϕ(1) and the vorticity deviation ω(1), while we time-step the stream function ϕ and

the vorticity ω. Also in [14, 17], as in [10], the approximation that ϕ(1)(ro, t) = ϕ(1)(ri, t) = 0

is made [39]. We do not make this approximation, and, therefore, we need to time-step (10),

starting from (8), for the full stream function ϕ. Specifically, from (8), g(t) is the radial

integral of v̂
0
(r, t). We time-step (9) to find v̂

(k+1)

0
, where, here, the superscript denotes

the k+1st time-step, and then use Chebyshev-Gauss quadrature to approximate the radial

integral, thus determining g(k+1). The time-stepping is done as follows. First, the velocity

components u(k−1), u(k), v(k−1), and v(k) are determined from the stream function ϕ(k−1) and

ϕ(k). The nonlinear terms u∂v
∂r
, uv, and q ∂ψ2

∂θ
are computed at the (k − 1)st and kth time

levels. Applying the Fast Fourier Transform (FFT) and then selecting the component that

approximates the zeroth Fourier coefficient determines the nonlinear terms of (9): N̂ (k−1)
0

and N̂ (k)
0
. The time-stepping (20) is then applied to (9), determining v̂

(k+1)

0
.

A two-step method, such as (20), requires two initial values. One initial value, at t = 0,

is given by the initial conditions of the problem. A second initial value, at t = δt, must

be provided by some other mechanism. It is common to simply take one step, of size δt,

with a lower-order one-step method to generate this second initial value. In the context

of the bifurcation methods discussed in IV, which are built upon time-integration methods

using the time-stepper, this approach may not provide sufficient accuracy. Specifically,

if the “t = 0” initial value is on the periodic solution at t = 0, to a given tolerance,

then the “t = δt” initial value also needs to be on the periodic solution at t = δt, to a

similar tolerance, otherwise the method may not converge to the desired solutions; this is

particularly important when considering unstable solutions. Thus, unlike in the application

of the time-stepper as discussed in [14, 17], here, it is vital that the second initial condition
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be sufficiently accurate. To this end, we use a hierarchy of discretizations to produce a more

accurate approximation of the solution at time t = δt. Specifically, a one-step first-order

scheme is used with a very small time-step, e.g. δt/k, where k is some integer, to generate an

approximation of the solution at t = δt/k. This approximation is used as the second initial

condition for the two-step method, using a time-step of δt/k, to obtain an approximation

at t = nδt/k. This approximation is subsequently used as the second initial step for the

two-step method with time-step nδt/k, where n is some integer. This is then repeated, with

sequentially increasing step size, to generate an approximation of the solution at t = δt.

Once the two required initial values at t = 0 and t = δt are available, the time-stepper can

then be used with time step δt for the rest of the computation. Here, we use n = 5 and

k = n5.

IV. METHODS FOR COMPUTING SPECIAL SOLUTIONS

After spatial discretization using the spectral methods described above, our model can

be written as a continuous dynamical system in the general form

Mdu

dt
= F(u, µ), F : Rn × R → Rn, (21)

where u = u(t) ∈ Rn is the discretized solution vector, µ is a real parameter, and the matrix

M may not be invertible due to algebraic constraints. Here, µ is the Rayleigh number R and

the solution vector u contains the four physical quantities (the electric potential deviation

ψ
(1)
2 , the charge density deviation q(1), the vorticity ω, and the stream function ϕ), and has

size n = 4(2K + 1)(Nc + 1), where K is the highest Fourier mode and Nc is the highest

degree of Chebyshev polynomial as shown in Section III.

A. Computation of rotating waves

The solutions of the continuous dynamical system (21) corresponding to rotating waves

can be computed as fixed points of a flow map Φt:

u → Φt(u, µ), Φt : Rn × R× R → Rn, (22)

which maps an initial condition u ∈ Rn to the solution of (21) at time t ∈ R, for a fixed

parameter µ ∈ R. In particular, the rotating waves are limit cycles, and thus, such solutions
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of (21) must satisfy u(t) = u(t+τw), where τw is the period of the limit cycle. Therefore, the

flow map Φτw(u, µ) will map u to itself, for any u on the limit cycle, and thus the rotating

waves can be found as fixed points of the map Φτw by solving

Φτw(u, µ)− u = 0, (23)

where τw is to be determined. This method, however, requires each integration of the map to

be over a full period τw, and therefore, we choose, instead, a less general, but more efficient,

approach. In particular, we use the property that the rotating waves are relative equilibria,

i.e., integration through any time t is equivalent to rotation by θ̃ = wt, where w is the

constant phase speed of the wave. Therefore, all points u on the rotating wave must satisfy

Φt(u, µ)− γu = 0, (24)

where the rotation operator γ ∈ SO(2) acts on u via γu = u(r, θ − wt), the phase speed w

is to be determined, and t is arbitrary and thus may be taken to be much smaller than the

period τw.

Equation (24) defines the rotating wave up to a phase, and therefore, to obtain uniqueness,

we introduce the phase condition

∂

∂θ
u(0) ·

(
u− u(0)

)
= 0, (25)

which chooses the phase relative to a reference solution u(0), usually chosen to be the initial

guess used for the nonlinear solver (see below). The phase condition ensures that we seek

corrections to u(0) that are orthogonal to the tangent to the symmetry generator ∂
∂θ
u(0), the

derivative of u(0) with respect to θ. We choose to seek corrections orthogonal to u(0) instead

of u to remove the complication of working with an extra nonlinear equation.

The nonlinear system given by (24) and (25) can then be solved using Newton’s method,

in which case updates
[
δu

(k)
j , δw

(k)
j

]
at each iteration k are found from the linear system

DuΦt(u
(k)
j , µj)− γ t

∂u
(k)
j

∂θ

∂u(0)

∂θ
0

δu(k)
j

δw
(k)
j

 =

 u
(k)
j − Φt(u

(k)
j , µj)

∂u(0)

∂θ
·
(
u
(k)
j − u(0)

) , (26a)

u
(k+1)
j = u

(k)
j + δu

(k)
j , (26b)

w
(k+1)
j = w

(k)
j + δw

(k)
j , (26c)
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where the subscript j labels points along the solution curve Γ, and DuΦt is the Jacobian of the

map Φt. The matrix in the linear system (26a) is of size (n+ 1)× (n+ 1), that is, it is only

a single row and column larger than the matrices required for the numerical integration, but

it is dense and computationally intensive to compute. However, the action of the Jacobian

DuΦt on a vector δu can be found from the evolution of an initial perturbation δu as

determined by the model equations linearized about the solution u. Thus, if GMRES [40],

or some other iterative method, is used to solve the linear system (26a), it is not necessary to

form the Jacobian explicitly, because such methods only require knowledge of matrix-vector

products involving the Jacobian. As such, each iteration of the linear solve involves a time-

integration of the linearized model equations (i.e. the solution of a variational problem).

If code for the linearization is not available, the action of DuΦt on δu can be approximated

using a finite-difference method, e.g., the forward finite-difference approximation can be used

DuΦt(u, µ)δu ≈ Φt(u+ ϵδu, µ)− Φt(u, µ)

ϵ
, (27)

for some ϵ > 0. Thus, the action of DuΦt on the vector δu can be approximated given

knowledge of the action of Φt on the vectors (u+ϵδu) and u. That is, using the approximation

(27), each matrix-vector product in the linear solve can be computed from two evaluations

of Φt. However, one of the two are the same for each GMRES iteration, and therefore, only

a single time integration is required per iteration. In general, in order to ensure convergence

of the solution of the linear system in a reasonable number of iterations, preconditioning

may be required (see, e.g., [28]). We discuss this in Section IVC. When using spectral

methods, as we do here, the computation of the derivative with respect to the angle θ and

the action of the rotation operator γ on the vector δu can be computed in spectral space as

an element-wise multiplication using the Fast Fourier Transform (FFT). As such, these do

not contribute significantly to the overall computation time.

These systems can be adapted very simply to incorporate pseudo-arclength continuation

[19]. However, we choose to implement natural continuation as we do not observe any limit

points along the solution branches.
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B. Computation of amplitude-modulated waves

Amplitude-modulated rotating waves correspond to invariant 2-tori in phase space, and

resemble rotating waves with the exception that their amplitude varies periodically in time.

As such, we can use an extended version of the approach used to compute the rotating

waves. In particular, we replace integration for arbitrary time t with integration for time

τ the unknown period of the oscillation of the wave amplitude. That is, an amplitude-

modulated rotating wave has the property that integration for time τ will be equivalent

to rotation by angle wτ [6]. In this case, there are two unknown parameters, namely, the

phase speed w and the unknown period τ of the amplitude, while there are also two phases

that need to be specified, namely, the phase of the wave, and the phase of the amplitude

oscillation. To fix the phase of the wave, we use the criterion (25) as we did for the rotating

waves, while to fix the phase of the amplitude, we consider only corrections to our initial

guess that are orthogonal to the initial guess (28c); essentially this selects an amplitude

of the solution. Other possibilities exist for this second condition; see [27]. As such, the

amplitude-modulated rotating waves can be found from the defining system:

Φτ (u, µ)− γu = 0, (28a)

∂

∂θ
u(0) ·

(
u− u(0)

)
= 0, (28b)

u(0) ·
(
u− u(0)

)
= 0, (28c)

where τ is the (unknown) period of the amplitude oscillations, γu = u(r, θ − wτ, τ), w is

the phase speed. The phase speed itself does not need to be constant; in particular, we can

interpret w as a mean phase speed for which θ̃ = wτ gives the angle of rotation required for

(28a) to be satisfied.

This system is solved using the same approach as used for the rotating waves. In par-

ticular, the linear system to be solved for each Newton iteration is similar to that for the

rotating wave (26), and is solved with GMRES, using (27) to approximate the action of the

Jacobian DuΦ. The linear system contains only a single extra equation, i.e. the amplitude

phase equation (28c), and the Jacobian DuΦ is the same size as in (26). Generally, the

period τ is much longer than the arbitrarily chosen t, and therefore, the computation of the

amplitude-modulated waves requires significantly more computation time, but is not more

memory-intensive.
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C. Preconditioning

As described above, the linear systems for the Newton iterations can be solved with GM-

RES. If the spectrum of the matrix associated with the linear system is well clustered, then

it may not be necessary to introduce preconditioning to obtain convergence in a reasonable

number of the GMRES iterations. See [28] for a general discussion on preconditioning. Gen-

erally, for dissipative systems, the spectrum of the Jacobian DuΦt is expected to become

more clustered around the origin as the integration time t increases, because most of the

eigenvalues correspond to stable manifolds of the associated time-dependent problem, and

so, the longer the integration time t, the more the map Φt will contract the corresponding

perturbations. Thus, for sufficiently long integration times, preconditioning may not be

required [20]. However, for the current application, we find that even for relatively long

integration times, a prohibitively large number of GMRES iterations is required to achieve

convergence, and thus preconditioning is required.

The primary reason for considering an iterative method for the solution of the linear

systems is not for memory or computational efficiency, but rather because we can compute

matrix-vector products involving the Jacobian matrix DuΦt, even though we do not have

an explicit form of DuΦt. However, for a particular u
(k)
j and µj, it is possible to construct

the full matrix DuΦt(u
(k)
j , µj), column by column, using only matrix-vector products. In

particular, the ith column of DuΦt is given by the matrix-vector product [DuΦt] ei, where

ei is the ith standard basis vector. Thus, theoretically, an alternative approach could use

a direct method for solving the linear systems involving this explicitly constructed matrix.

This approach, however, is not practical, because the construction of an approximation of

this matrix, using (27), requires n+ 1 evaluations of Φt, and would have to be constructed

for each Newton iteration (i.e. for each j and k).

We can, however, use DuΦt(u
(k)
j , µj), constructed using a particular u

(k)
j and µj, to

construct a (left) preconditioner for all Newton iterations over a range of parameter val-

ues, i.e., for a range of j and k. In particular, we solve the left preconditioned system

P−1 (Ax− b) = 0 associated with the Newton iterations (26a), where P is DuΦt(u
(k)
j , µj)

augmented by an additional row corresponding to each auxillary condition (e.g. (25)) and

by an additional column corresponding to the derivatives with respect to each of the addi-

tional unknowns (e.g. the phase speed w); see (26a). For the particular u
(k)
j and µj used
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to construct P , P is an approximation of A, which is the ‘perfect’ preconditioner (i.e. only

a single iteration would be required for convergence), but, we find that P also works well

as a preconditioner for a large range of u and µ. Thus, although expensive to compute

initially, the same P can be used for all Newton iterations and over a range of parameters.

Furthermore, an accurate approximation of DuΦt is not required, and therefore, significant

efficiency is obtained by computing it using time steps that are significantly larger than

those used in the computation of the solutions themselves (e.g. for the continuation of

amplitude-modulated rotating waves, we can use a time step of 5e-4 for the computation of

the preconditioner, rather than the 2e-4 that we use for the computation of solutions; the

savings is more significant in the computation of the rotating waves, see below). In addition,

the computation of DuΦt is highly parallelizable, as each of the required n+1 evaluations of

Φt are independent. Also, although DuΦt is dense, the required memory is the same order

of magnitude as that of the matrices involved in the numerical integration itself, due to the

use of spectral methods.

D. Linear stability of special solutions

The steady solutions, which are given by (u, µ) and the rotating wave solutions (u, w, µ)

described above can be computed as fixed points of the flow map Φt(u, µ); for the steady

solutions, t is arbitrary, while for the rotating waves, t is the period τw of the corresponding

solution, which can be computed from wτw = 2π/m, where m is the primary azimuthal wave

number observed in the rotating wave. Thus, the stability of the solutions can be determined

from the spectrum of DuΦt(u, µ), the linearization of the flow map Φt(u, µ) about the fixed

point u. In particular, for maps, a fixed point is said to be linearly stable if all eigenvalues

of the Jacobian DuΦt(u, µ) lie in the unit circle of the complex plane, and unstable if at

least one eigenvalue lies outside the unit circle. Bifurcations of the system occur when an

eigenvalue crosses the unit circle as a parameter is varied.

The amplitude-modulated rotating wave solutions (u, w, τ, µ) are fixed points of the map

γ−1Φτ (u, µ), where τ is the period of the amplitude oscillations. The linear stability of these

solutions can be found from the eigenvalues of γ−1DuΦτ (u, µ).

To determine the linear stability of a fixed point of a map, it is sufficient to find the

eigenvalues of largest magnitude. For the efficient computation of these eigenvalues, we

20



would prefer a method that does not require the explicit formation of DuΦt(u, µ). Thus, we

use the Implicitly Restarted Arnoldi Method (IRAM), which is a Krylov subspace method

that computes approximations of the eigenvalues of largest magnitude of a matrix using

only matrix-vector products [41, 42]. Its implementation together with (27) enables us to

efficiently approximate the relevant eigenvalues.

V. RESULTS AND DISCUSSION

We apply the methods described in Section IV to the electroconvection problem. In this

context, the Rayleigh number R is used as the bifurcation parameter µ, and u contains the

stream function deviation ϕ(1) and the electric potential deviation ψ
(1)
2 ; the charge density

deviation and the vorticity deviation can be computed directly from these, and therefore

are not necessary to consider as variables of the flow map Φt. The relevant physical and

numerical parameters used for the computations are presented in Table I. The results are

presented in the bifurcation diagram of Figure 2.

A. Axisymmetric flow and the primary transition

For all values of the Rayleigh number, the base state (axisymmetric solution) is given by

(12); in terms of the deviations, this solution corresponds to the zero solution. Computation

of the eigenvalues of the map Du=0Φt reveals a primary bifurcation from the base state at

a critical Rayleigh number Rc1 = 534.1; see Figure 2. In particular, at Rc1, a supercritical

Neimark-Sacker bifurcation of the flow map Φt occurs, at which a complex conjugate pair

of eigenvalues has modulus 1, and for R < Rc1, all eigenvalues have modulus less than

1 [43]. The bifurcating solutions exist for R > Rc1 and correspond to stable rotating waves

with azimuthal wave number six. See Figure 3, in which a snapshot of the rotating wave

is plotted; deviations from the base state, as opposed to the full solutions, are plotted to

highlight the azimuthal variation of the wave. The wave has constant (positive) phase speed

and constant amplitude, i.e. as time evolves, the solution maintains its shape and rotates

counter-clockwise at a constant rate. See Supplemental Material [44] for an animation of

the stream function deviation ϕ(1) corresponding to the rotating wave solution at R = 560.

We discuss the parameter continuation of the rotating waves in Section VB.
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FIG. 2. The bifurcation diagram with Rayleigh number R as parameter. Solutions are represented

in terms of
∥∥ϕ(1)(·, t)∥∥∞, the infinity norm of the stream function deviation at a particular time

(spatial maximum of |ϕ(1)|), i.e. the wave amplitude. For the amplitude-modulated (AM) rotating

waves, the maximum and minimum amplitude of the solution over a period of the amplitude

oscillations is plotted. The squares represent the critical parameter values, i.e. the bifurcation

points. The branches labeled PD-AM represent period-2 amplitude-modulated rotating waves

resulting from a period-doubling bifurcation (which occurs at the point represented by a triangle);

the four PD-AM branches correspond to the two local maxima and two local minima of the wave

amplitude that occur over one period of the amplitude oscillation; see Figure 7(b). For a blow-up

of this region, and further details, see Figure 8. Values for other parameters are listed in Table I.

The value of t used in the computation of the eigenvalues is arbitrary in the determination

of the stability; i.e. although it will affect the eigenvalues, it will not change whether the

eigenvalue has modulus greater than or less than 1. We use a value t = 0.1, which provides

convergence of the Arnoldi method in a reasonable number of iterations. Increasing the value

of t increases the separation of the eigenvalues, enabling convergence in fewer iterations, but

also increases the cost per iteration. The linear stability is determined from the computation
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TABLE I. The parameters used in the numerical results.. RW indicates Rotating Wave. AM

indicates Amplitude-Modulated Rotating Wave.

Model parameters

Symbol Parameter Value

P Prandlt number 75.8

Re Reynolds number 0.231

α Aspect ratio 0.56

Time-stepper: discretization parameters

Symbol Parameter Value

Nc Highest order of the Chebyshev basis 24

K Highest Fourier wave number 32

δt Time step (RW/AM) 1× 10−4 / 2× 10−4

δtP Time step for preconditioner calculation

(RW/AM)

1× 10−3 / 5× 10−4

Numerical bifurcation parameters

Symbol Parameter Value

t Arbitrary integration time (RW) 0.1

ϵ Perturbation amplitude of the forward finite dif-

ference approximation

10−4

New tol Newton residual tolerance: 10−8

gmres tol GMRES tolerance 10−6

of the eigenvalues with the 20 largest magnitudes, using the IRAM Matlab implementation

eigs, and the critical value Rc1 is computed to a tolerance of 10−2 using a secant method.

Other parameters are held fixed at the values listed in Table I.

As an accuracy check, the eigenvalues at R = 530 are also computed using a grid size

reduced by a factor of two (i.e. using Nc = 48 and K = 64, see Table I); results are presented

in Table II. The reduction in grid size results in differences of at most 0.001, or less than

0.2%, in both the real and imaginary parts. Similarly, the critical Rayleigh number with

corresponding critical eigenvalue has been computed on the finer grid; see Table III. The
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FIG. 3. Rotating wave solution at Rayleigh number R = 560. A snapshot of the deviations from

the base state of the four physical quantities are shown: (a) the stream function deviation ϕ(1);

(b) the 2D electric potential deviation ψ
(1)
2 ; (c) the vorticity deviation ω(1); and (d) the charge

distribution deviation q(1). The solution maintains this shape and rotates counter-clockwise at

a constant phase speed; see Supplemental Material [44] for an animation of the stream function

deviation ϕ(1) at R = 560.

critical Rayleigh number on the finer grid differs by less than 0.04, or less than 0.01%.

B. Rotating waves and the secondary transition

The rotating wave solutions, observed for R > Rc1, satisfy (24)–(25), while their linear

stability can be determined from the spectrum of DuΦτw , where τw = 2π/(mw) is the period
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TABLE II. Eigenvalues computed with two different grid sizes (Nc,K).

Rayleigh Number R = 530

(Nc,K) λ1, λ2 λ3, λ4 λ5, λ6 λ7 λ8, λ9

(24, 32) 0.9425± i0.2098 0.2716± i0.8264 0.5324± i0.5170 0.6683 −0.4258± i0.4662

(48, 64) 0.9427± i0.2101 0.2716± i0.8265 0.5320± i0.5181 0.6683 −0.4259± i0.4663

Rayleigh Number R = 590

(Nc,K) λ0 λ1, λ2 λ3 λ4, λ5 λ6, λ7

(24, 32) 1.0000 0.6551± i0.7131 −0.9286 −0.4695± i0.7987 0.4503± i0.8200

(48, 64) 1.0001 0.6622± i0.7124 −0.9293 −0.4696± i0.7996 0.4504± i0.8202

Rayleigh Number R = 629

(Nc,K) λa0 λb0 λ1, λ2 λ3 λ4, λ5

(24, 32) 1.0000 1.0007 0.1286± i1.0249 −0.9509 0.4082± i0.2911

(48, 64) 0.9999 1.0006 0.1296± i0.9846 −0.9209 0.3818± i0.2918

of the rotating wave, and w and m are its phase speed and primary azimuthal wave number,

respectively. As we continue the rotating wave solution in the Rayleigh number R, the

amplitude of the rotating wave grows from zero at R = Rc1 as shown in Figure 2, while the

phase speed w does not vary significantly along the branch; specifically, the phase speed w

decreases monotonically from 5.06 at R = Rc1 to 5.05 at R = 630.

Each point on the rotating wave solution branch {(uj, wj,Rj)} is obtained by using the

Newton solver to correct an initial guess to within the desired residual tolerance of 10−8 in

the infinity norm. The initial guess is obtained by following a secant to the branch which

is computed from the two previous (known) points on the branch. The initial guess for the

first two points on the branch is obtained by time stepping a random initial condition for

t = 10, with R = 560 and 561. At this parameter value the solution associated with the

flow of rotating waves is stable and the time integration produces a sufficiently good guess

to obtain convergence of the Newton iterations. Along the solution branch, convergence in

approximately three Newton iterations is obtained when the parameter is incremented by
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TABLE III. Critical Rayleigh Number Rc and corresponding eigenvalues; numerical values com-

puted with two different grid sizes (Nc,K).

Primary Transition

(Nc,K) Rc1 λc, λc λ3, λ4 λ5, λ6

(24, 32) 534.11 0.9771± i0.2126 0.2823± i0.8483 0.5518± i0.5434

(48, 64) 534.07 0.9771± i0.2128 0.2822± i0.8483 0.5514± i0.5443

Secondary Transition

(Nc,K) Rc2 λc, λc λ3 λ4, λ5

(24, 32) 595.6 0.654± i0.756 −0.949 −0.477± i0.813

(48, 64) 594.8 0.662± i0.750 −0.948 −0.476± i0.811

Tertiary Transition

(Nc,K) Rc3 λc, λc λ3 λ4, λ5

(24, 32) 626.8 0.100± i0.995 −0.879 0.386± i0.266

(48, 64) 629.4 0.137± i0.991 −0.934 0.386± i0.296

δR = 1. Each point on the branch is validated by integration over the full period τw of the

solution; each point on the branch is a wave of constant amplitude and is a fixed point of the

map Φτw to an error of less than 10−4 in the infinity norm. A secant method to a tolerance

of 10−2 in the parameter R is used to locate the bifurcation point R = Rc2.

Using the method described in Section IVC, the preconditioner is computed at R = 560,

with u taken as the initial guess for the corresponding point on the branch of rotating wave

solutions. This preconditioner is used for the entire rotating wave solution branch. The

time step δtP = 1 × 10−3 is used for the computation of the preconditioner. This value is

chosen to maximize efficiency, while still enabling convergence. In particular, choosing a

δtP > 10−3 does not produce an effective preconditioner, while choosing it smaller does not

significantly improve the effectiveness. The parameter value for the arbitrary computation

time used for the computation of the rotating waves (i.e. of the flow map Φt) is chosen as

t = 0.1. Changes in this value did not affect any of the results.

As an accuracy check, eigenvalues have been computed at R = 590 using a grid size
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FIG. 4. (a) Eigenvalues of largest magnitude for rotating wave branch. The evolution of the largest

magnitude eigenvalues of the linearization of the map Φτw along the solution branch of the rotating

waves. The 10 largest eigenvalues with respect to modulus are depicted for Rayleigh number 560

≤ R ≤ 614. At Rc2 = 595.6, the critical eigenvalues are marked with a square, while the others

eigenvalues are marked with a circle; all eigenvalues are marked with a star at R = 560. (b) The

real part of the critical eigenfunction Vϕ, and (c) the imaginary part of the critical eigenfunction

Vϕ, where Vϕ is the ϕ component of the eigenfunction corresponding to the critical eigenvalues at

R = Rc2.

reduced by a factor of two (i.e. using Nc = 48 and K = 64). The reduction in grid size

results in differences of at most 0.013, or less than 2%, in both the real and imaginary parts;

see Table II. Mostly, the differences are much less than this. Similarly, the critical Rayleigh

number with corresponding critical eigenvalue for the finer grid is shown in Table III. The

difference of critical Rayleigh number Rc2 on the finer grid is 0.8, or approximately 0.13%.

C. Amplitude-modulated waves and the tertiary transition

Along the branch of rotating waves, a secondary bifurcation is detected at a critical

Rayleigh number Rc2 = 595.6, where again a complex conjugate pair of eigenvalues of

DuΦτw crosses the |z| = 1 curve in the complex plane, while for Rc1 < R < Rc2, all

eigenvalues have modulus 1 or less [45]; see Figure 4. The bifurcation of the map Φτw

at R = Rc2 is supercritical and of type Neimark-Sacker. In this case, the bifurcating

solution lies on a 2-torus in the corresponding continuous-time phase space. In terms of

the physical quantities, because the eigenfunction corresponding to the critical eigenvalue,

shown in Figure 4, resembles a wave with the same azimuthal wave number as the rotating
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the largest magnitude eigenvalues of the linearization of the map Φτw along the solution branch of

the rotating waves; the 10 largest eigenvalues with respect to modulus are depicted for Rayleigh

number 560 ≤ R ≤ 614. At Rc2 = 595.6, the critical eigenvalues are marked with a square, while

the others eigenvalues are marked with a circle; all eigenvalues are marked with a star at R = 560.

(b) The real part of Vϕ, and (c) the imaginary part of Vϕ, where Vϕ is the ϕ component of the

eigenfunction corresponding to the critical eigenvalues at R = Rc2.

reduced by a factor of two (i.e. using Nc = 48 and K = 64). The reduction in grid size

results in differences of at most 0.013, or less than 2%, in both the real and imaginary parts;

see Table II. Mostly, the differences are much less than this. Similarly, the critical Rayleigh

number with corresponding critical eigenvalue for the finer grid is shown in Table III. The

difference of critical Rayleigh number Rc2 on the finer grid is 0.8, or approximately 0.13%.

C. Amplitude-modulated waves and the tertiary transition

Along the branch of rotating waves, a secondary bifurcation is detected at a critical

Rayleigh number Rc2 = 595.6, where again a complex conjugate pair of eigenvalues of

DuΦτw crosses the |z| = 1 curve in the complex plane, while for Rc1 < R < Rc2, all

eigenvalues have modulus 1 or less [45]; see Figure 4. The bifurcation of the map Φτw

at R = Rc2 is supercritical and of type Neimark-Sacker. In this case, the bifurcating

solution lies on a 2-torus in the corresponding continuous-time phase space. In terms of

the physical quantities, because the eigenfunction corresponding to the critical eigenvalue,

shown in Figure 4, resembles a wave with the same azimuthal wave number as the rotating

wave undergoing the bifurcation, we expect that the bifurcating solution is an amplitude-
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modulated wave (also referred to as amplitude vacillating wave). We confirm this using

simulations of the initial value problem. These solutions resemble a rotating wave with

wave number six (see Figure 3) whose amplitude oscillates periodically in time, except that

there is a slight tilting of the vortices when the amplitude is at its lowest. See Supplemental

Material [46] for an animation of the stream function deviation ϕ(1) corresponding to the

amplitude-modulated rotating wave solution at R = 620. Generally, the solutions are quasi-

periodic. That is, although the solution at the end of a period of the amplitude oscillations

is a rotated version of the solution at the beginning of the period, it never quite returns to

its starting point, regardless of the number of periods of amplitude oscillation. This occurs

because, generally, the ratio of the frequency of amplitude oscillations to the frequency of

the oscillations due to the rotating wave, is irrational. However, this ratio is expected to

vary smoothly with the parameters [6], and therefore, at isolated points along the solution

branch, in particular when the ratio of frequencies is rational, the solution is periodic. In

this case, there are an infinite number of periodic solutions; phase shifts of the periodic

solution at any point in time correspond to other periodic solutions. This property of the

solutions is not a generic property of general dynamics on 2-tori, but is a consequence of the

rotational symmetry [6, 43].

We continue the amplitude-modulated waves in R > Rc2 by solving (28) using Newton

iteration with natural continuation, i.e. with R fixed at each point along the solution

branch [47]. Initial guesses of the first two points on the solution branch are found from

time-integration of a random initial guesses at R = 620 and 620.25. As in the case for the

rotating waves, for this value of the parameter, time-integration leads to sufficient decay

of transients because the solution is stable. Initial guesses for all other points along the

curve are found by following a secant to the solution branch which is computed from the

previous two points along the branch. Relative to the rotating wave case, smaller increments

of δR = 1/4 in the parameter along the solution branch are required to obtain adequate

initial guesses for the Newton iteration to converge. In addition, it is necessary to recompute

preconditioning matrices every several steps along the solution branch. Also, a reduced time-

step of δtP = 5×10−4 is required to produce an effective preconditioner. These factors, along

with the requirement that the integration time be the period τ of the amplitude oscillations,

lead to a significantly more intensive computational task, relative to the computation of

the rotating waves. For this reason, we choose a time-step for the time-stepper to be δt =
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2× 10−4. Tests show that this increase in the time-step introduced errors in the eigenvalues

of less than 0.1%.

Each point on the branch of amplitude-modulated wave solutions is a fixed point of the

map γ−1Φτ to an error of less than 10−4 in the infinity norm. We validate points on the

branch as an amplitude-modulated wave by using them as initial data for the time-stepper,

integrated over a period τ , and confirming that the amplitude of the observed rotating

wave undergoes a single period of oscillation; see Figure 5(a). At each point on the branch,

a maximum and minimum of the wave amplitude of the stream function deviation are

found from the results of this time-stepper integration. These are plotted in the bifurcation

diagram of Figure 2. It can be seen that the range of the wave amplitude grows quickly as

R is increased from Rc2 = 595.6, then as the minimum amplitude approaches zero, begins

to grow more slowly. Figure 5 shows the variation of the amplitude (spatial maximum of

the absolute value of the stream function deviation ϕ(1)) as a function of time over a single

period of the amplitude oscillation, as well as the period of the amplitude oscillations as

R is varied. The phase speed w (not shown) decreases monotonically from 5.05 at R =

600 to 4.72 at R = 635, where, initially, the slope is relatively flat but becomes steeper as

R is increased. For values of the parameter close to the bifurcation (Rc2 = 595.6 < R <

600), errors are introduced to the calculation of the phase speed and period of amplitude

oscillation due to the small variation of amplitude over the period of oscillation coupled with

the spatial and temporal discretization. As such, we do not plot these values in Figure 5(b).

The stability of the amplitude-modulated waves is found from the spectrum of γ−1DuΦτ ,

where τ is the period of the amplitude oscillations and γ is the rotation operator through

angle θ = wτ (see Section IVD). The 12 eigenvalues with largest magnitude are computed

at each point along the branch; their dependence on R is plotted in Figure 6. Application

of the secant method finds a tertiary transition at Rc3 = 626.8; see Figure 2. There is

also a short interval of instability along the branch of amplitude-modulated waves that

occurs at R = 608. Time-stepping simulations taken in the small region of instability

produce solutions that are indistinguishable from those taken in neighbouring stable regions.

This suggests that a supercritical bifurcation occurs and the bifurcating solution does not

grow significantly before again coalescing with the branch of amplitude-modulated waves.

Variation in a second parameter would be necessary to investigate this further; we leave this

for future study.
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FIG. 5. Amplitude-modulated rotating wave. (a)
∥∥ϕ(1)(·, t)∥∥∞, the infinity norm of the stream

function deviation at a particular time (spatial maximum of |ϕ(1)|), i.e. the wave amplitude, as a

function of time t over one period of the amplitude oscillations; results for three different values of

the Rayleigh number R are plotted. (b) The period τ of the amplitude oscillations as a function

of R; the dot indicates the period at R = Rc3 = 626.8.

In order to verify the computations, the eigenvalues have been computed for R = 629

on a grid with Nc = 48 and K = 64; see Table II. The largest discrepancy between the

computations on the two grids is 0.027, or approximately 7%. This, however, is in the

real part of the eigenvalue with sixth largest magnitude; all others are similar to less than

approximately 4%. The critical Rayleigh number Rc3 has also been computed on the finer

grid; see Table III. The computations for Rc3 on the different grids show a difference of 2.6,

or approximately 0.4%.

The linear stability analysis reveals that a Neimark-Sacker bifurcation of the map γ−1Φτ

occurs as a complex conjugate pair of eigenvalues crosses the |z| = 1 curve in the complex

plane, while all other eigenvalues have magnitude less than or equal to 1 [48]. For a Neimark-

Sacker bifurcation, to first order, the bifurcating solution is the stationary solution of the map

plus a perturbation that is a linear combination of the real and imaginary parts of the critical

eigenfunction. Generically, the specific linear combination will be different on each iteration

of the map, and will depend on the critical eigenvalue and parameter. The corresponding

solution for the continuous time case must coincide with this solution after each interval

of the period τ , specifically, in a frame of reference following the flow (i.e. rotating at the

phase speed ω). Here, the critical eigenfunction, associated with the critical eigenvalue

λ1 = 0.100 + i0.995, looks like a wave with wave number 5, but with two pairs of cells
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elongated relative to the other cells; see Figure 6. The cells that are not elongated appear

to have the same size as those with azimuthal wave number 6, while the elongated cells are

approximately twice as large. Thus, it resembles a wave with wave number 6, multiplicatively

coupled to one with wave number 1. The imaginary part of the eigenfunction resembles the

real part, but rotated by an angle of approximately π/2. As such, linear combinations of

the real and imaginary parts of the eigenfunction (and therefore, the perturbation from the

amplitude-modulated wave associated with the bifurcating solution), will resemble a wave

of azimuthal wave number 6, whose amplitude varies with the azimuthal variable.

Because the nodal lines of the real and imaginary parts of the eigenfunctions coincide, the

azimuthal phase of this wave is the same for all possible linear combinations. This implies

that after each iteration of the map γ−1Φτ , the perturbation has the same phase as the

amplitude-modulated wave, i.e., it is phase-locked with the amplitude-modulated wave, or,

possibly has some integer multiple of the phase speed. If the perturbation is phase-locked,

the form of the perturbation ensures that, at any given time, it will constructively interfere

with the amplitude-modulated wave on one side of the annulus and destructive on the other

side. Generically, the amplitude of the perturbation varies at a distinct frequency, and thus,

the bifurcating solution corresponds to a 3-frequency flow that breaks the discrete rotational

symmetry.

Although linear analysis can determine the parameter value at which a bifurcation occurs,

and, to first order, the form of the bifurcating solutions, it cannot determine the stability of

the bifurcating solutions, or the regions in parameter space in which they exist (i.e. whether

the bifurcation is super-critical or sub-critical). In fact, the solution may be dynamically, or

structurally, unstable. A weakly nonlinear analysis could provide further information. How-

ever, it is not guaranteed to provide results that extend sufficiently far from the bifurcation

point, and such an analysis is a very large computational task. Therefore, we leave this for

possible future study, and, consequently, the branch of solutions emanating from the tertiary

bifurcation is not plotted in the bifurcation diagram of Figure 2. Here, we confirm our pre-

dictions with a comparison with simulations of the initial value problem (i.e. time-stepping).

In particular, simulations at values of the Rayleigh number slightly larger than the critical

value Rc3, reveal a flow consistent with the occurrence of a supercritical Neimark-Sacker bi-

furcation, i.e. we observe a stable bifurcating solution of the form predicted from the linear

stability computations discussed above. See Supplemental Material [49] for an animation of
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FIG. 6. (a) The evolution of the eigenvalues of γ−1DuΦτ along the solution branch of the amplitude-

modulated rotating waves. The 9 largest eigenvalues with respect to modulus are depicted for

Rayleigh number 611 ≤ R ≤ 631. At Rc3 = 626.8, the critical eigenvalues are marked with a

square, while the others eigenvalues are marked with a circle; all eigenvalues are marked with

a star at R = 611. The real and imaginary parts of Vϕ, the ϕ component of the eigenfunction

corresponding to the critical eigenvalues at R = Rc3, are plotted in (b) and (c), respectively.

stability computations discussed above. See Supplemental Material [49] for an animation of

the stream function deviation ϕ(1) corresponding to the solution at R = 629.

It is interesting to note that this tertiary transition may lie close to a strong 1:4 resonant

bifurcation, i.e. it may be possible to vary a second parameter in such a way that the critical

eigenvalue (which for the current choice of parameters is λ1 = 0.100+i0.995) becomes purely

imaginary. Near such a bifurcation, frequencies may synchronize resulting in a period-4

flow. Furthermore, there is a rich variety of other behaviour that may be seen near such

a bifurcation, including period-4 cycles and heteroclinic connections [43]. We leave the

localization of the bifurcation and analysis of the resonance to future study.

The three-frequency flow is observed in simulations throughout the interval 628 < R <

632; we expect that these solutions persist down to Rc3, but, as previously mentioned, we

do not perform a weakly nonlinear analysis to prove this. Near R = 632, the simulations

produce a flow that resembles an amplitude-modulated rotating wave with an amplitude

that oscillates twice before returning to its initial amplitude; see Figure 7 and Supplemental

Material at [50] for an animation of the stream function deviation ϕ(1) corresponding to this

solution at R = 632. This pattern is repeated throughout the duration of the simulation

(i.e. over 40 cycles). We will refer to this flow as a period-two amplitude-modulated wave.

The initial conditions for the simulations are taken to be the end point of the simulation at

32

FIG. 6. Eigenvalues and critical eigenfunction along branch of amplitude-modulated waves. (a) The

evolution of the largest magnitude eigenvalues of γ−1DuΦτ along the solution branch of the

amplitude-modulated rotating waves; the 9 largest eigenvalues with respect to modulus are de-

picted for Rayleigh number 611 ≤ R ≤ 631. At Rc3 = 626.8, the critical eigenvalues are marked

with a square, while the others eigenvalues are marked with a circle; all eigenvalues are marked

with a star at R = 611. (b) The real part of Vϕ, and (c) the imaginary part of Vϕ, where Vϕ is the

ϕ component of the eigenfunction corresponding to the critical eigenvalues at R = Rc3.

the stream function deviation ϕ(1) corresponding to the solution at R = 629.

It is interesting to note that this tertiary transition may lie close to a strong 1:4 resonant

bifurcation, i.e. it may be possible to vary a second parameter in such a way that the critical

eigenvalue (which for the current choice of parameters is λ1 = 0.100+i0.995) becomes purely

imaginary. Near such a bifurcation, frequencies may synchronize resulting in a period-4

flow. Furthermore, there is a rich variety of other behaviour that may be seen near such

a bifurcation, including period-4 cycles and heteroclinic connections [43]. We leave the

localization of the bifurcation and analysis of the resonance to future study.

The three-frequency flow is observed in simulations throughout the interval 628 < R <

632; we expect that these solutions persist down to Rc3, but, as previously mentioned, we

do not perform a weakly nonlinear analysis to prove this. Near R = 632, the simulations

produce a flow that resembles an amplitude-modulated rotating wave with an amplitude

that oscillates twice before returning to its initial amplitude; see Figure 7 and Supplemental

Material [50] for an animation of the stream function deviation ϕ(1) corresponding to this

solution at R = 632. This pattern is repeated throughout the duration of the simulation

(i.e. over 40 cycles). We will refer to this flow as a period-two amplitude-modulated wave.

The initial conditions for the simulations are taken to be the end point of the simulation at
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FIG. 7.
∥∥ϕ(1)(·, t)∥∥∞, the infinity norm of the stream function deviation (spatial maximum of

|ϕ(1)|), i.e. the wave amplitude, as a function of time t (a) stable amplitude-modulated rotating

wave at R = 626 (before transition at Rc3); (b) period-2 amplitude-modulated rotating wave

at R = 631.7. See Supplemental Material [46] and [50] for respective animations of the stream

function deviation ϕ(1).

the previously computed Rayleigh number, and we visualize solutions only for t > 100 to

ensure that transients have been dampened.

If this period-2 flow is an amplitude-modulated wave resulting from a period doubling

bifurcation, then the system (28), involving the map Φτ , can be used to compute them

directly. We show that this is the case, starting at a Rayleigh number of R = 632, following

the same procedure as discussed at the beginning of this section. In this case, it is necessary

to use smaller increments δR = 1/10 of the parameter along the solution curve to obtain

adequate initial guesses for the Newton iteration to converge. In addition, it is necessary to

recompute preconditioning matrices every second step along the solution branch.

It is found that this period-2 flow results from a period-doubling bifurcation of the original

amplitude-modulated rotating wave at R = 630.6, i.e. at the bifurcation, there is a single

λ = −1 eigenvalue. The corresponding eigenfunction is real and resembles a wave with

azimuthal wave number six. The bifurcating flow is unstable at transition, as the flow

originates from one that is already unstable. However, at R = 631.4, it becomes stable for

a small interval of R. Namely, the bifurcating flow again becomes unstable at R = 632.0.
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FIG. 8. The bifurcation diagram (enlargement of region around the bifurcation at Rc3 = 626.8).

Solutions are represented in terms of
∥∥ϕ(1)(·, t)∥∥∞, the infinity norm of the stream function devi-

ation at a particular time (spatial maximum of |ϕ(1)|), i.e. the wave amplitude. For the period-2

amplitude-modulated rotating waves, the higher and lower maximum, as well as the higher and

lower minimum amplitude of the solution over a period of the amplitude oscillations are plotted

in green (lightest). The triangle represents the period-doubling bifurcation at R = 630.6, and the

squares at R = 631.4 and R = 632.0 delineate the region of stability of the period-2 flow. Values

for other parameters are listed in Table I.

The period-2 amplitude-modulated waves are represented in the bifurcation diagram in

Figure 2, while Figure 8 shows the relevant region of Figure 2 blown-up to highlight these

new solutions.

At the R = 632.0 transition, the critical eigenvalues of the map γ−1Φτ are a complex

conjugate pair (in particular λc = −0.2527±0.9675i), suggesting that the bifurcating solution

will again be a three-frequency flow. Simulations of the initial value problem suggest that this

is the case. In particular, for R > 632, an apparent three-frequency flow is observed, which

resembles the period-2 flow, but with lower frequency oscillations in the peak amplitude

(see Figure 9); this is consistent with a supercritical Neimark-Sacker bifurcation of the

period-2 flow at R = 632. See also Supplemental Material [51] for an animation of the
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FIG. 9.
∥∥ϕ(1)(·, t)∥∥∞, the infinity norm of the stream function deviation (spatial maximum of

|ϕ(1)|), i.e. the wave amplitude, as a function of time t. (a) period-2 amplitude-modulated rotating

wave at Rayleigh number R = 631.7, as in Figure 7b; (b) modulated amplitude vacillating flow at

Rayleigh number R = 633. See Supplemental Material [50] and [51] for respective animations of

the stream function deviation ϕ(1).

stream function deviation ϕ(1) of the solution at R = 637. This type of flow has been called

modulated amplitude vacillation and has been observed in both experiment and simulation

of the differentially heated rotating fluid annulus; see, e.g., [52–55].

In [55] numerical simulations of the differentially heated rotating annulus reveal a period-

doubling bifurcation sequence similar to that observed in the logistic map. Our results may

provide some insight into the origin of this behaviour, which warrants further investigation.

VI. CONCLUSION

In this study, we use numerical bifurcation techniques to study the flow transitions that

occur in a mathematical model of sheared annular electroconvection as the electric Rayleigh

number R is increased. A pseudo-spectral time-stepping code, that models the motion of

the thin film, is used to approximate a flow map Φt(u) that gives the solution of the model

equations at time t for initial conditions u. The axisymmetric flow, rotating waves, and

amplitude-modulated waves observed in the physical system, which, in the model equations,
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correspond to steady solutions, limit cycles and invariant 2-tori, respectively, are computed

as fixed points of this flow map. The approach exploits the fact that the rotating waves are

relative equilibria, which enables the extension of such methods to the continuation of the

amplitude-modulated rotating waves.

The Newton-Krylov numerical continuation and linear stability analysis that are imple-

mented require only knowledge of the map Φt(u), and does not require access to a linearized

code. That is, we consider Φt(u) as a black box, and all computations of the solutions and

eigenvalues are accomplished solely by evaluations of Φt. This distinguishes this study from

[27], the previous study that uses a similar approach to perform numerical continuation

of amplitude-modulated rotating waves. This aspect may enable a more straightforward

implementation on other problems.

Unlike in previous applications of similar methods [20, 27], we do not obtain reasonable

convergence of the GMRES iterations, during the solution of the linear systems for the New-

ton iterations, without the use of a preconditioner. This may be due to the nonlocal nature

of the coupling of the charge density through the 3D electric potential. Our preconditioner

is naively computed as a direct approximation of the matrix involved in the linear equa-

tions, but is used for all Newton iterations across a range of parameter values. Although

this preconditioner is very effective across a range of parameters, its computation may be a

major contribution to the overall time of computation. However, its computation is trivially

parallelizable, and therefore this issue may be easily mitigated.

The numerical methods locate a sequence of three flow transitions as the Rayleigh number

R is increased. The primary transition, which is a transition from axisymmetric to rotating

wave flow, is shown to occur at the critical Rayleigh number, Rc1 = 534.1, with a critical az-

imuthal wave number, mc = 6, for the parameters in Table I. These results are in agreement

with those obtained experimentally [11, 12], analytically [10, 32], and using direct numeri-

cal simulation [14, 15, 17]. The secondary transition to the amplitude-modulated waves is

identified at Rc2 = 595.6, which also compares quantitatively to previous studies that have

used direct numerical simulation [14, 17]. The tertiary transition occurs at Rc3 = 626.8,

as the amplitude-modulated waves lose stability to a three-frequency flow. Also, along the

solution branch of the amplitude-modulated waves, we find a period-doubling bifurcation

at Rc4 = 630.6, which gives rise to an amplitude-modulated wave whose period of ampli-

tude oscillation is twice that of the original solutions. These period-2 solutions transition
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to a three-frequency flow previously referred to as modulated amplitude vacillation, which

resembles amplitude-modulated waves but for which the amplitude oscillations are mod-

ulated [52]. The tertiary transition has not previously been identified, and the period-2

amplitude-modulated waves and modulated amplitude vacillating flows have not previously

been reported. Furthermore, the analysis reveals that the primary, secondary and tertiary

transitions all occur via supercritical Neimark-Sacker bifurcations, while the period-2 bifur-

cation, that results in the period-2 amplitude-modulated waves, is also supercritical. The

form of the bifurcating flows can be explained in terms of the critical eigenfunctions.

We have confirmed all results by both qualitative and quantitative comparison to com-

putations with a numerical grid size reduced by a factor of two.

The flows observed near the tertiary transition greatly resemble flows of interest that have

been observed in various differentially heated rotating systems. In particular, we observe

flows that resemble the modulated amplitude vacillation seen in [52–55], and those that

result from the sequence of bifurcations observed in [55]. This presents an opportunity to

study such flows, and the progression to more complex flows in general, in a two-dimensional

system.

We have shown the feasibility and validity of the application of numerical bifurcation tech-

niques to sheared annular electroconvection. This motivates the application of the method

to other geophysical fluid systems, and motivates further bifurcation analysis of the elec-

troconvection system itself, including the exploration of the effects of other nondimensional

parameters (e.g. the Reynolds number Re, the aspect ration α, and the Prandtl number P),

and the study of other interesting flows that have previously been observed. Of particular

interest are rotating waves consisting of isolated (localized) or elongated vortices [14, 17],

because their origin and nature are not understood.
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