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‘‘Blind to all fault, destiny can be ruthless at one’s slightest

distraction.’’

Jorge Luis Borges, The South, A Personal Anthology.



Abstract

Annular electroconvection in freely suspended thin fluid films undergoing circular
Couette flow is a novel nonlinear system which, in this thesis, comes under experi-
mental and theoretical scrutiny. Its novel features, which stem from its geometry and
its electrohydrodynamic character, include the superposition of an azimuthal shear
flow with a radial electrically driven hydrodynamic instability in a two-dimensional,
naturally periodic system. Concentric circular electrodes support a weakly conduct-
ing annular fluid film which electroconvects when a sufficiently large voltage V is
applied between its inner and outer edges. By rotation of the inner edge, a Couette
shear is imposed. The control parameters are a Rayleigh-like number R o V2 and the
Reynolds number Re of the azimuthal shear. The geometrical and material properties
of the film are characterized by the radius ratio « = r;/r,, where r;(r,) is the radius
of the inner (outer) electrode, and a Prandtl-like number P. The electroconvective
flow whose onset occurs when R = R, is described by a nonaxisymmetric mode num-
ber m, and a traveling rate v'. The dependence of R, m.,~' on a,P,Re has been
investigated theoretically by linear stability analysis. Experimental measurements
of current-voltage data were used to determine the onset of electroconvection over a
broad range of a, P and Re. These are compared with the theoretical predictions.
The current-voltage data were used to infer the amplitude of convection in the weakly
nonlinear regime by fitting to a steady-state amplitude equation with a lowest order
cubic nonlinearity with coefficient g. Results for g as a function of «, P and Re
are reported. Under various conditions, the primary bifurcation can be supercritical
(g > 0), tricritical (g = 0) or subcritical (¢ < 0). Above onset, numerous subcriti-
cal secondary bifurcations, that mark transitions from one flow pattern to another,
were encountered. A sampling of bifurcation scenarios is presented and their Re

dependence is studied.
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Chapter 1

Introduction

1.1 Introduction

Most natural phenomena are a consequence of nonlinear and nonequilibrium pro-
cesses. Yet, the physical principles that dictate these processes, unlike the rarer
equilibrium phenomena, are obscure. Due to the great variety of systems, there are
many approaches in trying to understand nonlinear, nonequilibrium processes. One of
the more recent advents is the study of pattern formation.[1, 2] Patterns are spatially
structured states that spontaneously appear in a system when a source of nonequi-
librium stress, also called a control parameter, is varied. Whereas patterns abound
in nature, they can only be accurately studied in physical systems which can be de-
fined mathematically and whose physical properties can be measured experimentally.
These criteria are readily met by fluid dynamical systems. Consequently, most pat-
tern forming systems that are studied today are fluid dynamical. The system that
is central to this thesis is mathematically described by the century old classical field
theories of fluid and electro- dynamics and is amenable to experimental investigation.
As is the case with this and other pattern forming systems, the detailed classical
descriptions have given way to modern interpretations in the context of dynamical
systems theory.

The system that is studied here is a freely suspended annular fluid film which can

be driven out of equilibrium by electrical forces and can be independently subjected



d=r, - r;

o=r/r,

Figure 1.1: The geometry for annular electroconvection with shear. Cylindrical co-
ordinates are used to describe the annular film. The inner electrode is a circular disk
of radius r; centered at the origin while the outer electrode occupies the region r > r,,.
The film spans the annular region r; < r < r, and is two-dimensional. The radius
ratio & = r;/r, where r;(r,) is the inner(outer) electrode radius. The positive z axis
is out of the page.

to a shear flow. A schematic is shown in Fig. 1.1. The film is suspended between
concentric circular electrodes. The fluid can be driven electrically by a voltage dif-
ference between the electrodes and can be sheared by rotating the inner electrode
about its axis. The pattern that emerges when the film is driven sufficiently out of
equilibrium is referred to as electroconvection. This state is comprised of an array of
counter-rotating vortices arranged around the annulus. How this pattern evolves, how
it depends on the geometry and how its properties are changed by the application of
a shear to the film are the experimental and theoretical questions that are addressed
in this thesis.

The annular geometry in this experiment facilitates electrical radial driving by
the variation of an applied voltage between the inner and outer edges of the annulus.
Radial driving forces are a feature that few experimental systems possess and here,
originate from the interaction between the radial electric field and the surface charge

density that develops on the film’s free surfaces. Since the forcing in this experiment is



electrical in origin, it is independent of the hydrodynamics allowing for a superposition
of electroconvection on a variety of hydrodynamic states. The simplest is an azimuthal
or circular Couette shear. This can be implemented by rotating the inner edge of the
annulus. The shear flow leads to a net mean flow in the azimuthal direction. The
mean flow, by virtue of the naturally periodic annular geometry, is closed on itself.
The electroconvection pattern in the presence of shear travels in the direction of the
mean flow.

The primary experimental technique involved measuring the electrical current
through the film as it was driven out of equilibrium by variation of the applied voltage.
From an experimental perspective, the annular geometry is particularly well suited
for making precise measurements of the electrical current since it does not have lateral
boundaries and so is free of leakage currents.

Patterns almost always evolve from homogeneous states via symmetry breaking
bifurcations.|2, 3] The primary concept here is that when an unstructured state be-
comes unstable to a pattern state, the loss of stability is accompanied by a broken
symmetry. The transition from homogeneity to a pattern is an example of a bifurca-
tion. The concept of stability is essential to identifying bifurcations; for a bifurcation
to occur, a solution must become unstable to another solution. Linear stability anal-
ysis is a prerequisite first step toward understanding any pattern forming system. In
fact, it is by the characteristics of the linear instability that nonequilibrium spatial
patterns are often classified.[2] The method of linear stability is well founded and
has been used for many years in the field of hydrodynamic stability. One generally
considers infinitesimal perturbations of the variables in the system at a known spa-
tial periodicity and exponential time-dependence, say of the form Re™*7. Here the
spatial periodicity is given by 27/m measured along a coordinate 6. ~ is referred to
as the growth rate and it is often a complex quantity, more conveniently written as
v = 4" +iv!, where " (v') is the real (imaginary) component of the growth rate. While
A" is measure of the exponential growth or decay of the perturbation, v* describes
its oscillation. N is formally infinitesimal and is determined by the equations and

boundary conditions at work in the system. Clearly the notation heralds an analysis



in cylindrical coordinates, however, the method is general.

To carry out the linear stability analysis, the equations that describe the system
are then linearized in the perturbed variables. Generally, the source of nonequilibrium
stress in the system is measured by the value of a dimensionless parameter called the
control parameter, R. There may be other dimensionless parameters that describe the
system which can be assumed to be held constant. The stronger the nonequilibrium
stress, the larger the control parameter R. For a given m and R, the method of linear
stability analysis determines the value of 4". If " > 0(7" < 0) then the system is
linearly unstable(stable) to the perturbation. When 4" = 0, the system is said to be
marginally or neutrally (un)stable. In practice however, linear stability analysis is
used to determine the values of R and ~+* for a given m and v" = 0. By varying m the
minimum value of R at which the system is marginally unstable can be determined.
This minimum value, R = R, corresponds to the greatest nonequilibrium stress that
can be applied to the system without driving it linearly unstable and is called the
critical value. The other critical parameters are m. and .. When R just exceeds
R., the system is linearly unstable to a pattern with spatial periodicity 2w /m., and
oscillates with a temporal period 27/4¢. If 4* = 0, the instability, the pattern and the
bifurcation are termed stationary. If 4' # 0, the instability and pattern are termed
oscillatory, while the bifurcation is often qualified as Hopf. The theoretical research
in this thesis is comprised of a linear stability analysis of annular electroconvection
with a shear flow. The method is similar to that outlined above and as is shown
in Chapter 3 the linear theory for this system is particularly rich, displaying various
instabilities.

Extended, three-dimensional, nonlinear systems are prone to develop complicated
spatial and temporal patterns even when only weakly nonequilibrium.|2] The observed
patterns and complex dynamics are often the result of one or more symmetry-breaking
bifurcations. It is thus interesting to study pattern formation in low-dimensional
systems which are close to equilibrium but have little symmetry[4] so that there is
only a very restricted set of symmetry-breaking bifurcations available. In general,

one seeks the most complex dynamics and patterns that can be realized in as simple



and restricted a system as is possible. Annular electroconvection in freely suspended
films exploits the strict two-dimensionality of a submicron smectic A liquid crystal
film. The lower dimensionality greatly reduces the variety of possible pattern states
and so makes it easier to experimentally study the rich nonlinear properties of the
basic pattern, and simpler to treat the problem theoretically.

The working fluid in this experiment was a smectic A liquid crystal that serves
primarily to constrain the flow to two dimensions. Freely suspended liquid crystal
films have been often studied for their various interesting equilibrium properties and
have recently been reviewed in Ref. [5]. Liquid crystalline phases or mesophases are
states of matter with degrees of order intermediate between that of their normal solid
and liquid states. In some materials the liquid crystalline phases are accessible by
variation of the temperature. These liquid crystals are generally organic compounds
with molecular aggregates that are long along one axis. In fact ‘cigar’-shaped would
be a surprisingly good description for these molecules. The variation in the long range
order of these long molecules gives rise to the different mesophases. Smectic liquid
crystals consist of layers of orientationally ordered molecules. In smectic A, the long
axis of the molecules is normal to the layer plane. The layers are equidistant from each
other. Within each layer, however, the distribution of molecules is isotropic. Smectic
A exhibits two-dimensional isotropic fluid properties in the layer plane while flows
perpendicular to the layers are strongly inhibited; in fact in that direction, the smectic
A phase is often described as a plastic solid. Due to their layered structure, uniform
suspended smectic films are always an integer number of smectic layers thick and while
they readily flow, they seldom change thickness. As a result, a freely suspended film
of a smectic A liquid crystal is robustly two-dimensional. It can sustain rapid flows
within the layer plane without flows between layers. The other material properties
in the smectic A phase, such as the conductivity and the dielectric permeability, are
also isotropic within each layer. Since smectic liquid crystals have very small vapour
pressures, the film can be enclosed in an evacuated environment. The reduction in
the ambient pressure leads to a proportional reduction in the air drag that the film

is subjected to.[6] A reduced ambient pressure environment is, for the first time in



electroconvection experiments, implemented in the research reported in this thesis.

Smectic films may be contrasted with soap films, on which many hydrodynamic
experiments have been performed.[7, 8, 9] Soap films cannot be produced in an envi-
ronment with a pressure lower than the vapour pressure of water, and so are always
subject to residual drag. In addition, ordinary soap films have a much larger electrical
conductivity than smectic films and cannot be driven to electroconvect at reasonable
voltages. Finally, soap films always have much larger thickness nonuniformities than
smectic films. As a result, smectic films are a better candidate for studying electro-
convection than soap films.

The linear instability and subsequent nonlinear evolution of flows depend strongly
on the symmetry and structure of the unstable base flow. One way of systematically
studying this dependence is to superpose simple flows on well-understood instabilities.
The addition of a base state flow introduces a second control parameter, alters the
symmetries of the unstructured state and can affect the bifurcation to the pattern
state. Annular electroconvection possesses interesting symmetries. In the absence
of shear, the base state is invariant under azimuthal rotation and reflection in any
vertical plane containing the rotation axis through the center of the annulus. The
electroconvection pattern state appears with the spontaneous breaking of the az-
imuthal invariance and as will be demonstrated later, is stationary. The application
of azimuthal shear breaks the latter reflection symmetry and distinguishes between
the clockwise and counter-clockwise directions. The shear further reduces the sym-
metry of the base state and leaves it with only a single spatial symmetry; azimuthal
invariance. The electroconvection pattern once again breaks the azimuthal symmetry,
and since the reflection symmetry is absent due to the shear, the pattern must travel
azimuthally. By reducing the accessible dimensions, the variety of patterns that may
appear is reduced. On the other hand, by imposing an additional control parameter
the types of physical interactions in the system are increased. The essence of this
strategy is the notion that the mechanisms leading to complexity may be easier to
identify and study in a lower dimensional system than in a higher one.

One of the most striking results concerning pattern formation is that hydrody-



namic instability is analogous to phase transitions in thermodynamic systems.[10]
This result is well established for many pattern forming instabilities; in fact the
mathematical description of bifurcations is identical to that of critical phenomena
or phase transitions.[1, 2] Whether the similarities are superficial or there are deep
implications of this coincidence, is a question open to debate. What is dissatisfying
however, is that whereas the mathematical description follows quite easily from the
minimization of a free energy functional in critical phenomena, there are no such gen-
eral principles for nonequilibrium systems.[2, 11] The quest for other unifying physical
principles is a central goal of nonequilibrium physics.

Near the instability, the mathematical description of a broad range of patterns con-
sists of simple equations of universal form often referred to as amplitude equations.|2,
3] These are generic equations, so-called because they describe the evolution of
the ‘amplitude’ of the pattern, one of the most common examples of which is the

Ginzburg-Landau equation:
ToO A = €A+ E50%A — go|APA. (1.1)

In Eqn. 1.1, A(z,t) is the amplitude of the stationary pattern which in most fluid
dynamic experiments is the velocity of the convective flow. In the weakly nonlinear
regime, flows with length scales near the critical mode are excited and so the ampli-
tude varies slowly temporally and spatially. The coefficients 7y, & and gg are real and
constant. The reduced control parameter, e = R/R. — 1 < 1 is the small parameter
for which the amplitude model is valid. The universality of the amplitude equations
stems from the common symmetries of the multitude of physical systems which are
primarily controlled by the geometry and the boundary conditions. The microscopic
details of the individual systems are contained in the coefficients 79, £ and gy which
define the temporal, spatial and amplitude scales respectively.

While there are several methods by which amplitude equations can be derived
from the underlying microscopic or field equations that describe the system, the form

of the amplitude equation can be arrived at from the symmetry of the pattern.[2] For



example Eqn. 1.1 is invariant under the A — —A operation, which is a symmetry
of the pattern that it describes. The cubic nonlinearity is the lowest order nonlinear
term that preserves this symmetry. Often nonlinear terms of higher order are included
in the amplitude equations. When the spatial derivative term in Eqn. 1.1 is dropped,
the amplitude equation is referred to as a Landau equation and describes a pitchfork
bifurcation. It is so called because the A and —A solutions are indistinguishable and
when graphed give the appearance of the two prongs of a pitchfork.

Like phase transitions, the most common bifurcations are supercritical (second
order) or subcritical (first order). A supercritical or forward bifurcation evolves con-
tinuously for € > 0, while a subcritical or backward bifurcation is discontinuous at
€ = 0. This distinction is mathematically embodied in the sign of go in the amplitude
equation. Precisely how the value of this coefficient is determined depends intricately
on the microscopic model that describes the system. Short of calculating this co-
efficient, there seems to be no way to know a priori whether a system will evolve
to a pattern supercritically or subcritically. The foregoing is also true for thermo-
dynamic systems. A system in which the nature of the bifurcation can be suitably
varied bears great promise to elucidate the physical processes that dictate the nature
of the bifurcation. One of the important results of the research reported here is to
have experimentally demonstrated a system for which one can by varying physical
parameters choose the nature of the bifurcation.

When the pattern is not stationary, the amplitude equations generally take the

form of the complex Ginzburg-Landau equation:
100, A = €(1 +ico) A + £ (1 +ic1) 2 A — go(1 —ics) | A]PA, (1.2)

where ¢g, ¢; and c3 are real constants. Observe that the difference between Eqns. 1.1
and 1.2 is that while the coefficients in the former equation are real, they are com-
plex in the latter. Whereas the complex Ginzburg-Landau equation describes the
amplitude of the electroconvection patterns in the sheared annular system that is the

subject of this thesis, it is not derived here but simply motivated by symmetry consid-



erations. In addition to periodic patterns, the solutions of Eqn. 1.2 include localized
coherent structures such as fronts and pulses and for some parameters, spatiotemporal
chaos.[2]

In summary, the purpose of this project was to study pattern forming instabilities
in a low dimensional geometrically simple system with two control parameters. The
goal was attained in the study of annular electroconvection in sheared fluid films,
where the control parameters are the electrical driving and the strength of the shear
flow. The system has several novel features. The annular geometry and electrical
nature allow for radial driving forces and the superposition of a shear on electrocon-
vection. The inherently nonlocal interactions which stem from the electrical character
of the system and the smectic-film-enforced two-dimensionality are not encountered
in other pattern forming systems. The annular geometry is naturally periodic and
therefore the imposed shear comprises a closed flow. The study was both experimental
and theoretical.

The experimental work encompassed the design and construction of an apparatus
to perform current-voltage measurements on an annular film in a reduced ambient
pressure environment. From the current-voltage data, one can determine the onset of
electroconvection, the nature of the bifurcation and some of the nonlinear properties of
electroconvection. How these change as the geometry of the annulus and film thickness
are altered, and/or when the applied shear is varied were all open to investigation.
Secondary bifurcations, which, due to the lower dimensionality of the system could
be easily identified, were also studied.

The theoretical part of the research concerned extending the study of surface
driven electroconvection to an annular geometry with a sheared base flow. The
objective was to predict the onset of electroconvection and the prevailing mode of
electroconvection at different rates of shear. No quantitative experimental or theo-
retical work on electroconvection with or without shear had ever been performed in
an annular geometry prior to the research reported in this thesis.

The next two sections are devoted to a short review of previous work on electro-

convection in freely suspended films. Experiments in rectangular films are discussed



in Section 1.2 while the theoretical aspects are reviewed in Section 1.3.

1.2 Previous Electroconvection Experiments

There have been several electroconvection experiments in freely suspended liquid
crystal films.[12, 13, 14, 15, 16, 17] All the previous electroconvection experiments
have been performed in rectangular geometries. For the remainder of this Chapter,
comments have been limited to the prototypical experiments in 2D isotropic liquid
crystal films in the smectic A phase[13, 14], although experiments have also been
done in more complex anisotropic smectic phases.[16, 17]

The experimental apparatus of Refs. [13, 14] consisted of two parallel conducting
wires separated by a distance on the millimeter scale. The liquid crystal film spans
the region between the wires for a length between 5 and 10 times as broad.[13, 14]
The films were uniformly thick. Over many experiments, a thickness range of 2 to
160 smectic layers were investigated. The thickness of a single layer of the smectic
A liquid crystal used in these experiments is 3.16 nm.[18] Thus the ratio of the film
thickness s to width d is s/d ~ 107*. The smectic A film was freely suspended in a
room temperature and pressure environment. A dc voltage drop V between the wire
electrodes is symmetrically applied i.e. V/2 to one electrode and —V/2 to the other.
Particles, in some experiments fine chalk dust while in others incense smoke, were
allowed to settle on the film surface. As the voltage drop V was slowly increased,
the particles which were initially stationary began to move. This particle motion
corresponds with the onset of an electroconvective flow in the film. It was found that
the onset for each film had a threshold voltage V. below which the film was purely
conducting and quiescent while above which, a cellular flow comprised of counter-
rotating vortices prevailed. See the schematic provided in Fig. 1.2 for a pictorial
description. This array of vortices is a one-dimensional pattern with a repeating unit
of a pair of counter-rotating vortices. The wavelength at onset of the electroconvection
instability was found to be approximately 1.3d.[13, 14]

The focus in these early electroconvection experiments, which preceded the the-

10
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Figure 1.2: A schematic of the laterally unbounded rectangular geometry.

oretical development, was to study the variation of the onset or critical voltage V.
with changes in several parameters but particularly the film thickness and width. It
was found that V, increased linearly with the film thickness and was largely indepen-
dent of the film width.[13] Hysteresis in the critical voltage was not observed when
V was decreased leading to the conclusion that the bifurcation to electroconvection
is forward or supercritical. From measurements of current-voltage characteristics of
the rectangular film, it was concluded that below V. the film behaves as an ohmic
conductor. When the film is convecting, the current is increased above that by mere
conduction. The current-voltage measurements were difficult due to the presence of
an alternative current path around the transverse edges of the film. From measuring

particle velocities, a suitable measure for the amplitude of electroconvection, it was
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concluded that the bifurcation was a supercritical pitchfork. It was argued from ve-
locity measurements that the reduced control parameter was € = (V/V,)? — 1. It was
by this and similar results that it was established that the electroconvection vortex
pattern obeyed a simple Ginzburg-Landau equation.[14]

From an experimental perspective, it should be clear that quantitative measure-
ments on electroconvecting films by means of tracer particles is a difficult procedure.
When smoke particles, typically from burning incense, were used, they are likely to
affect the electrical conductivity since aromatic compounds in the smoke probably
dissolve in the film.[19] The particles have a size that is comparable to the film thick-
ness, and so are invasive rather than passive. More importantly, using particles to
visualize the convective flow in order to determine the onset of convection by eye
is a somewhat subjective procedure. To deduce any of the properties beyond onset
required measurements of flow velocities which are tedious to perform.

Current-voltage data can be used to study the bifurcation to convection and is
the preferable technique. However, the rectangular geometry, plagued by transverse
or lateral bounds, is unsuited to current-voltage measurements. The lateral edges of
the film contain a wetting layer of liquid crystal that allows an alternative current
path.[20] The annular geometry does not have lateral bounds and so is free of leakage
currents. Current-voltage measurements are performed for the work in this thesis.

Since the smectic A film was freely suspended at atmospheric pressure, it is likely
that the effects due to air drag are significant when the film is convecting.[6] The ex-
periments performed in this thesis are at reduced ambient pressure and so circumvent
the consequences due to air drag, which were likely to have been an important factor

in previous experiments.

1.3 Previous Electroconvection Theory

This Section describes the linear and weakly nonlinear theory that has been developed
to elucidate the electroconvection phenomena described in Section 1.2. The focus here

is to elucidate the mechanism that drives electroconvection and to state the principal
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results of the theories. The theoretical model, which was first elucidated by the
author, has been reported in Refs. [21, 22]. A subsequent nonlinear analysis has been
reported in Ref. [23]. A schematic of the geometry for the experiments in rectangular
films(Refs. [13, 14]) is given in Fig. 1.2.

The voltage is applied to the film by maintaining the lines y = +d/2 at po-
tentials of +V/2 respectively. This electrode geometry is referred to as the ‘wire’
configuration and resembles the experimental geometry described in Section 1.2. An
alternative electrode geometry is the ‘plate’ configuration, which requires that the
film be supported along its edges by two large flat sheets of metal i.e. by plates
instead of wires. A schematic is provided in Fig. 1.3a. The annular geometry which
is described by the radius ratio o = r;/r, where 7;(r,) is the inner(outer) electrode
radius approaches the ‘plate’ geometry as a — 1. In the theory, all material and flow
properties were assumed to be constant over the thickness of the film, s. The film is
treated as a two-dimensional sheet since s/d < 1.

That an electrically driven instability results in this configuration can be under-
stood by considering the distribution of charges on the film’s free surfaces. When
the potentials +V/2 are applied, a current flows in the film. Assuming that the film
behaves ohmically, the potential decreases linearly from V/2 to —V/2. Consequently,
the electric field inside the film is constant and has no component perpendicular to
the film’s free surfaces. However, it is obvious that outside the film, the electric field
is not purely horizontal. As a result, there is at the film’s free surfaces a discontinuity
in the vertical component of the electric field. It is this discontinuity in the electric
field that supports a charge density g at the free surface.[24] See Fig. 1.3b for a picto-
rial explanation. The electrical forces that arise due to the interaction of this surface
charge density with the electric field in the film’s plane drive the electroconvective
instability.

In suspended films, one finds that the electrical boundary conditions enforce a
potentially unstable surface charge density configuration on the film with positive
charge close to the positive electrode and negative charge close to the negative elec-

trode. Since the surface charge density depends on the electric field in the free space
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Figure 1.3: Charge generation at the free surface. In (a) is shown a schematic of the
film in the ‘plate’ geometry. In (b) is a schematic illustration of the electric fields
in the small box in part (a). q is the surface charge density that results due to the
discontinuity in the normal component of the electric field at the free surface.
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surrounding the film, it must depend on the precise electrical boundary conditions
that are prescribed by the geometry. What is important to realize is that the elec-
tric field anywhere is determined by charge densities everywhere i.e. the relationship
determining the charge density is inherently nonlocal. As a result, the electrical
boundary conditions have to be specified everywhere on the boundary to properly
specify the surface charge density.

The theoretical model required that the flow was two-dimensional, that the fluid
was isotropic in two dimensions, incompressible and was a weak electrical conductor.
It assumed that the fluid can be described by the Navier-Stokes equation subjected to
an electrical body force. A charge continuity equation that allows for the conduction
and convection of electrical charges supplemented the Navier-Stokes equation and the
incompressiblity requirement. Finally, the usual electrostatic relation between the
charge density and electric fields completed the system of equations in the theoretical
model. The implementation of this final relation is somewhat subtle. Whereas the
Navier-Stokes equation, the incompressibility requirement and the charge continuity
equation describe the fluid velocity, the charge density and the electric field in the two-
dimensional film plane, the Maxwell relation couples the three-dimensional electric
field exterior to the film to the surface charge density at the film’s free surfaces.

The theoretical model was electrohydrodynamic in character in that it treats the
limit of a poorly conducting fluid so that electric fields are prominent and electric cur-
rents are weak. In this limit the magnetic fields and forces that arise from them are
negligible. The opposite limit that is often explored is that of a strongly conducting
fluid such that electric fields are negligible but electric currents and consequently mag-
netic effects are dominant. This is the magnetohydrodynamic limit.[25, 26] Another
approximation is the assumption that electrical polarization effects were insignificant.
The film is also assumed to be freely suspended in a vacuum. Note that none of the
anisotropic properties of liquid crystals are included in the model. In fact, the sur-
face driven electroconvection mechanism is very general and would occur in any freely
suspended fluid film subjected to the appropriate electrical boundary conditions.

When suitably non-dimensionalized, two non-dimensional parameters describe the
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film. A dimensionless control parameter R and a parameter P are given by

°_ 6(2)V2 Y

= 1.3
ons? posd’ (13)

where o, n and p are the bulk electrical conductivity, viscosity and mass density
respectively. ¢ is the dielectric constant of free space while s and d, as mentioned
earlier, are the film thickness and width. All lengths are non-dimensionalized by the
film width d. The results of a linear stability analysis about the quiescent and con-
ducting state leading to an electroconvecting state were found to be independent of P.
The stability analysis tests when a mode that describes a perturbation proportional
to e** becomes marginally stable. Following standard procedures, it was found that
for the ‘wire’ case, the conducting state becomes marginally unstable at a critical
value RY = 76.77 and with a non-dimensional critical wavenumber kY = 4.744 in
units of d 1. For the ‘plate’ case, likewise, it was determined that marginal stability
occurred at RP = 91.84 and kP = 4.223. Clearly, the precise electrical boundary con-
ditions have a significant effect on the critical values of R and . By the definition of
R given in Eqn. 1.3, the ‘wire’ case loses stability at lower voltages than the ‘plate’
case, all else being equal.

Several comparisons between the experiment and theory were made. Since the
conductivity o and the viscosity 7 are poorly known[13, 14], little emphasis can be
placed on some quantitative comparisons. However, other predictions and trends can
be compared. The wavelength A\ of the one-dimensional vortex pattern corresponds
to a non-dimensional wavenumber x = 2mwd/\. Experimental measurements of this
quantity at onset give k®P* = 4.94 £+ 0.25. This is in good agreement with the value
of k. = 4.74 for ‘wire’ electrodes. From the expression for the control parameter R

in Eqn. 1.3, it is evident that the critical voltage V, is given by

V.= i\/ach. (1.4)

€o

Note that V_ is independent of the film width d and varies linearly with the film

thickness s. Both trends were observed experimentally. V, was accurately linear with
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s for films with thicknesses less than about 25 smectic layers.[14] For thicker films V,
increased with s sublinearly. This is a clear indication that three-dimensional flow
effects, in particular the relative motion of smectic layers, is more pronounced in
thicker films. This is to be expected since the electrical forcing is at the free surfaces
of the film. Agreement between the proportionality constant between V. and s was
not unreasonable, given that the material parameters were poorly known.

Experimentally V. was independent of d for relatively ‘broad’ films and showed
a weak dependence as the film became narrower,[13] while Eqn. 1.4 implies that
V, is independent of d. This disagreement may be explained by three-dimensional
electrode effects which are expected to be important when the film is ‘narrow’. In
dimensionless terms, the electrode size scales with d=!. For a detailed numerical
comparison between the theory and the experiments see Refs. [13], [14], [17] and [22].
At present, experimental data are not available for comparison to the predictions for
the ‘plate’ electrode geometry.

With the linear stability analysis accomplished, subsequent theoretical work fo-
cussed on a weakly nonlinear analysis near the onset of electroconvection.[23] The
system of equations of the theoretical model introduced in Ref. [21] were system-
atically perturbed near the critical parameters (., R.). The procedure used was a
standard multiple-scales perturbation theory that allows a convenient splitting of the
fast and slow scales. A slowly-varying, real amplitude A(z,t) was used to describe
the envelope of the electroconvection pattern. It was found that the amplitude at
the lowest order nonlinearity obeyed the Ginzburg-Landau Eqn. 1.1. Whereas & is
independent of P, 7y is not. The weakly nonlinear theory was developed for P = co.
Of importance are the calculated values for the ‘wire’ case of £ = 0.284, 75 = 0.351
and go = 1.746. For comparison, & = 0.297, 79 = 0.372 and go = 2.842 for the ‘plate’
geometry. Since gy > 0, the pitchfork bifurcation to electroconvection is forward or
supercritical. Recall that in Section 1.2 it was emphasized that from current-voltage
observations the onset of electroconvection in freely suspended fluid films is super-
critical. This is in agreement with the nonlinear theory.

The predicted correlation length from the linear and nonlinear theory for the
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‘wire’ case, & = 0.284, is about 20% smaller than the experimental value of {577 =

0.36 £ 0.02 of Ref. [14]. This is fair, but not completely satisfactory, agreement.
Experimentally, determining the correlation length requires the film to be convecting
at some measurable velocity. To arrive at both k¢ and &, the experimental
measurements were made nondimensional by dividing by the measured film width d,
which was known to within about 5%.[14]

Since experiments in rectangular films have material and geometric parameters
such that P > 1, the P = oo value of g is used to compare with experimental mea-
surements of go. The agreement was unsatisfactory.[14] The quantitative agreement
between the theoretical values and experimental values of 7y were also unsatisfactory.
Unlike k. and &g, which only scale with d, the scaling of gq and 75 depends on the
poorly known conductivity. Also, both of the above measurements involved films
moving at substantial velocity above onset. Since the experiments were conducted at
atmospheric pressure, it is likely that air drag effects were significant.

The experiments that are reported in this thesis have taken into account some of
the non-ideal features of the previous electroconvection experiments. Velocity mea-
surements of the flow by means of tracer particles has been replaced by measurements

of the current through the film. The annular films are enclosed in a reduced ambient

pressure environment so that air drag is negligible.
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Chapter 2

Experiment

2.1 Introduction

This Chapter describes the experimental setup and protocol. The purpose is to
perform precise current-voltage measurements of electroconvection in annular films
under imposed shear. In overall structure, the experiment consists of an annulus,
constructed out of circular electrodes, that is housed in a vacuum chamber and is
controlled by two computer interfaced devices. A schematic of the overall design is
shown in Fig. 2.1. The vacuum chamber is a box of approximate dimension 16 X 14 X 8
inches. It was constructed out of 3/4 inch thick aluminum plates, equipped with four
feed-through ports and was evacuated by a rotary vacuum pump. A CCD colour
video camera assembled with a microscope is used to view the film through an optical
window in the vacuum chamber. A Keithley electrometer controlled by a computer
was used to obtain the current-voltage characteristic of the film. A high precision
stepper motor, triggered by the CompumotorPlus drive was operated by the computer
interfaced Hewlett-Packard frequency generator. The motor was used to apply a shear
to the film by rotating the inner edge of the annulus. A detailed description of the
experimental design follows in Section 2.2 while the experimental methodology is

recounted in Section 2.3.
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Figure 2.1: A schematic of the experimental setup.
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2.2 Experimental Design

This Section describes the experimental apparatus. Specific attention is given to the
experimental design. A schematic of the experiment is provided in Fig. 2.2. The
annular film is housed in a vacuum chamber. The vacuum chamber has a glass
window in its upper surface and an O-ring feed-through in its lower surface. The
glass window permits visual observation of the annulus while the O-ring feed-through
allows the rotation of the inner edge of the annulus. The rotation is effected by a
stepper motor. An electrical feed-through permits electrical signals to be transmitted
to and from the annulus and a slip ring assembly permits conducting electrical signals
to the rotating parts of the annulus. Also housed in the vacuum chamber is the ‘film-
drawing’ assembly - an apparatus which facilitates the drawing of the annular film.
The annulus was constructed out of two stainless steel electrodes. The inner
electrode was a circular disk of diameter 2r; mm. The outer electrode was a larger
circular plate of diameter 9.00 cm with a central hole of diameter 2r, mm. The
outer electrode was 0.73 £ 0.01 mm thick. A diagram of the annulus is shown in
Fig. 2.3. With the exception of the experiments reported in Appendix D, several
inner electrodes with radii between r; = 3.60 & 0.01 mm and r; = 5.26 &= 0.01 mm
were used. The radii of the outer electrodes were between r, = 5.57 & 0.01 mm and
ro, = 11.25 &+ 0.01 mm. When concentrically placed, the space between the inner
and outer electrodes defines an annulus of width d = r, — r; and radius ratio @ =
ri/To. Experiments were conducted at six different radii ratios between oz = 0.33 and
a = 0.80 by use of several pairs of inner and outer electrodes. The edge of the outer
electrode had the form of a wedge of angle 20 — 30°. The lower surface of the wedge
was polished. This was done by means of a soft dremel tool and a micropolishing
powder while the outer electrode was on a lathe; the lathe and the dremel tool were
rotated in opposite senses. The resulting outer electrode had a sharp edge which
was required so as to reduce the wetting layer of the film. Burrs on the upper
surface of the outer electrode were lapped away. While the same treatment applies to

the inclined surface of the inner electrode, it is by comparison fairly complicated in
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Figure 2.3: Geometry of the electrodes. The electrodes were made of stainless steel
and are shown here in top view (a) in cross section (b). The surface of the inclined
edges were polished.

construction. An assembled inner electrode is shown in Fig. 2.4a. It consists of four
separate cylindrical pieces that are put together along their common axis. The inner
electrode, with dimensions, is shown in Fig. 2.4b. It is constructed out of stainless
steel and is in the form of a top hat. The inner electrode fits on a stainless steel
shaft, shown with dimensions in Fig. 2.4c. The inner diameter of the inner electrode
is just right to allow a tight fit on the neck of the shaft. It is held in place by a
minute screw. The shaft has a set screw which is used as an electrical connection. An
important consideration in designing the assembled inner electrode is the electrical
isolation of the inner electrode. This is achieved by means of an insulating sleeve
made out of G10(a fibre glass epoxy laminate characterized by high strength and
good electrical insulation). The shaft makes a tight fit into the sleeve as shown in
Fig. 2.4a. While this fit is tight, it does allow for rotating the shaft in the sleeve. This
freedom facilitates the final adjustment to ensure that the inner electrode rotates truly

about its axis. The sleeve is press fit into the slip ring assembly which is described
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Figure 2.4: A schematic of the inner electrode.
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Figure 2.5: A schematic of the ‘film-drawing’ assembly. The razor blade is firmly held
against the outer electrode by a stretched spring.

below. A smooth stainless steel rod is press fit into the lower end of the sleeve as
shown in Fig. 2.4a. The inner electrode was made to rotate about its axis by means
of a gear attached to the rod which coupled to a stepper motor by means of a belt.
The stainless rod provides a smooth surface for an O-ring vacuum seal. See Fig. 2.6
for a diagram. The O-ring was regularly ‘moistened” with vacuum grease to reduce
wear of the rubber. To ensure sufficiently smooth rotation, a high precision stepper
motor was used. The CompumotorPlus stepper motor was operated at 25600 steps
per revolution.

The ‘film-drawing’ assembly is shown in Figs. 2.5a and b. The principal compo-
nent is a stainless steel razor blade which was inclined at approximately 25° to the
electrodes, held taut against the electrodes by a tensioned spring and was operated
by a motorized translation stage assembly. The stepper motor could be operated
to push or pull the razor blade at variable drawing rates between 2 — 30 mm/min.

The entire assembly, including the stepper motor, were inside the vacuum chamber
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application of an electrical voltage to the inner electrode while it rotates.

and could be operated via electrical feed-throughs in reduced ambient pressure. In
experiments with the larger outer electrodes, it was necessary to remove the part of
the ‘film-drawing’ assembly shown in Fig. 2.5b from the vacuum chamber. This was
because, even at its farthest, the razor blade was sufficiently close to the film that
the electrical perturbation it caused was not insignificant.

The primary experimental probe is the measurement of the current-voltage char-
acteristics of the freely suspended annular fluid film. Since the current transported
through the film is picoamperes in magnitude, particular care has to be exercised to
avoid stray currents. A schematic of the electrical component of the experiment is
given in Fig. 2.6. The inner electrode is electrically isolated from all other compo-
nents of the apparatus by the aforementioned insulating sleeve. The assembled inner
electrode is press fit into the slip rings, the area of contact being the insulating sleeve.
The slip rings are an electromechanical Silver Graphite brush device that facilitates
the transmission of electrical signals to and from the rotating inner electrode. A
Keithley electrometer is used both as a voltage source and a picoammeter. The ‘high’

of the variable dc voltage source of the Keithley is connected to the inner electrode,
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which is the only part of the entire apparatus that is not at ground potential. The
outer annulus though at ground potential is electrically disconnected from ground by
teflon washers. The rest of the apparatus is grounded. Electrical noise is reduced by
shielding the electrodes and most of the experimental appendages in a large Faraday
cage which doubles as the vacuum chamber. A low noise triaxial lead was used to
collect the current from the outer electrode and was measured by the Keithley elec-
trometer. A low noise triaxial feed-through was used to carry the signal out of the
vacuum chamber.

The optical appendages to the experiment are simple and consist primarily of
a microscope and a colour CCD video camera. A Tungsten-Halogen lamp was the
light source. White light was directed by a beam splitter into the vacuum chamber
through the glass window in the lid. The image of the film under reflection was
viewed by the CCD camera attached to a microscope assembly and recorded by a
VCR. The system magnification was between 5 — 15X with the corresponding field of
view 58 — 20 mm. The purpose of the optical assembly is to allow one to glean the
thickness and uniformity information contained in the interference colour of the film.

A final design consideration concerns the two-dimensionality of the flow. Experi-
ments in freely suspended films have principally employed soap solutions and liquid
crystals. It is well known that soap films and liquid crystal films in the nematic phase
are prone to thickness variations[1, 2]. Films of liquid crystals in the smectic phase are,
however, fundamentally two-dimensional and are resistant to thickness variations[3].
Furthermore, unlike soap solutions, the liquid crystal films are not susceptible to evap-
oration and can be maintained in much lower ambient pressures. Since this study calls
for a two-dimensional isotropic fluid for experiments at reduced ambient pressure, it
necessitated the use of a smectic A liquid crystal. A successful candidate previously

established in earlier experiments is smectic A octylcyanobiphenyl[3, 4].
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2.3 Experimental Protocol

This Section recounts the methods employed in performing the experiments. The
first step is to prepare the liquid crystal sample. The liquid crystal used in the ex-
periments was octylcyanobiphenyl (8CB). The 8CB liquid crystal has the smectic
A phase between 21°C and 33.5°C. Since the electrical conductivity of the smectic
A liquid crystal (8CB) is due to several ionic impurities[5] of varied and unknown
concentrations, the nature of the ionic species can be controlled by doping 8CB with
tetracyanoquinodimethane (TCNQ), so that the dominant species contributing to
the electrical conductivity is the dopant. The procedure for doping 8CB was simple.
TCNQ was dissolved in acetonitrile (ACN) and added to the 8CB sample. The ACN
was evaporated in a vacuum oven while warming the mixture so that the liquid crystal
was in its isotropic phase. The liquid crystal samples used had dopant concentrations,
by weight of dopant to liquid crystal, of 7.62 x 10°°, 1.11 x 10~* and 2.96 x 104,
Experiments with significantly higher or lower dopant concentrations have been less
reproducible due to non-ohmic effects. Samples with a high concentration of TCNQ
have, left to themselves, changed colour from an original off white to orange to green.
The same has been noticed for a solution of TCNQ in ACN independent of concen-
tration. The duration of time during which these changes occur is weeks to months.
The samples were always an off white colour for the dopant concentrations used in
the experiments.

The experimental apparatus was assembled with the exception of the electrodes.
The inner and outer electrodes were cleaned, first with methanol then with de-ionized
water and dried. The teflon washers that electrically isolate the outer electrode were
also cleaned with methanol and de-ionized water. Dirt, grease in particular, can
greatly effect the electrical conductivity and therefore the function of electrical isola-
tion that the teflon serves. The assembled inner electrode less the top hat electrode
was adjusted to rotate true to its axis to within 0.002 inches. The top hat electrode
was screwed down to the shaft of the inner electrode and the outer electrode was, by

use of recently cleaned plastic screws, assembled. The outer electrode can be moved
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by an XY translation stage (see Fig. 2.2) and was adjusted so that the inner electrode
was concentrically placed.

The ‘film-drawing’ assembly was then used to form the liquid crystal film. The
sharpened and polished edges of the inner and outer electrodes were first gently wet
with the liquid crystal sample. Then the ‘film-drawing’ assembly is used to slowly drag
the stainless steel razor blade, also wetted with liquid crystal, across the annulus to
form the film. Usually the first few attempts in drawing the film were unsuccessful,
with the film breaking during the drawing process. While drawing, a low power
microscope, colour CCD video camera and a colour monitor were used to view the
film. When viewed in reflected white light, the films display several interference
colours. By moving the razor blade back and forth during the drawing, a film with
uniform colour can be selected and drawn. Films of uniform colour could be obtained
when the razor blade was drawn slowly ~ 2 —3 mm/min. Once a film with a uniform
colour over its entire area is drawn, the razor blade of the ‘film-drawing’ assembly
is drawn as far back from the edge of the annulus as is mechanically possible. The
distance is often several film widths. When such a distance could not be reached as
when using large outer electrodes, the razor blade was disassembled and removed from
the vacuum chamber. This procedure ensures that electrical perturbations because
of the metal blade to the film are negligible.

The thickness of the film was determined from the interference colour of the film
under reflected white light. This method works well for intermediate film thicknesses
where the interference colour can be unambiguously matched to a colour chart. Very
thin films appear black and were not used, while thicker films are a pale off-white and
were also avoided in the experiments. By using standard colourimetric tables and
procedures|6, 7, 8] a colour-thickness chart has been mapped out for this experiment.
The calculation and the colour chart are given in Appendix A. Since smectic films are
an integer number of smectic molecular layers, with each layer of smectic A 8CBI9]
being 3.16 nm thick, the film colour is used to identify the film thickness measured
in smectic layers. Most of the experiments were performed with films between 25

and 85 layers thick. Over most of the middle of this range, the film thickness can
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be determined to within 42 layers, while close to the ends of the range a more
conservative determination of within £5 layers was used. During the course of an
experiment, the films were visually monitored to ascertain that they remained uniform
in thickness to within 41 layer. Experiments in which the film spontaneously became
non-uniform were abandoned. At times, films with several colours were drawn. These
films, left to themselves, anneal to a film with uniform thickness and hence colour.
The annealing process can be accelerated by electroconvecting and shearing the films.

The plane of the film often deviates from the horizontal. The tilt of the outer
electrode was adjusted until the film is horizontal. The outer electrode was then
adjusted until the inner electrode was again centered. Excess liquid crystal on the
inner electrode was cleaned by a Q tip moistened with methanol. The lid of the
vacuum chamber was put in place and the air was then evacuated. While enclosed,
whether in an evacuated environment or otherwise, the film left to itself is robust in
the sense that it rarely ruptures or changes thickness. The air was evacuated slowly so
as to prevent vigorous air flows that may cause the film to rupture. Failing to remove
excess liquid crystal from the inner electrode would cause the trapped air to form a
bubble of liquid crystal that would almost certainly cause the film to rupture. The air
surrounding the film was pumped down to an ambient pressure of 0.1 — 1.0 torr. At
these pressures the mean free paths of nitrogen and oxygen are between 0.5—0.05 mm,
comparable to the film width d. It is expected that the drag on the film due to the air
at reduced pressure is negligible.[10] The pressure was not actively controlled during
an experimental run, allowing the vacuum to slowly decay. Between experimental
runs, the vacuum chamber was evacuated. As a result, the pressure never exceeded
5 torr during the course of an experiment.

Utilizing the 25600 steps per revolution stepper motor, the inner electrode was
rotated about its axis at angular frequencies up tow = 67 rad/s. The temperature was
not actively controlled; nevertheless, all experiments were performed at the ambient
room temperature of 23 +1°C, well below the smectic A-nematic transition at 33.5°C
for undoped 8CB. The computer interfaced Keithley electrometer served as both a

voltage source and a picoammeter.
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Figure 2.7: Representative current-voltage data. Current-voltage characteristics for
complete experimental runs at radius ratio a = 0.467 in the absence of shear (a) and
when strongly sheared (b).
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An example of a current-voltage characteristic in a film without shear is shown
in Fig. 2.7a. It consists of data obtained for incremental and decremental voltages.
The current-voltage characteristic clearly shows two regions; one for voltages smaller
than a critical voltage V. and one for voltages greater than V.. The critical voltage
that separates these two regions is in the vicinity of the kink or elbow in the current-
voltage characteristic. In the regime V' < V., the current is linearly dependent on the
voltage and therefore the film is ohmic. Experiments in 8CB with significantly higher
and lower concentrations of TCNQ show, at least initially, non-ohmic current-voltage
characteristics even for V' < V.. Prior to obtaining the data shown in this figure, a
preliminary test run was performed. The test run consisted of measuring a current-
voltage characteristic of the film fairly rapidly and with large voltage-separation be-
tween data points. The purpose of the test run is to quickly estimate V.. A plot of
the data from test run results in a by-eye determination of V, denoted V""", With
this approximation, a current-voltage characteristic is obtained as follows.

A reduced control parameter € is defined as

v 2
€ = (W) —1. (21)

Current-voltage data is then obtained by setting the voltage as a function of the

reduced control parameter € given by inverting Eqn. 2.1
V(e) =1+ € V PProe (2.2)

Beginning at ¢ = —1 i.e. V = 0, the applied voltage on the inner electrode is
incremented. The voltage increments are effected by incrementing the reduced control
parameter €. Two constant increments are used Estep and €large step- Between € = —1
and typically € = —0.25, the increments were in €,,ge step- Between € = —0.25 and
a maximum value of € usually between 0.25 and 2.0, the increments were in €y,p. In
these experiments 0.001 < €4, < 0.0125 With €4,4e step between 6 and 24 times larger.

As a result the voltage increments are not constant and get progressively smaller as
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approzx.

V — V,*PP"% The increments are typically less than 0.1 volts when V = V,

After each voltage increment the film was allowed to relax for between 10 — 18
seconds. The lower bound ensures that the capacitive transients have sufficiently
decayed. This relaxation time ( is not constant at each applied voltage but gets longer
the closer the V is to V_*?P"* For the data obtained with incremental voltages the

relaxation time when longer than 10 seconds, was as a function of €, determined from

C(e) = @(%f/m) , (2.3)

where ceil(z) is the smallest integer not smaller than z. This technique allows for
longer relaxation times closer to the critical voltage where critical slowing down is
expected. The relaxation time is at its maximum close to € = 0 or equivalently when
V =V 9Pro%  Relaxation times longer than about 18 seconds per data point were not
feasible due to the drift of the electrical conductivity, which will be discussed later.
After the relaxation period, between 100 — 200 measurements of the current, each
separated by 25 milliseconds, were averaged. The standard deviation of the measure-
ments or 1% of the average, whichever was greater, was taken as the error in the
measurement. The reading error for measurements in the picoammeter range is 1%.
The voltage was incremented up to a predetermined maximum €. The applied voltage
was then offset by half an incremental step and then decremented. The decrements
were of size €., until typically € = —0.3, but certainly € < —0.25, so that large hys-
teresis in the critical voltage may be detected. In Fig. 2.7b is shown a representative
current-voltage characteristic in a film under shear. Note the hysteresis. Since the
test run only provides an approximation to the critical voltage for the incremental
run, the decremental run must explore in small decrements a larger portion of regime
for € < 0 so as to capture the hysteresis. Between € = —0.3 and € = —1, the decre-
ment was €4rge step- 1 he relaxation time ¢ at each voltage on the decremental run

was, when greater than 10 seconds, determined from determined from

C(e) = ceil(—8> | (2.4)



The difference between the functional forms in Eqns. 2.3 and 2.4 is motivated by the
need to have long relaxation times at larger |e| on the decremental run so as to detect
any large hysteresis effects in critical voltage. When the film was sheared by rotation
of the inner electrode, it was allowed at least 30 seconds after a change of shear rate
to attain a steady state before the current voltage characteristics, as described earlier,
were obtained.

The ohmic portions of the current-voltage characteristics of the incremental and
decremental runs in Figs. 2.7a and b do not coincide. Since the film’s geometrical
properties are unaltered during the course of the run, it is the electrical properties that
have changed. It is well known that liquid crystals degrade upon dc excitation[11].
The changes in the electrical conductivity are probably due to electrochemical reac-
tions with the electrodes. The presence of suitable dopants is known to arrest the
degradation process, nonetheless the electrochemical reactions with the electrodes
slowly change the film conductivity. The drift in the conductivity was usually ~ 2%
but ranged up to 10% during the course of an experimental run of 30 — 120 minutes
duration. In Fig. 2.8 are plotted the current as a function of time at two voltages, one
below the critical voltage and one above the critical voltage. The time dependence of
the drift cannot be described simply. It is clearly dependent on the applied voltage
and on the state of flow in the film. Further, from qualitative observations it has been
noticed that the drift depends on the shear, the ambient pressure and even on the
physical electrode. Different electrodes, even though they are of the same material,
had different rates of drift. Perhaps, this was because of the different circumferences
that were in contact with the liquid crystal. Films at atmospheric pressure had less
drift than those at reduced ambient pressure.

The drift of the electrical conductivity which is a non-ideal feature of this ex-
periment has two important consequences. First, if the dimensionless parameters of
the film are to be approximately constant over the course of an experiment, then
the amount of drift should be minimal. This means that the experiment has to be
conducted as quickly as possible, hence the relaxation times were never in excess of

18 seconds. Second, the unavoidable drift during the run has to be accounted for in
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Figure 2.8: The drift in the current. Plot of current versus time for a uniform film
with a = 0.467 when subjected to fixed voltages V; <V, and V, > V..

some reasonable manner so as to collectively understand data from a multitude of
films of different geometries and under various shears. This has resulted in a straight-
forward but tedious data analysis procedure which is introduced in Section 4.2 and
discussed in detail in Appendix E. While the drift in the conductivity is inconvenient,
it can be corrected for in the data. Surprisingly however, the drift in the conductivity
facilitates the exploration of a much broader range of the parameter space of the
experiment. One of the parameters introduced earlier was the Prandtl-like parameter
P. The drift in the conductivity makes accessible a wide range of P without having
to draw a film of different thickness or with a different dopant concentration.

A large number of experiments had initially been performed in an environment at
atmospheric pressure and room humidity. The protocol, though slightly different from

that discussed earlier, was similar. The results from these experiments are presented
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and discussed in Appendix D. A small number of experiments were performed on
films which had a nonuniformity in thickness of about £2 smectic layers. Most often
the nonuniform films that were used had two thicknesses and in appearance they
have two colours. Current-voltage measurements were not obtained from these films
but they were instead used to visualize the flow pattern. A few experiments were
performed in annular films in an eccentric or off-centered geometry. This geometry
was accessible by moving the outer electrode so that the inner electrode was no
longer concentrically placed. The procedure was similar to that described above and
is further discussed in Appendix F, Section F.1. The extensive experimental results
of electroconvection with and without Couette shear in a reduced ambient pressure

environment are presented and interpreted in Chapter 4.
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Chapter 3

Theory

3.1 Introduction

This Chapter provides a detailed description of the model that has been developed
to explain the phenomenon of electroconvection in freely suspended annular fluid
films under Couette shear.[1] A schematic of the geometry is shown in Fig. 1.1. In
this geometry, the film occupies the annular region r; < r < r, between the inner
and outer electrodes. In the experiments, the film has a thickness s which is much
smaller than the film width d = r, —r;, such that the ratio s/d ~ 107*. In the theory,
justifiably, the film is treated as a two-dimensional sheet which lies in the plane z = 0.
The inner electrode, which occupies the circular region 0 < r < r;, z =0 is held at a
variable potential V' while the outer electrode which spans the region r > r,,2 = 0
is held at ground or zero potential. In general both the inner and outer electrodes
can be allowed to rotate and from a theoretical perspective, it is no more costly than
simply allowing for the rotation of a single electrode. However, as will be explained in
Section 3.3, it is necessary to consider the rotation of only a single electrode. Hence
it is only the inner electrode that will be allowed to rotate about the z axis.

The instability that leads to electroconvection can be physically understood by
a traditional ‘exchange of parcels’[2] argument. Consider figure 3.1. For the present
the film is not sheared. Two elements of fluid of equal area (also of equal mass since

the fluid density is constant) are centered about radial positions r; and rq, and are of
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Figure 3.1: A diagram to elucidate the electroconvection instability. The fluid ele-
ments shown have the same area. The arrows indicate the magnitude and direction
of the electric field in the plane of the film.

equal angular extent df and of radial dimensions dr; and dr,. The dimensions and
hence the elements or parcels are infinitesimal with area dA = rdr;df = rydrydf.
Since an electrical potential V' is applied to r < r; and the region r > r, is held at zero
potential, it shall at this point be assumed that the potential decreases monotonically
from V to zero as r increases from r; to r,. That this is so will be demonstrated in
Section 3.3. Without elaborating on the origin and the radial dependence of the charge
density, it shall be assumed and proven later (Section 3.3) that the charge density
is a monotonically decreasing function for r; < r < r,. In calculating the energy of
the configuration illustrated in Fig. 3.1, only the electrical energy of assembling the
charge distribution in the fluid elements before and after the exchange is considered.
Let g(r) be the charge density per unit area and ¥(r) be the electrical potential.

Because the parcels are infinitesimal, the energy before parcel exchange is

Bregore = la(r)¥(r) + q(rs) U(r2)}dA. (3.1)
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The energy after exchanging the parcels at 1 and r, intact with their charge densities,

i.e. after the physical exchange of the fluid in the two parcels, is

Eofter = [q(r1)¥(r2) + q(r2)¥(r1)]dA. (3.2)

The deformation required to place the parcel at r; into the void left by the parcel at
ro and vice versa is of no consequence. The change in the energy of the configuration

due to the exchange, given by AE = E,f1er — Fpefore 18

AE = [q(ry) = qlra)][¥(rs) — U(ry)|dA. (3.3)

Based on the assumptions made earlier, q(ry) — g(r2) > 0 and ¥(ry) — U(ry) < 0
imply that AE < 0, .e. the system is potentially unstable. This criterion can be
stated somewhat more succinctly as E - Vg < 0, where E is the electric field. In
the presence of a shear nothing changes, except that it is necessary to account for
the additional cost in energy to decelerate one of the parcels and to accelerate the
other when making the parcel exchange argument. When AFE is sufficiently negative
that it exceeds the energy cost to accelerate and decelerate parcels then the system
is potentially unstable. The preceding arguments are placed on firmer footing in the
remainder of this Chapter.

Section 3.2 describes the physical model, its governing equations and the approx-
imations that are inherent in it. Section 3.3 presents the solution for the base state,
the state of the system when it is not convecting. Following this, a linear stabil-
ity analysis of the system about the base state is presented in Section 3.4. In this
Section are discussed the many predictions of linear theory. The assumptions of the
theoretical model are, in Section 3.5, contrasted with the experimental realities. Fi-
nally, Section 3.6 presents simple symmetry arguments for the form of the appropriate

amplitude equation that describes the weakly nonlinear regime in this system.
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3.2 The Governing Equations

This Section presents the physical model that is used to describe electroconvection in a
suspended thin film. The analysis here is similar to that of Ref. [4]. Unless otherwise
stated, all operators, field variables, and material parameters are two-dimensional
(2D) quantities. The film is treated as a 2D conducting fluid in the z = 0 plane, with
areal mass density p, molecular viscosity n, and conductivity o. The fluid is assumed

incompressible so that the 2D velocity field, u, is divergence free,
V-u=0. (3.4)

The Navier-Stokes equation with an electrical body force,

ou
Pl o +(u-V)u| = -VP+nV*u+qE, (3.5)

governs the fluid flow, where V, P, ¢, and E are the 2D gradient operator, pressure
field, surface charge density, and electric field in the film plane, respectively. The term
qE is the electric force acting on the surface charge density. The charge continuity

equation
% =—-V.(qu+0E), (3.6)
takes into account the convective and conductive current densities, qu and cE re-
spectively.
Subscript three will be used to denote three-dimensional (3D) differential opera-
tors, material parameters and field variables. The 3D electric potential W3 is governed

by the 3D Laplace equation,
Vil =0, (3.7)

where V3 is the 3D gradient operator. The coupling of U3 with the 2D charge density ¢
is specified by requiring W3 to satisfy certain boundary conditions on the z = 0 plane.
The surface charge density ¢ derives from the discontinuity in the z—derivative of W3

across the two surfaces of the film:
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where €, is the permitivity of free space. If ¢ is known, Eqns. 3.8 constitute Neumann
conditions on W3 on the film, while Dirichlet conditions, described below, hold on the
electrodes. If instead Dirichlet conditions are specified on the film, Eqns. 3.8 can be
used to determine q.

The 2D and 3D potentials are related via ¥ = W3|,_o. Equations 3.8 relate the
surface charge density to the discontinuity in the z—component of the 3D electric
field E3 = —V3W3 across the film plane. On the other hand, the  and y components
of E3 which form the 2D electric field E = —V W, are continuous across the film. This
continuity is required by the usual matching conditions for electric fields across the
surfaces of dielectrics. Note that it is the 2D quantity E and not E3 that appears in
Eqns 3.5 and 3.6. One cannot simply use a Maxwell equation to eliminate the charge
density in favor of the field because the 2D quantities in question are confined to a
plane embedded in a 3D, otherwise empty, space and in general V - E # ¢/¢.

Equations 3.4 - 3.8, together with the appropriate boundary conditions on the
electrodes, model the system. The model assumes the electrohydrodynamic limit
where magnetic fields and the resultant Lorentz forces are negligible. One can also
show that dielectric polarization effects are negligible in the limit of a thin film.[4, 5]

In the subsequent analysis, the stream function ¢ is defined by
u=Vxog, (3.9)

where gl_; = ¢z. Using Eqn. 3.9, E = —VV and eliminating the pressure field by

applying the curl operator, Eqns. 3.5 and 3.6 reduce to

p%+(Vx$)-V (VXVx@) —nViV XV xd)+ (Vgx V) = 0(3.10)
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and

) .
8—3+(Vx¢)-Vq—aV2\Il:0. (3.11)

These equations are rendered dimensionless by rescaling the length, time, and
electric potential by d, eyd/o, and V', respectively, where d and V are the cross-film
width and potential difference. It follows that the stream function and charge density
are nondimensionalized by od/ey, and ¢,V/d. Applying this rescaling to Eqns. 3.10,
3.11, 3.7, and 3.8 gives

1 a - ]_ =, -
lv? _ EE]W XV x &) +R<v\1/ x Vq) — 5((V x &) .v>(v XV xd), (312)
dq - 9
E—I—(Vqu)-Vq—V\IJ:O, (3.13)
Vil = 0, (3.14)
oV,
g = -2 | (3.15)
9z z=0"*
where the dimensionless parameters
2v2 2v2
R=9"_ _ % and p= 1 _ OB ) (3.16)
on 031382 pod  pzos3sd

are analogous to the Rayleigh and Prandtl numbers in the Rayleigh-Bénard problem.
R will be known as the Rayleigh-like or control parameter. P will be referred to as
the Prandtl-like parameter. In these parameters, s is the thickness of the film. In
this 2D treatment it is assumed that s < d. The 2D material parameters are related
to their three-dimensional counterparts by ¢ = o03s, n = 138, and p = p3s. The
control parameter R is proportional to the square of the applied voltage difference,
but independent of the film width d. P is the ratio of the charge relaxation time
scale in a film €yd/o3s to the viscous relaxation time scale psd?/ns;. That these are
the relevant time scales can be seen by considering separately charge relaxation in

the familiar charge continuity equation restricted to conduction in 2D and viscous
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relaxation in the Navier-Stokes equation. Since P appears in Eqn. 3.12 as 1/P, it
should be clear that the dependence on the Prandtl-like parameter grows weaker as
P increases and for all cases P < 10 is considered large.

Equations 3.12 - 3.15, together with appropriate boundary conditions, describe
electroconvection in a thin conducting film suspended in otherwise empty space, for

any 2D arrangement of the film and electrodes.

3.3 The Base State

This Section applies the governing equations introduced in Section 3.2 to the case of
an annular film. These have been solved for the case of a general Couette shear flow
which forms the potentially unstable base state.

The film is suspended between two circular electrodes which cover the remainder
of the z = 0 plane as shown in Fig. 1.1. Cylindrical coordinates (r, 8, z) are employed.
The inner electrode has a radius r; and is at potential 1 in dimensionless units. The
outer electrode, which occupies the z = 0 plane for r > r,, is at zero potential. The
cross-film width is r, — r; = 1 in dimensionless units and the radius ratio, « is defined
as

a=r;/ro, (3.17)

so that

(3.18)

Rotation of the inner electrode about the central r = 0 axis produces a Couette
shear in the base state. The base state variables are denoted by the superscript zero.
Under shear, the radial derivative of base state stream function is given by

5,69 () = % <7“— ! ) (3.19)

1—a? r(l — «a)?

where 2 is the dimensionless angular rotation frequency of the inner electrode. If the

fluid is not sheared, the base state velocity field is zero and ¢(® (r) = 0. The strength
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of the shear is described by a Reynolds number, with the velocity determined by the
motion of the inner edge and the length by the film width,

T‘iQ

Re =
e D

(3.20)

where P is the Prandtl-like number given by Eqn. 3.16.

There is no loss of generality by treating only rotations of the inner electrode. Since
the system is 2D, one can always reduce independent rotations of both electrodes to
this case by transforming to a rotating reference frame in which the outer edge is
stationary. The transformation introduces a Coriolis term into Eqn. 3.5, which can
simply be absorbed into the pressure.[6] As a result there are important differences
in the stability of 2D and 3D systems, and in particular for rigid rotation which is
discussed further in Sections 3.4 and 4.8.

The base state potential ‘I/go) (r,z) and charge density ¢{°)(r) are independent of
the base state shear flow. They are determined by the electrostatic boundary value
problem given by Eqns. 3.14 and 3.15, with Dirichlet boundary conditions on the

z = 0 plane

1 for 0<r<r
vOr) = 95 (r,0) = $ 1 Lsfin(l — ) +In(r)] for r;<r <7, (3.21)
0 for r>r,.

The boundary condition for r; < r < r, is found by treating the annular film as
a 2D ohmic conductor subject to a dimensionless potential of 1 at the inner edge
and 0 at the outer, and requiring the continuity of the 2D current density. The
logarithmic form follows from the cylindrical geometry. It is clear from Eqn. 3.21
that the potential decreases montonically from r; to r, as was assumed in Section 3.1.

The Laplace Eqn. 3.14 for the potential in the half-space z > 0 is solved by the

ansatz

vO(r, 2) = /0 Tk e Jo(kr) A(K) (3.22)
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where Jj is the zeroth order Bessel function. Inversion of the above equation results
in

A(k) = k /0 “dr v 0 (r, 0)Jo (kr) . (3.23)

Hence, the base state surface charge density is given by

0”(r) =2 dk Ky (hr) [ | ac e, 0)J0<ko] , (3:24)

where ( is a dummy integration variable. Evaluation of the integrals[7, 8], results in

2 [1 /11 72y 1 /11 72
Oy = — —F<— —-1-L> ——F<— —'1-—> 3.25

where F'is the hypergeometric function o /. This function is plotted in Fig. 3.2 for two
values of . As a@ — 1, ¢(© approaches the base state charge density for the laterally
unbounded rectangular film introduced in Section 1.3, which is odd-symmetric about
the midline of the film. This symmetry helped simplify the analysis in that case.[4]
However, for 0 < a < 1, the annular base state charge density ¢(®) is neither even nor
odd about the midline, so the analysis here is more complicated. This deviation from
odd symmetry is larger for smaller a.

The surface charge density shown in Fig. 3.2 is ‘inverted’ in the sense that the
positive charges lie close to the positive, inner electrode and negative charges are
near the outer electrode. This unstable surface charge configuration gives rise to an
electroconvective instability, much like the unstably stratified density configuration
in Rayleigh-Bénard convection.[4] The divergences of ¢(® at the edges of the film
are a consequence of the idealized geometry in which the electrodes have zero thick-
ness. This idealization leads to the boundary conditions in Eqn. 3.21, whose radial
derivative is discontinuous at r = r; and r = r,. This is reflected in Eqn. 3.25 where
F(%, %; 1; 1) is indeterminate i.e. when r = r; and r = r,, so that ¢(© diverges at the
edges of the film.

A hint at the relative stability of films of different « lies in the comparative shape

and magnitude of the surface charge density. It may be suggestive but perhaps not
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Figure 3.2: The base state surface charge density. ¢(® (r) versus r at & = 0.5 (lower
scale) and « = 0.8.(upper scale)

completely convincing from Fig. 3.2 that a = 0.50 is the more unstable of the two,
by virtue of its larger surface charge density. The picture becomes a little clearer
if instead the quantity plotted is E© - V¢ which was shown in Section 3.1 to
have some bearing on the potentiality of an instability. The electric field is given by
EQO(r) = —VUO(r) = —1/rin(a) t for r; < r < r,. Fig. 3.3 shows the quantity
E©dq® /dr for the two  and it is a little clearer that o = 0.50 is the more unstable
of the two. Such a conclusion is guessed at by comparing the areas between the
curves and the E(©dq(® /dr = 0 axis. The larger the area the more unstable; but one
must exercise caution in such an argument. Comparative stability based on ‘energy’
arguments of this sort can be inaccurate if there are competing or degenerate stable
configurations. In such cases one must pay attention to the state to which instability

tends. A conclusion of this sort of comparative stability was easily obtainable for a
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Figure 3.3: The relative stability at o = 0.5 and o = 0.8. Plotted is E(O)(T)%
versus 7 at & = 0.5 (lower scale) and o = 0.8.(upper scale)

laterally unbounded geometry. In that case, the relative stability of films in ‘wire’ or
‘plate’ geometry was quite clear from comparing the shapes of dg® /dr for the two
cases.[5]

The base state is fully described by the functional forms for the stream function
»©, potential U and surface charge density ¢(®) given by Eqns. 3.19, 3.21 and 3.25

respectively. It is important to observe that the base state is always axisymmetric.

3.4 Linear Stability Analysis

In this Section the axisymmetric base state is tested for stability to non-axisymmetric
perturbations. The perturbed quantities will be denoted by the superscript one, and
are defined by
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$(r,0) = ¢(r) + ¢ (r.0),

q(r,0) = ¢V(r)+4¢"(r,0),

U(r,0) = ¥O>F)+vW(r9), (3.26)
Us(r,0,2) = U, 2)+P(r,0,2).

Substitution of the perturbed field variables into Eqns. 3.12 - 3.15 and retaining only

the terms which are linear in the perturbed quantities yields

lVQ 1 (2 194 g)] v (1)) B E <a\1;(0) gV or® 3q(o)> _
00

P\ot r or r\ or 90 a0 or
199N 89 19\
3.27
rP 06 87“(87‘2 7"87“>¢ (3.27)
aqW e 9g® 9™ 94 )
- — —v2u =g 3.28
ot 00 Or a0 or ’ (3:28)
vl — o, (3.29)
8\11(1)
g = %8 , (3.30)
0z z=01
where
72 10 1 02 02
Vi=e —4+-— 4+ —— d Vi=V2i4 —
or? * ror + r2 062 a * 022
The variables ¢, UM and \Ilgl) satisfy the following boundary conditions:
¢V (rs,0) = 8,6V (rs,0) = ¢V (r,,0) = 8,6V (r,,0) = 0, (3.31)
D (r;,0) = vD(r, 6) = 0, (3.32)

‘Ifgl)(r,e,z) — 0 for z = +00.(3.33)
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Equation 3.31 is a consequence of rigid boundary conditions on the velocity of the

fluid. The Dirichlet boundary conditions for the perturbed potential \Il:(),l) onthez =0

plane are
0 for 0<r<mr
\Ifgl)(r,0,0) =2 W (r,0) for r<r<r, (3.34)
0 for r>r,.

The perturbations can be conveniently decomposed into products of axisymmetric

and non-axisymmetric terms of the following form,

6™ (r, ) Pm(r)
0 | | ) pimb-at (3.35)
v (7, 0) U,.(r) )

v (r,6, 2) (7 2)

where the azimuthal mode number m is an integer which corresponds to the number
of vortex pairs in the pattern. The functions ¢,,, ¥,,, and V3, satisfy the same
boundary conditions as the perturbations, Eqns. 3.31 - 3.34, and are axisymmetric.
The growth rate v may be complex.

Substitution of Eqn. 3.35 into Eqns. 3.27 - 3.30 gives

(00 o 3o 2 50,

= P
imR (0) (0) imm (0)

=2 (0¥ g — (D4, = 22 D(D, DI, (3.36)
m? imDq®) imD¢©

(0= 5 Y= (5 )= (3= T Jam =0, @37
m?2 ?
a\:[j3m

G = —2 , (3.39)

0z ot

where D = 0, and D, = D+ 1/r. For the remainder of this thesis with the exception
of Appendix F, Section F.2, the discussion will be restricted to a base state flow which

is either quiescent or Couette. In these cases D(D,D¢®) = 0 and the right hand
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side of Eqn. 3.36 is identically zero.[9]

In the limit & — 1, and for zero shear ¢(©) = 0, Eqns. 3.36 - 3.39 reduce to the
linear stability equations for electroconvection in a laterally unbounded strip.[4] The
narrow gap or o — 1 limit is implemented by the transformation D,D — D? =
0?/0y* and m/r — k in Eqns. 3.36 - 3.39. k is the wavenumber of the unstable mode
that describes the one dimensional array of electroconvection vortices.

The complex growth exponent v is written as 4" + i7%. In order to find the
conditions for marginal stability, the real part vanishes i.e. 7" = 0. The task is
then to solve Eqns. 3.36 - 3.39 for a given o, P and Re, by determining consistent
values of R and ~+* for each m. The rate of azimuthal travel or angular velocity of
each marginally stable mode around the annulus is 4*/m. The marginal stability
boundary, which is defined only at discrete m, has a minimum at the critical values
me, R, while the critical mode travels at +:/m,.

The axisymmetric terms of the perturbations in Eqn. 3.35 are expanded as follows:

Pm(r) = ;An¢m;n(r)7 (3.40)
Up(r) = Xn:An\Pm;n(r), (3.41)
Uy, (r,z) = ;An\llg,m;n(r,z), (3.42)
Gm(r) = ;Aanm(r), (3.43)

where the A, are amplitudes. The expansion eigenfunctions ¢, (r), Vppn(r), and

U3, (7, 2) satisfy the following boundary conditions:

Prmin (1) = O Gmin (13) = Gmin(70) = Brbpuin (o) = 0, (3.44)
Winin(15) = Urnin(70)

Usmn(r,z) =0 for z— foo, (3.46)

0 (3.45)

Y
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0 for 0<r <

Uamin(1,2=0) = ¢ U,,.,(r) for m,<r<r, - (3.47)

0 for r>r,

The functions ¢, (r), which satisfy the rigid boundary conditions given in Eqn. 3.44,
can be identified with the Chandrasekhar cylinder functions[2],

(3.48)
The boundary conditions Eqn. 3.45, imply that the 2D potential expansion function

V,,., can be further expanded in a series of functions of the form,

¢m§P(T) = Jm(meT) + bmme(meT) . (3-49)

The functions C,,., and t,,.,, along with their associated constants B,n, Bmn, Cn,
Dipny Xmp, and by, are described in detail in Appendix B.

The main barrier to solving Eqns. 3.36 - 3.39 lies in the difficult nonlocal coupling
between ¥,, and g, in Eqns. 3.36 and 3.37 which is required by the 3D electrostatic
Eqns. 3.38 and 3.39. This problem can be circumvented by making an approximation
in which the 3D Eqns. 3.38 and 3.39 are replaced by the following simple 2D closure

relation:

m2
<D*D - T—Q)fm\pm — (3.50)

In the above expression, f,, is a closure factor which is independent of r, and is to
be specified. As shown below, a consequence of this approximation is that the charge
density and the 2D potential are related pointwise, or locally.

This approximation was motivated by the following physical reasoning. If instead
of an annular film, one considers an annular column, with a height much larger than its
width, then there is a straightforward Poisson relation between a bulk charge density
and the 3D potential inside the column. If the 3D potential is independent of z, and

is equal to U,,(r)ei™ there are no free surfaces to consider and one has in place of
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Eqgns. 3.38 and 3.39 the relation (D*D — m2/7“2) U,, = —¢m. If one now hypothesizes
that the charge density retains its radial profile when the bulk is ‘squeezed down’
to a 2D film, then one must include only an r independent scaling factor f,,, as in
Eqn. 3.50.

Further expanding each ¥,,.,, using Eqns. 3.41 and 3.49, ¥,, can be expressed as

‘I}m - Z An‘I}m,n — Z An Z Bm;npqpm;p ’ (351)
n n p

where the B,,.,, are constants. It then follows from Eqns. 3.50 and Eqn. B.9 that

qm — Z An Z Bm;npfm;pme27vbm;p = Z An Z Bm;anm;p ) (352)
n p n p

where

Gmip = FruspXomp” Prmip - (3.53)

Eqn. 3.53 demonstrates the pointwise, local relation between the potential on the film
and its surface charge density in this approximation. Subsequent use of Eqn. 3.53
yields expressions which give some insight into the general linear stability problem.
A choice for f,,, can be made by considering the empty upper half space z > 0
with homogeneous boundary conditions at infinity and Dirichlet boundary conditions
such that the potential is equal to @bm;p(r)eime everywhere on the z = 0 plane. This
boundary condition is smooth, unlike the piecewise smooth conditions in Eqn. 3.47,
which respect the sharp edges of the annulus. Then the 3D potential for z > 0 satisfies
the equation,
(D*D - T—; + %)gﬁm;pe—w =0. (3.54)
From the eigenvalue relation Eqn. B.9, it follows that k,,, = Xmp. The corresponding

surface charge density is thus

= 2mewm;p- (355)

z=01

— —XmpZ
Umip = =25~ Ympe” X"

0z

Comparing Eqn. 3.55 with Eqn. 3.53 leads to the following choice for the closure
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Figure 3.4: The surface charge density perturbation. ge.(r) versus r at & = 0.5. The
dashed line shows the result of the local approximation while the solid line shows the
result of the exact nonlocal calculation.

factor:
2

Frip = X_mp ] (3.56)
For the remainder of this Chapter, Eqns. 3.53 and 3.56 are chosen to close the
system of equations. This approximation is referred to as the ‘local theory’. Fig. 3.4
shows a plot of the approximate charge density, gs,; at o = 0.5, corresponding to
a potential 6,1 on the film. It is compared to a more accurate numerical solution,
referred to as the ‘nonlocal theory’ which is discussed in Appendix C. As might be
expected, the approximation is accurate except close to the edges of the film.
The remaining 2D equations are solved using the expansions in Eqns. 3.40, 3.48, 3.51
and 3.52. Only the simplest case is considered here: a single expansion mode, so that

A; =1and A, =0 for n > 1. Similarly, the expansions of the potential and charge

density are truncated at p =1 so that B,,.;, = 0 for p > 1. The expansion coefficient
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B, = B,;.11 is complex. Thus, using Eqn. 3.56, Eqns. 3.40, 3.51 and 3.52 reduce to

¢m = Cm;l,
U, = (B:n+iB:n)¢m;1a (3-57)

9m = Z(B;l—*_ZB:n)Xmlwm,l

Substitution of Eqn. 3.57 into Eqn. 3.37, with v = i7* results in an equation, the real

and imaginary parts of which are

mD @O

B:nXmlzl}m;l = 2<’Yl - )B:nz/}m;l 5 (358)

7 7 mD¢(O) T me(O)
Bmelzl,bm;l + 2(7 - r >Bme1¢m;1 + <T>Cm’l = 0, (359)

respectively. Eliminating B;, from the above pair of equations results in

4 - mD@©\2 . mDa©®
[1 +— (7’ - f ) ]Binxmlzwm;l + < Tq )Cm;l =0. (3.60)

Multiplying Eqn. 3.60 by t.,.1, integrating to form inner products denoted by

() = / .. rdr, (3.61)

and solving for the expansion constant,

- —-m
B =——1.,. 3.62
™ N, (3.62)

In Eqn. 3.62, N¢m;1 is a normalization factor given in Appendix B and the matrix

Dq© 4 . D@2 771
Lm:<Cm;1 . [1+ 2<¢—m ¢ ) } Yt > (3.63)

element

Xm1 r

A similar projection of Eqn. 3.58 and some simplification results in

2B . m D¢©
Bl ==y —— { p —— ) | 3.64
" Xm < N <¢ o v ’1> (364)
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Equations 3.62 - 3.64 determine the expansion coefficients of the potential and charge
density for a given stream function. Substitution of Eqn. 3.57 into Eqn. 3.36, with

v = iv* and a Couette shear gives

ﬁm12< i mD¢(O)
P i 7

R .
I <(B;‘n + B )(2 X DU — Dq<°>)¢m;1> =0,
T

ﬂm14cm;1 - 1

>(Vm;1 —Uppy) (3.65)

where U,,,.; and V,,;; are defined in Appendix B. Projecting the above equation with
Cyp1 and solving for R:

/8m14Ncm;1 +iP 162, <mFm — q/iGm)

R (a, P,Re,m,~") = , (3.66)
m(iBy, = By) (2 xnidm — Ko
where
F,, = <cm;1D qj@ (Vimit = U ) ) » (3.67)
G = (Coit(Vinia = U1 ) ), (3.68)
To = (Cna(PE0)0), (3.69)
K = (G (220)0,). (3.70)

The normalization factor Ng,,, is given in Appendix B.

To determine the linear stability boundary for a given radius ratio «, Prandtl
number P and Reynolds number Re, Eqn. 3.66 is solved for a sequence of azimuthal
mode numbers m, using Mathematica for all integrations. Consider the following
special cases.

For zero shear, ¢(®©) = ~* = 0 and Eqn. 3.66 reduces to

2N, N,
R(aym) = D X Newi Ny (3.71)

Note that Eqn. 3.71 is independent of the Prandtl number and is always real. Fig. 3.5
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Figure 3.5: The marginal stability boundary for zero shear. Plot of R versus m at
a = 0.5 for Re = 0. The open(solid) symbols are the results of the local(nonlocal)
theory. The dashed line is the marginal stability boundary in a rectangular geometry,
R versus k, where k(upper scale) is the dimensionless wavenumber of the pattern.

shows the resulting stability boundary for @« = 0.5. Also shown is the marginal
stability boundary calculated using the nonlocal theory developed in Appendix C.
Except for being discretized in integer values of m by the annular geometry, neither
of the boundaries is significantly different from that of the infinite rectangular case[4],
which is defined at a continuum of wavevectors k. The discrete curve approaches the
continuum one in the limit &« — 1. For the nonlocal solution, it was found that as
a — 1, m? increases such that m? /7 approaches the correct limiting value, k., = 4.223.
Here, 7 = (r; + 1,)/2 is the midline radius of the annulus and k. is the critical
wavenumber for an infinite rectangular film in the ‘plate’ electrode geometry.[4] The
minima of the marginal stability boundaries define the critical parameters m?(«) =
me(a, Re = 0) and R%(a) = R.(a, Re = 0). Some critical values, as determined by

both the local and nonlocal solution schemes, for various « are collected in Table 3.1.
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radius ratio | local local nonlocal nonlocal
(n=1p=1)|(n=3,p=1) | (n=1,1=20) | (n=3,l=20)
Qo m? R? m? R? m R? md | ml/r | R?
0.33 4 102.58 4 77.43 4 91.62 4 | 4.03 | 82.15
0.467 5 94.23 6 81.47 6 92.62 6 | 4.36 | 88.73
0.56 7 91.25 7 84.23 7 92.47 7 | 3.95 | 89.64
0.60 8 90.53 8 85.82 8 92.63 8 | 4.00 | 90.38
0.6446 9 90.04 10 93.00 10 | 4.33 | 91.12
0.80 18 88.84 18 88.20 19 93.59 19 | 4.22 | 93.10

Table 3.1: Critical parameters for zero shear. The critical parameters for the onset
of electroconvection at Re = 0 as determined by the local approximation and the
nonlocal (Appendix C) linear stability analysis. The integer n (p or [) is the number
of modes (expansion functions) used in the series representation of the field variables.
The critical wavevector for electroconvection in a laterally unbounded geometry is
ke = 4.223 (see Ref. [4]). The ratio mY/r — k. as & — 1, where 7 is the mean radius

(ri +75)/2.

There is generally good agreement between the two methods, except at small a;, where
more expansion modes are needed.

Figure 3.6a shows the zero shear critical control parameter R? as a function of
the radius ratio . There are discrete values of a where R? (o, m?) = R? (a, m? + 1),
so that two adjacent modes become unstable simultaneously at a co-dimension two
point. These points occur at the cusps in Fig. 3.6a, while between the cusps a single
value of m is critical. It is interesting to note that the trend in R? is increasing
overall, as function of a. This is opposite to what is found for radially driven Rayleigh-
Bénard convection (RBC) in a rotating annulus.[6] This difference is attributed to the
differences between the nature of the charge density ‘inversion’ and thereby electrical
forcing with the buoyancy inversion of RBC.

Alternatively, Fig. 3.6b shows a plot of the zero shear critical mode number m?
as a function of the radius ratio o. The same characteristic of constant m? between
co-dimension two points is evident. As o — 1, the co-dimension two points become

closely spaced and the value of R? approaches a limiting value! while the m?/r —

Tn the nonlocal solution, the numerical results were not extended to the limit of an infinitely
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ke = 4.223, where k. is the critical wavevector for electroconvection in a laterally
unbounded ‘plate’ geometry[4]. 7 is the mean radius (r; + 7,)/2.

For non-zero shear, Eqn. 3.66 simplifies somewhat in the limit that the Prandtl
number P — oo. A word of caution is perhaps appropriate here. As P — oo, it is
required that Q — oo such that Q/P and therefore Re (see Eqn. 3.20) are finite. In
this limit, with the proviso that R be real, Eqn. 3.66 becomes

: Xm1?Ne,, N,
R (a,Re,m,~") = Bt Xom1 Ny N . (3.72)

msz <2 XmlJm - Km)

The only shear dependence in Eqn. 3.72 occurs through the matrix element L,,, which
is defined by Eqn. 3.63. For zero shear, L,, = K,,, while for non-zero shear, L,, is
bounded above by K,,. Hence, R (o, Re,m,~) is bounded below by R (a,Re =
0,m,~" = 0), the zero shear value. Thus, one expects suppression of the onset of
convection for non-zero shear for every non-axisymmetric mode m. This feature is
also present for finite P.

For arbitrary «, P and Re, one can solve Eqn. 3.66 for various m by a one-
dimensional search procedure. At each m, ~' is varied to find a R that is real and
a minimum. Example neutral curves are shown in Fig. 3.7 for « = 0.8, P = 10 and
several Re. The suppression of convective onset is evident, as well as a tendency
for the critical mode number m, to decrease with Re. It was found that R(Re) is
a monotonically increasing function of Re. The nonlocal analysis produces neutral
curves which resemble those shown in Fig. 3.7 and differ from them only slightly.

That the critical mode number m,. decreases with increasing shear is also shown
in Fig. 3.8, which displays the angular traveling rate of the critical mode, ~’/m,, as
a function of Re for several a. For > 0, 4¢ < 0, which indicates that the critical
mode travels around the annulus in the same sense as the inner electrode. ~i/m, is

a very nearly linearly decreasing function of Re, with very small discontinuities at

dense relaxation grid, as was done for the rectangular case in Ref. [4]. This leads to a small difference
between the numerical results for RY in the limit & — 1 and those for the rectangular case, for which
R, = 91.84.
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Figure 3.6: The critical pair (R?,m
parameter for zero shear RY versus radius ratio « using the nonlocal theory. Spe-
cial radius ratios, at which two adjacent modes m? and m? + 1 are simultaneously
marginally unstable, occur at the cusps of the curve. (b) Between the cusps, the
critical mode number m
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Figure 3.7: The marginal stability boundaries at various shears. Plot of R versus
m(local theory) for @« = 0.80 and P = 10 for several Re numbers. At Re = 0(open
circles) the linearly unstable mode is m,? = 18, whereas at Re = 0.25(filled circles),
m. = 17, and at Re = 0.75(squares), m. = 16.

points where the critical azimuthal mode number m, changes, as shown in Fig. 3.8.
Each of these discontinuities, which are too small to resolve on the scale of Fig. 3.8,
is a co-dimension two point, where two adjacent m modes with very slightly different
traveling rates are simultaneously unstable at onset. These special points are also
slightly P dependent, as well as being o dependent in a manner similar to the zero
shear case discussed above.

The suppression due to the shear is measured by

—1. (3.73)

The dependence of the suppression on the radius ratio o and the Prandtl-like num-

ber P is briefly explored in Figs. 3.9 and 3.10 respectively. Figure 3.9a shows the
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Figure 3.8: The traveling rates of the pattern. Ratio of imaginary part of the growth
rate to critical mode number, v /m,. versus Reynolds number Re for o =0.56, 0.6446,
and 0.80 and P = 123 using the nonlocal linear stability calculation. The breaks
in the curves for each o show the intervals over which the critical azimuthal mode
number m, has the value indicated.

suppression curves at four different «, all at P = 5. It appears that the suppression
is overall a decreasing function of « at all Re. At a larger P = 50, this trend is not
observed as is shown in Fig. 3.9b. From these plots, it is fairly convincing that for
small enough Reynolds number, Re, the suppression decreases with increasing « at
all P. Figure 3.10a shows the suppression curves at three different P at « = 0.33. It
is evident that the suppression is an increasing function of P. The same conclusion is
furnished at o = 0.80 as is clear from Fig. 3.10b. Even though not manifest from the
Fig. 3.10, it is expected that the suppression has, at each Re, a finite limiting value
as P — oo.

The dependence of R, for non zero Re on P is treated in two ways. First maintain

constant the Reynolds number Re, change P and consequently let {2 vary. In this
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Figure 3.9: Theoretical predictions of the suppression. Plotted are the computed
values (local theory) of the suppression € versus Re for selected a at (a) P =5 and

(b) P = 50.
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Prandtl | Rotation rate | local (n =1,p =1) nonlocal (n = 1,1 = 20)
P ) me] Re | % |[m] R 7
100 5.5135 8 |319.50 | -14.949 | 8 | 282.61 -16.383
10 0.5513 9 99.65 | -1.655 9 98.52 -1.861

1 0.0551 9 90.16 | -0.166 | 10 | 93.06 -0.205
0.1 0.0055 9 90.05 | -0.017 | 10 | 93.00 -0.020
0.01 0.0006 9 90.04 | -0.002 | 10 | 93.00 -0.002

Table 3.2: Critical parameters at various P with constant Re. Critical Parameters
for a range of Prandtl numbers P at radius ratio a = 0.6446 and Reynolds number
Re = 0.1. The integer n (p or I) is the number of modes (expansion functions) used
in the series representation of the field variables.

case, the P dependence of these results is not strong, except at large P. Because Re
is proportional to P! in Eqn. 3.20, this limit corresponds to large values of Q and
a large suppression effect. Some results for various P are summarized in Table 3.2.
In the second protocol maintain constant the angular rotation rate €2, change P and
consequently let Re vary. In this case, the P dependence is very weak at all P
investigated. Results are summarized in Table 3.3.

Whereas linear analysis cannot provide the magnitude of the fields above onset,
it is nevertheless interesting to examine the spatial structure of the linearly unstable
modes. Figure 3.11 shows the velocity vector field at & = 0.35 in the absence of shear.
The critical mode number m? for this flow is 4; there are 4 counter-rotating vortex
pairs in the annulus. The vortices in each pair are symmetric. Figure 3.12 displays
the velocity vector field of a critical mode for a = 0.56, plotted with an arbitrary
amplitude. In Fig. 3.12a is shown the stationary vortex pattern at Re = 0. Here
m? = 7, so 7 symmetric vortex pairs are arranged around the annulus. This pattern
is purely non-axisymmetric or ‘columnar’. It is an exact solution to the governing
equations and has been observed experimentally. In Fig. 3.12b is shown the typical
flow pattern for a large Re > 0, as viewed in the laboratory frame. The periodicity
of the pattern is reduced (i.e. m. < m?), and the traveling pattern appears as a
meandering wave in the laboratory frame. Figure 3.12¢ shows the velocity field for

the same Re as in part b, but as seen in the frame in which the pattern is stationary.
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Prandtl | Reynolds | local (n =1,p =1) | nonlocal (n = 1,1 = 20)
P Re me R. e me R. e
100 0.0181 9 | 115.20 | -2.995 | 9 | 109.03 -3.372
10 0.1814 9 | 115.29 | -3.002 | 9 | 109.02 -3.365

1 1.8137 9 | 115.27 | -3.007 | 9 | 108.99 -3.307
0.1 18.1373 9 | 115.24 | -3.039 | 9 | 109.14 -3.165
0.01 181.3731 | 9 | 115.16 | -3.086 | 9 | 109.31 -3.108

Table 3.3: Critical parameters at various P with constant 2. Critical Parameters for
a range of Prandtl numbers P at radius ratio a = 0.6446 and rotation rate 2 = 1.0.
The integer n (p or 1) is the number of modes (expansion functions) used in the series
representation of the field variables.

This frame rotates in the same sense as the inner electrode but with an angular speed
of 4 /m., which is less than . In this frame, each vortex pair consists of a larger and
a smaller member and so breaks the symmetry between vortices in each pair.

Two special situations in annular electroconvection warrant further comments.
The first, which has been referred to before, is the case of electroconvection in a
rigidly rotating annulus. The other concerns the stability of circular Couette flow in
the absence of electroconvection. Rigid body rotation of the annulus can be attained
by rotating both the inner and outer electrodes at the same angular rotation rate. In
such a situation, the base state has an azimuthal flow which is described by D¢ (r) =
—Qr. Alternatively, in the co-rotating frame the ‘shear’ vanishes and the system is
apparently no different from the zero shear non-rotating system. As noted earlier,
the stability of the rigidly rotating annulus is the same as that of zero shear case.
However, one has to be clear that in the zero shear case marginal stability occurs
at R’ with critical mode m? and traveling rate 7:/m® = 0, while in the rigidly
rotating case marginal stability occurs at R.° with critical mode m? and traveling
rate 4% /m? # 0. In fact 4 /m® = —Q, so that the pattern travels at the same angular
velocity as that of the rigid rotation. As a result the electroconvection flow pattern
in the co-rotating frame of the rigidly rotating annulus is identical to that of the zero
shear non-rotating annulus, an example of which is illustrated in Fig. 3.11. That

vi/m? = — can be observed, as a case in point, from the expressions for R in the
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Figure 3.11: Velocity vector field for annular electroconvection without shear. Plotted
is the velocity vector field of arbitrary amplitude at o = 0.35 with m.? = 4.

limit P — oo; see Eqn. 3.72. The only dependence on the base state flow profile
D¢© (r) occurs through the matrix element L,,, which is defined by Eqn. 3.63. The
question of stability requires determination of the lowest value of R for a given m and
variable 7*. From Eqn. 3.72 it is clear that the question of stability is tantamount to
maximizing the value of L,,. From Eqn. 3.63 it is easy to see that L,, assumes its
maximum value when +* = %"5(0). Further this value is K,,, the zero shear upper
bound for L,,. Hence the rigidly rotating annulus, when driven to electroconvect, can
be seen in the case P — 0o, to become marginally stable at a value R.° corresponding
to the zero shear non-rotating case. The unstable mode is m? and the traveling rate

. . . (0)
is determined from ~. = %

= —m?Q). The same conclusion holds for finite P. It
is interesting that it is the shear that has stabilizing properties and not the rotation;
a point which is revisited in Section 4.8.

Plane parallel Couette flow had been assumed, rightly so, to be linearly stable
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Figure 3.12: Velocity vector field for annular electroconvection with shear. Plotted
is the velocity vector field of arbitrary amplitude at @ = 0.56 with m. = 7 at (a)
Re =0, (b) Re > 0 when viewed in the laboratory frame, and (c) as in (b) but when
viewed in the frame that co-rotates at -, /me.
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for many years[9] until a proof of stability was finally provided by Romanov[10].
Likewise, due to the similarity in the form of equations for the stability of circular
Couette shear flow in two dimensions to those of plane parallel Couette flow, it too
is assumed to be linearly stable.[9] Experimentally, in the range of Re investigated,
there is no evidence of instability.[11] The formalism derived in this Chapter tests for
the loss of stability to electroconvection in the presence of a circular Couette flow. It
is easy in this formalism to simply ‘turn off’ the electrical terms in the appropriate
equations and thereby question the stability of the 2D shear flow. By setting R and
the other electrical terms in Eqn. 3.66 to zero and reintroducing the real part of the
growth rate 4" by the transformation v — ~* + 47 /i, it follows that the stability of

2D circular Couette flow is given by

ro__ /gm12NCm;1P

G (3.74)

Linear stability occurs when 7" defined in Eqn. 3.74 is negative. Since the numerator
in Eqn. 3.74 is positive definite, linear stability demands that G,, < 0. In all the
calculations performed with the local approximation, over several o and many m, it
was numerically found that G,, < 0 always. Whereas the foregoing by no means
constitutes a proof of stability, it does however provide further indication that the
conjectured stability of 2D circular Couette flow may indeed be true. Note that
mathematically proving that G,, < 0 is yet not a proof of stability; it would only
mean that at the lowest approximation in the expansion, the 2D Couette flow is

linearly stable. A proof of stability is much more rigorous and difficult undertaking,.

3.5 Assumptions: Theory versus Experiment

This Section addresses the experimental relevance of the assumptions in the theoret-
ical model. Three assumptions of the theoretical model which cannot be precisely
realized experimentally are discussed below. These are the condition of exact two-

dimensionality, of constant electrical conductivity and of infinitesimally thin elec-
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trodes. Each of these is a possible source of systematic disagreement between the
experiment and the theory.

All physical fields are, by the assumption of two-dimensionality, taken to be con-
stant through the thickness of the film. A film of thickness s has vertical dimension
—s/2 < z < s/2, but is treated as a sheet at z = 0. The discontinuity of the normal
component of the electric field at z = +s/2 supports the surface charge densities
there. Suppose as an extreme example that these surface charge densities are com-
pletely localized at the free surfaces z = +s/2. Then the electric force acting on the
charges is also localized at z = +s/2. Consequently, the surfaces are preferentially
driven while the bulk of the fluid within —s/2 < z < s/2 is only driven by viscous
coupling. Hence the velocity of the fluid will depend on the z coordinate. It is by the
premise of two-dimensionality that this dependence is neglected. The approximation
is not severe. In fact the surface charge densities are not localized sheets at z = +5/2
but have some thickness, a ‘skin depth’, which extends into the bulk of the film.
Diffusion smears the surface charge over a thickness known as the Debye screening
length, Ap, given by

eD

Ap = 3.75
D o3 3 ( )

where D is the diffusion constant and e is the dielectric permittivity.[12] For the
smectic A material used, estimates of D give Ap ~ 10 smectic layers.[12] Therefore
the assumption of two-dimensionality will begin to break down for films that are sig-
nificantly thicker than 20 layers corresponding to one Debye length near each free
surface. It has been demonstrated in previous electroconvection experiments (see
Section 1.3) that the critical voltage V. was accurately linear with s for films with
thicknesses less than about 25 smectic layers.[14] For thicker films, the critical volt-
age was sublinear, suggesting that the surfaces were being preferentially driven. Since
most of the experiments reported here were performed on films with thicknesses be-
tween 25 and 85 smectic layers, it is likely that three-dimensional effects were present
to some degree. The primary effect is that the velocity field becomes dependent

on the z coordinate. Note that the velocity field does not develop a z component
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but the r and 6 components of the velocity field become z-dependent. As a result,
a layer-over-layer shear flow occurs which was neglected in the theory. This weak
three-dimensional effect may be a source of some systematic disagreement between
experimental measurements and theoretical predictions.

The material properties of the fluid such as the electrical conductivity, the density,
and the viscosity, were assumed to be constant in the theoretical model. It has been
demonstrated by the experiments (see Section 2.3) that the electrical conductvity
is not constant during the experiment. The conductivity drifts slowly due to elec-
trochemical reactions between the electrodes and the ionic species in the fluid. The
conductivity change is weakly time-dependent. It is likely that the conductivity drift
is spatially dependent as well. The uniformity of the conductivity is enforced by the
various charge transport mechanisms, including diffusion. For example, the conduc-
tivity at an electrodes may be different from that at the centre of a vortex. The drift
of the electrical conductivity is affected by several factors (see Section 2.3). It is not
clear how the drift would alter the predictions of the theory. While the effect of the
drift can be partially corrected for (see Section 4.2 and Appendix E), the residual
drift is a source of systematic disagreement with theory.

Finally, the geometric assumptions in the theory are ideal. The electrodes were
treated as sheets of zero thickness in the theory, while the physical electrodes have a
nonzero thickness. There are two consequences of this assumption. In the first place,
the actual surface charge density at the electrodes cannot diverge as it does in the
theory.[13] Thus the stability analysis considered perturbations about an idealized
base state that is not precisely realized in the experiment. However, the difference is
probably small except at the electrodes. Second, the film is attached to the electrodes
via a thin wetting layer of bulk liquid crystal. As a result, the boundary conditions
between the electrodes and the film may not be perfectly rigid as was assumed in the
theory. More importantly, the wetting layers differ from film to film and so the exact

nature of the boundary conditions may be slightly different from film to film.
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3.6 Amplitude Equation

The weakly nonlinear regimes of patterns are often well described by a class of equa-
tions generally referred to as amplitude equations. The amplitude in these equations
is the magnitude of the underlying physical field, for example the velocity of the
convecting fluid. Part of their appeal derives from their simple form and their ap-
plicability to numerous and diverse systems.[14, 15] Whereas the process of deriving
amplitude equations from the primitive, microscopic or field equations of the system
is often arduous and tedious, the form of the amplitude equation can often be intuited
from the symmetries of the unstable solution[16]. The specific details of the individ-
ual systems are contained in the constants that set the scales of space, time and
amplitude in the amplitude equations. Generally the amplitude is a complex variable
which can be related to the real physical quantities in the experiment. Often, the
real and imaginary parts of the complex amplitude are treated separately.

In the absence of shear, the base state solution of the annular electroconvection
system is invariant under azimuthal rotations and reflections through planes which
are perpendicular to the fluid layer and contain the centre of the annulus. This
requires that the amplitude equation, for a complex amplitude A,, corresponding to

a nonaxisymmetric mode m, be unchanged under the transformations
0—>0+60, A,— Ane™ . (3.76)

and

0——0, A, —A,. (3.77)

In the above, 6 is an azimuthal angle, and the overbar denotes complex conjugation.

The most general amplitude equation that is invariant under the symmetry operations

Egs. 3.76 and 3.77 is
700t Am = €Ay — gO|Am|2Am + h0|Am|4Am BRI (378)

where 79, go, and hg are real coefficients. € is a parameter that is small, and is the
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reduced control parameter defined by ¢ = (R/R.) — 1. The amplitude equation
describes a bifurcation from the A,, = 0 state which prevails for € < 0 to the A,, # 0
state that prevails for € > 0. A sharp bifurcation occurs at € = 0. If the fluid is
subjected to a circular Couette shear, the base state is only invariant under azimuthal

rotations, Eq. 3.76. In this case,

70(8; — iarm) A = €(1+ico)Am — go(1 + ico)|Anl*An

+  ho(1 +ics)|Am|* A — .., (3.79)

is the general amplitude equation where ay,, is the imaginary part of the eigenvalue
of the unstable mode m at onset. The terms cg, ¢a, c3 are real. Whereas Eqn. 3.79 is
here motivated by symmetry considerations, it has been rigorously derived for annular
electroconvection with shear from the basic equations.[17]

The measurable quantity in this experiment is the global charge transport mea-
sured by the reduced Nusselt number, n. Since n is real, it is useful to solve for the real
and imaginary parts of the amplitude equation. By letting A,,(t) = A, (t)e™m®=®),
where A,,(t) is a real amplitude and ®,,(¢) is the phase, one gets by substitution in

Eq. 3.79, equations for the magnitude and phase:

100 Am = €Ay — goAS, + hoAD, — ..., (3.80)

70(0;®m — arm) = €co — Goca A2, + ... . (3.81)

The current-voltage measurements, as will be explained in Section 4.2 and detailed
in Appendix E, can be transformed into measurements of (¢,n). Furthermore, the
reduced Nusselt number n which measures the ratio of current transport by convec-
tion to that by conduction is related to the amplitude by n = |A,,|* = A2 .[17] Hence
the raw experimental data can be transformed into measurement of the reduced con-
trol parameter € and the real amplitude .A,,. This amplitude is proportional to the
magnitude of the radial component of the velocity of the convecting flow.

Since the measurements are steady state determinations of the current, the time-
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independent amplitude equation is
€eA—gA® —hA® + f=0. (3.82)

In Eqn. 3.82, the subscripts on the coefficients g and h have been dropped and A =
A,,. The field term f is conveniently added to model an imperfect bifurcation.[14] Due
to the geometrical aberrations in the experiment, the stated symmetries which vali-
date the amplitude equation model are slightly inexact. As a results the bifurcation is
no longer sharp at € = 0 but is rather smeared or imperfect. This symmetry-breaking
field term models an imperfect bifurcation. The current-voltage data is interpreted by
fitting to Eqn. 3.82. This equation describes an imperfect pitchfork bifurcation. The
sign of g determines whether the bifurcation to electroconvection is forward (g > 0)

or backward (g < 0). A tricritical bifurcation occurs when g = 0.
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Chapter 4

Results

4.1 Introduction

This Chapter presents and discusses the results from the experimental investigation
described in Chapter 2. The results are primarily obtained by analyzing the current-
voltage characteristics of the film. The first task is to specify the descriptors of the
film. These are the relevant dimensionless numbers that describe the geometry, the
material parameters and the state of flow of the film at the point just before it is
driven to electroconvect. These descriptors are the radius ratio «, a Prandtl-like
number P and the Reynolds number Re. With the exception of «, which is merely
geometrical and independent of the film, the values of P and Re require, additionally,
knowledge of the material properties of the film. Section 4.2 describes how current-
voltage data can be used to determine up to a constant the values of P and Re.
The current-voltage data when the film electroconvects contains information about
the amplitude of electroconvection. The procedure to extract this information is
described in Section 4.2. Also discussed in this Section is the appropriate amplitude
equation model, introduced in Section 3.6, as it pertains to analyzing the current-
voltage data. The coefficient of the cubic nonlinearity, g in the amplitude equation,
is of primary interest. Some of the results from the data analysis are concerned with
the distribution of critical voltages for films of different radius ratio «, thickness s,

Prandtl-like number P and Reynolds number Re. These results do not concern the
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amplitude of electroconvection but the onset of electroconvection. They are precisely
related to the linear theory that determines the onset and not nonlinear theory that
primarily determines the amplitude. In Section 4.3, these results are compared with
predictions from the linear stability theory developed in Chapter 3. By means of
Levenberg-Marquardt nonlinear fitting procedures and Monte-Carlo methods, the
current-voltage data are fit to the amplitude equation model.[2] In Section 4.4 are
reported measurements of g at various a and ranges of P for electroconvection in
the absence of shear or Re = 0. The results of fits to the amplitude equation for
sheared films are presented in Section 4.5. Some of the current-voltage characteristics
indicate the occurrence of secondary bifurcations that mark the transition from one
flow pattern to another. Secondary bifurcations and their dependence on Re are
discussed in Section 4.6. In Section 4.7 are presented a collection of bifurcations
with miscellaneous properties. Other nonlinear systems that are similar to annular

electroconvection with shear are discussed in Section 4.8.

4.2 Data Analysis

Below the onset of electroconvection, the film is ohmic. As a result, the current-
voltage characteristics furnish information about the film’s resistance and, with knowl-
edge of the film’s thickness, the conductivity. Due to the drift in the electrical con-
ductivity, the film’s resistance, or equivalently its conductance, is changing. Each
voltage-current measurement, (V,I), constitutes an experimental determination of
the film’s conductance, ¢ = I/V. On the other hand, the conductance of the film can
be expressed in terms of its geometry and the conductivity of the film. For a film of
radius ratio «, thickness s and uniform electrical conductivity o3, the conductance is
given by
2mo3s

€= (4.1)

In(1/a) "
Intriguingly, the conductance is independent of the size of the film, i.e. independent

of r; or r,. A general derivation of the resistance of an annular film and hence of
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Eqn. 4.1(see Eqn. F.8) is given in Appendix F, Section F.1. Eqn. 3.16 defined a

Prandtl-like number, which with d = r, — r; and Eqn. 4.1, can be written as

€073 2meons3 1

P= p3038d - p3(ro — ;) In(1/a) ¢

(4.2)

Note that P can be determined from the measured and dimensional values of r;, r,
and ¢ and material parameters, the density p3 and viscosity 73. Eqn. 4.2 is used
to determine the value of P for every current-voltage characteristic. Drift of the
electrical conductivity results in, by way of the conductance, a corresponding drift of
the Prandtl-like number.

The Reynolds number Re of the circular Couette flow was defined in terms of di-
mensionless parameters in Eqn. 3.20. By rewriting in terms of dimensional parameters

and material properties, Re can be calculated from

Re = pswri(ro — r:)/n3 (4.3)

where w is the measured angular frequency of the inner electrode in rad/s. The 3D
density ps3 of 8CB at room temperature[l] is 1.0 x 10° kg/m?; the viscosity n3 has
not been measured and will be estimated from a combination of data and theory in
Section 4.3.

The next task is to deduce, from the data, more information regarding the onset
and amplitude of electroconvection. The current-voltage characteristics, examples of
which were plotted in Figs. 2.7a and b, show that a critical voltage demarcates the
conduction and convection regimes. However the critical voltage V. cannot simply be
chosen by-eye but must be determined by some ‘most probable’ or ‘best fit’ criterion.
For the present, assume that a V. and the corresponding conductance ¢ have been
determined; the subtleties will be introduced later and recounted in Appendix E.
Each instance of data on the current-voltage characteristic is comprised of a triple of

numbers (V, I, AI) where AT is the measurement error in the current. The reduced
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control parameter € can be calculated from

—3—1—<K)2—1 (4.4)
€—RC = ‘/:: . .

The reduced Nusselt number n which measures the electrical current due to convection

relative to that due to conduction can be calculated from

L1 (4.5)
Icond B cV ' '

n =

Further, by identifying n = A2, where A is the amplitude of convection, the triple
(V,I,AI) can be transformed to the equivalent triple (e, A, AA). In Section 3.6,
it was justified by symmetry arguments that the relevant amplitude equation that
describes the weakly nonlinear state is given by Eqn. 3.79. This equation provides a
time-dependent description but the data are time-independent. As a result the data
are modelled by the real and steady state part of Eqn. 3.79, which when augmented

with an ‘imperfection’ term f was given in Eqn. 3.82 and is repeated below.
€A —gA> —hAS+ f=0. (4.6)

A Levenberg-Marquardt least squares nonlinear fit routine is employed to model the
data triples (€, A, AA) obtained from the current-voltage characteristic. Best fit pa-
rameters (g, h, f) are obtained from this chi-square minimization procedure. A Monte-
Carlo bootstrap method is utilized to obtain the statistical uncertainties in the best
fit parameters [2].

While V, is marked by a relatively obvious feature in the raw (I,V) data, the
amplitude A is indirectly deduced via the pair of transformations Eqns. 4.4 and 4.5
which are quite nonlinear. This amplitude is in turn fit using Eqn. 4.6, which is again
highly nonlinear. Thus, the parameters (g, h, f) are rather distantly related to the raw
(I,V) data. Also, the nature of the model necessarily involves several fit parameters
which are not independent. Consequently, the determination of these parameters is

much more difficult than V.. As discussed in Sections 4.4 and 4.5, (g,h, f) can be
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influenced by small systematic effects in the data leading to scatter which is larger
than the statistical uncertainties in the fits. Nevertheless, the general trends are clear.

Figure 4.1a shows a current-voltage characteristic in the absence of shear. The
transition from conduction to convection is continuous and so the bifurcation is su-
percritical or forward. Figure 4.1b shows the result of transforming, and fitting the
data in Fig. 4.1a to Eqn. 4.6. Both the (¢, A,AA) and (¢,n, An) data are shown.
The lines are calculated from the best fit parameters. For this case ¢ > 0, h > 0 and
0 < f < 1. For all the data analysis in this thesis f < 1.

Figure 4.2a shows a current-voltage characteristic for a film under shear. The
transition from conduction to convection is discontinuous and so the bifurcation is
subcritical or backward. Figure 4.2b shows the result of transforming and fitting the
data in Fig. 4.2a to Eqn. 4.6. Both the (¢, A,AA) and (¢,n,An) data are shown.
The lines are calculated from the best fit parameters. For this case ¢ < 0, h > 0,
0 < f < 1. The dependence of g on o, P and Re is reported in Sections 4.4 and 4.5.

In developing the theory in Chapter 3, it was explained that onset of convection

occurs when the control parameter R equals or exceeds a critical value R. given by

e2V.2 s
0 5 or Vo= —1/R.o3m3. (4.7)
03738 €0

Re =

A consequence of the drift of the electrical conductivity is that the critical voltage
slowly changes during the course of an experiment. Since the detailed physical pro-
cesses responsible for the drift are poorly characterized, it was thought that rather
than trying to model the effect of the drift it would be better to correct for it in the
current-voltage data. The methodology employed in diagnosing the drift in the con-
ductance, in determining a conductance adjusted critical voltage, and in Monte-Carlo

procedures to ascertain a best fit V, is detailed in Appendix E.
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Figure 4.1: A representative supercritical bifurcation. In (a) is plotted a portion of
the current-voltage characteristic for a film at & = 0.64 and Re = 0. In (b) is plotted
the result of analyzing the data plotted in (a). It consists of a plot of the reduced
Nusselt number (n) and amplitude (A) versus the reduced control parameter €. The
lines are nonlinear least squares fits to the data.
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Figure 4.2: A representative subcritical bifurcation. In (a) is plotted a portion of the
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the result of analyzing the data plotted in (a). It consists of a plot of the reduced
Nusselt number (n) and amplitude (A) vs the reduced control parameter e. The lines
are nonlinear least squares fits to the data.
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4.3 Comparisons with Linear Theory

This Section presents the comparisons between the experimental measurements of
the onset of electroconvection and the relevant theoretical predictions of Chapter 3.
The primary theoretical result in the absence of shear concerns the prediction of the
onset of electroconvection. The critical voltage, which has been previously expressed

for the general case in Eqn. 4.7, is squared and written for the zero shear case below.

(V2)(a) = ["3”232]722@- (4.8)

Note that the critical voltage depends on the film geometry through the radius ratio
« and the film thickness s but not the Prandtl-like number P. By using Eqn. 4.1,

Eqn. 4.8 can be expressed more conveniently as

4meo"03(V?)* () 2

(In(1/a))’Ro(a) (4.9)

Written as such, Eqn. 4.9 expresses a relationship that allows determination of the
viscosity 7m3 which is the only unknown parameter. There is one caveat: this de-
termination is not entirely experimental but requires the theoretical prediction of
R%(a). The quantity on the left hand side of Eqn. 4.9 which is referred to as the
‘scaled critical voltage’ is computed as follows. The data fitting procedure outlined
in Section 4.2 was used to deduce from a current-voltage characteristic the critical
voltage V¥ of electroconvection and the conductance ¢ at onset. From the colour of
the film, a thickness s was determined and with knowledge of the radius ratio a and
Eqn. 4.1, the conductivity o3 was calculated. The value of R?(a) was the highest
order numerical result of the nonlocal theory; see Table 3.1.

Figure 4.3 plots the left hand side of Eqn. 4.9 versus the square of the conductance.
The scaled critical voltages were obtained from 228 current-voltage characteristics at
six different o. The data encompassed a broad range of conductivities: 5.9 x 1078 <
03 < 8.4 x 10770 'm~!. Consequently, the range of Prandtl-like number P is equally

broad. Despite the diversity in parameters i.e. the different «, s, 03 and P, Fig. 4.3

88



1.6 —
[ ¢ a=033

2 o wa=047 i

Sl e g-056

e a=060

& 12) x  o=064 .

S - = 0=0.80 ; ][ } ]

Lo ,

< It ][ ]

2 | $ +

o 08 N

3 | : ﬁﬁ

Z 06/ % %# ]

£ g

o i

2o 04 : :

NP i ]

R i

B 02} -

027 |
i N =0.18 +/- 0.03 kg/ms |

0 ! ! ! | ! ! ! | ! ! ! | ! ! ! |

0 2 4 6 8

(conductance)?, (10726 Q)

Figure 4.3: Critical voltages in films without shear. A plot of the square of the scaled
critical voltage versus the square of the conductance at several a. The line is a least
squares fit to the data. The fit was for 0 < ¢ < 5 x 1072*Q~2, however, only the
interval most dense with data is plotted.

corroborates the linear relationship that is theoretically predicted in Eqn. 4.9. One
is confident that the geometric scaling with respect to the film thickness s and the
radius ratio « is properly accounted for. A single variable linear fit to the scaled
critical voltage as a function of the square of the conductance provides a measure
of the viscosity of the film; the only unknown parameter. A weighted least squares
minimization leads to n3 = 0.18 £ 0.03 kg/ms.[2]. This value for the viscosity is
reasonable, while it has not been independently measured, it is expected to be of
order 0.1 kg/ms.[3]

The theoretical model assumes strict two-dimensionality which is an assumption

that in thick films may be somewhat invalid. The 2D assumption implies that the
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radius ratio | Experimental | Local theory m? | Nonlocal theory m?
a mo (n=3,p=1) (n=3,1=20)
0.33 4 4 4
0.47 6 6 6
0.56 8 7 7
0.60 8 8 8
0.64 10 10 10
0.80 20 18 19

Table 4.1: Experimental measurements of the marginally stable mode number, m?.

velocity of the film is independent of the film’s thickness. Since the electrical forcing
is at the free surfaces, it is likely that in thick films the surface layers are preferentially
driven and so the motion is not accurately 2D. From an experimental perspective, the
geometry is imperfect in that there are 3D wetting layers on the circumferences of the
inner and outer electrodes. These produce boundary conditions that are somewhat
unlike those assumed in the theory. Both the foregoing aspects differ from experiment
to experiment and it is thus not surprising that the data in Fig. 4.3 have systematic
deviations from linearity without any overall trend. See Section 3.5 for a discussion
of the assumptions in the theory. It is remarkable that the data, despite the scat-
ter, demonstrates the linear trend considering the broad range of o and ¢ that are
represented.

The second feature of linear theory that can be compared with experiment con-
cerns the unstable mode number. As mentioned in Section 2.3, some experiments were
performed both at reduced ambient pressure and at atmospheric pressure in films with
slight thickness nonuniformity. This permitted flow visualization and therefore it pro-
vided qualitative confirmation of the flow field and a quantitative measure of the mode
number of the flow. Qualitatively, the flow that was observed in the absence of shear
comprised of counter-rotating pairs of vortices much like those depicted in Fig. 3.11.
The mode number, corresponding to the number of vortex pairs, was in excellent
agreement with predictions of linear theory. Table 4.1 summarizes the results.

The final feature of linear theory that was tested by the experimental data was
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the degree of suppression of electroconvection that is imposed by the Couette shear.
The suppression is measured by Eqn. 3.73, which is written below with important

functional dependencies:

(4.10)

¢ (o, Re, P) = [M] ~1= (LO"C’RG)Y -1,

R2(e) V(e ¢)

where ¢ is the film conductance. The two equivalent expressions in Eqn. 4.10 are
used to calculate the suppression theoretically and experimentally. The theoretical
calculation is described in Section 3.4. The experimental determination of € is as
follows. At each radius ratio «, the critical voltage for a sheared film V.(c,Re) is
determined by the data fitting procedures outlined in Section 4.2 and Appendix E.
Since the conductance c drifts, it is unlikely that V°(c) can be determined from a
single current-voltage characteristic. Instead, several current-voltage characteristics
for films in the absence of shear are fit to provide a set of data consisting of (c, V.?).
These are then modelled by a linear function, and it is from this fit that the critical
voltage at zero shear and at the same conductance as the sheared film is determined.
Hence, the experimental value of € can be computed. The uncertainty in this value is
due to the uncertainties in V,(c, Re) and V?(c). Whereas the uncertainty in the former
is small as it is from a single measurement, the uncertainty in the latter is larger due
to the scatter in the (¢, V?) data. This uncertainty dominates the uncertainty in the
suppression.

Each experimental measurement of the suppression is at a given radius ratio «a, a
measured conductance and therefore Prandtl-like number P and a measured Reynolds
number Re. Whereas the dependence of the suppression on these parameters was
studied theoretically in Section 3.4, it is experimentally convenient to vary the radius
ratio a and the Reynolds number Re. Due to the drift in the electrical conductivity,
the Prandtl-like number P is not exactly constant in the experiment. Consequently
the suppression € is measured, at several «, as a function of Re while the P is simply
measured and noted. Figures 4.4a and b show experimental measurements of the

suppression at o = 0.47 and a = 0.64 respectively. For the data at a = 0.47, the
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Figure 4.4: Experimental measurements of the suppression. Plots of the comparison
between the experimental measurements of the suppression € versus Re and the pre-
dictions from local and nonlocal theory. In (a) o = 0.47 and the different symbols
denote the P-quartiles: 13.3 < 0o < 154 < e < 175 < 0 < 19.6 < A < 21.7 The
theoretical lines are for the mean P = 16.3 of the data. Likewise in (b) o = 0.64,
291 <0< 371 <e<452<0<53.2< A <61.2 and mean P = 45.2.
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film had a variable conductance such that, by use of Eqn. 4.2 and the measured value
of n3, 13.3 < P < 21.7 with a mean value P = 16.3. The data in each quartile in
this range are plotted with different symbols while a theoretical curve is calculated
for P = 16.3 by the methods of the local and nonlocal theories. In a similar manner
the data at @ = 0.64 had 29.1 < P < 61.2 with mean P = 45.2. Note that the
ranges of Re for these two « are different by a factor of ten and that the suppressions
are also very different. It is quite astonishing that the shear suppresses the onset of
electroconvection to € ~ 14 i.e. R.(a,Re,P) = 15RY(a)! In terms of agreement
with theory, it is clear from both Figs. 4.4a and b that the data are in reasonable
agreement with both the local and nonlocal theories, perhaps somewhat better with
the local theory. The reason for this is probably the divergence of the perturbed
charge density at the electrodes; see Fig. 3.4. The experimental system has electrodes
that despite having sharpened edges, must have a finite size and therefore would not
have a divergent charge density.[4] Whereas the nonlocal theory has divergences in
the charge density at the electrodes, the local theory has vanishing charge density at
the electrodes. Everywhere else on the film the charge densities calculated by either
method agree remarkably well. In reality the perturbed charge density is finite and
therefore somewhere between these two extremes.

The suppression has also been studied at o = 0.33,0.56, 0.60, and 0.80. The results
are similar to those plotted in Figs. 4.4a and b. Overall, it appears that the linear
theory fares particularly well in predicting the suppressions at various « and P for
a range of Re. The data is constrained by material parameters to 1 < P < 130 and
0 < Re < 3. The upper bound on Re can be exceeded by higher rotation rates but
the suppression is not expected to be different.

The good agreement shown in Figs. 4.4a and b is essentially independent of the
value of n3. Recall that 13 was determined by a single parameter fit to Eqn. 4.9.
Since the 73 dependence in the Re scaling of both the theory (via P in Eqn. 3.20)
and the experiment (according to Eqn. 4.3) are proportional to 1/n3, any change in
13 multiplies both by the same factor. This simply results in a rescaling of the Re

axis in Figs. 4.4a and b, with no change in the quality of the agreement.
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4.4 Coefficients of the Cubic and Quintic Nonlin-
earity without Shear

With this Section begins the enumeration of experimental results that pertain to the
weakly nonlinear properties of electroconvection in the absence of shear. The variables
are the radius ratio a and the Prandtl-like number P; however, experimentally P is
passive since it is not chosen beforehand but is simply measured from the data.
It varies proportionally to the conductivity. Since numerous experiments have been
performed a significant range of P has been investigated. The primary purpose here is
to model the current-voltage characteristics by an amplitude equation and to deduce
the nature and ‘strength’ of the bifurcation from conduction to convection. The
basic procedure is to transform the current-voltage data into e-A data where € is
the reduced control parameter defined in Eqn. 4.4 and A = /n is the amplitude of
electroconvection defined in terms of the reduced Nusselt number n in Eqn. 4.5. The
data are then modelled by the amplitude equation given in Eqn. 4.6. The amplitude
equation describes a pitchfork bifurcation, and the coefficient of the cubic nonlinearity
g is of paramount interest. The magnitude and sign of g determine the ‘strength’
and nature of the bifurcation i.e. for ¢ < 0 and |g| < 1 the bifurcation is weakly
subcritical. A fuller sketch of how g is determined is given in Section 4.2 while details
of the data analysis procedure are given in Appendix E.

Figures 4.5a through ¢ show the coefficient g as a function of the Prandtl-like num-
ber P. The scatter that is manifest in these plots exceeds the statistical uncertainty
of the fit. As discussed in Sections 3.5 and 4.2, the scatter originates from systematic
effects due to the non-ideal features of the experiment. Nevertheless, since the scatter
appears to be without trend, the gross features in Fig. 4.5 can still be extracted.

At a = 0.33, the measurements explored the range 2 < P < 8. It is only at
a = 0.33 that data was obtained for P < 10; this ‘constraint’ derives from the
Prandtl-like number (see Eqn. 4.2) wherein the width of the film d = r, — r; affects
P. It happens that for these experiments d is greatest at smallest « and since P oc d 71,

the Prandtl-like numbers are lowest there. As is clear from Fig. 4.5a, g is dependent
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Figure 4.5: Experimental measurements of the coefficient of the cubic nonlinearity in
films without shear. Plots of the coefficient of the cubic nonlinearity g versus P for
annular electroconvection without shear at o = 0.33 (a), & = 0.47 (b), and o = 0.64
(c). The solid line in (a) is obtained from a linear fit to the data while in (b) and (c)
the line represents a weighted average.
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radius ratio « | Experimental g | Prandtl-like number P range | Theoretical g
0.33 -0.74 £ 0.23 21 < P < 44
0.47 1.64 £ 0.06 135 < P < 20.7
0.56 0.73 £ 0.15 59.4 < P < 100.8
0.60 2.72 £ 0.34 313 < P < 389
0.64 1.87 £ 0.10 252 < P < 63.0
0.80 2.21 £ 0.29 1563 < P < 1428
1.00 (‘plate’) P =0 2.842

Table 4.2: Experimental measurements of the coefficient of the cubic nonlinearity, ¢
without shear.

on the P in the range shown and increases with increasing P. Note that ¢ = 0 at
P ~ 5. Hence at o = 0.33, the bifurcation to electroconvection is subcritical (g < 0)
for P < 5 and supercritical (g > 0) for P R 5. Tt is tricritical (9 =0)at P =5. Forall
other « investigated, g was found to be independent of P. However, for each of these
cases, P > 10. Examples of this independence are plotted for a = 0.47 in Fig. 4.5b
and for @ = 0.64 in Fig. 4.5c. The preceding is also true for a = 0.56, 0.60 and 0.80.

In order to examine how g depends on «, the P dependence is removed by aver-
aging. For large «, g is roughly independent of P over broad ranges of P. A weighted
average of g was obtained for these a . For a = 0.33, where some P dependence was
found, only data in the narrow range 2.1 < P < 4.4 was averaged. In doing this, the
systematic scatter is treated as random error. It is likely that the true uncertainty
in the average values of g will be much larger than the standard deviation of the
mean. The ultimate justification of this procedure lies in the comparison of the aver-
aged values of g and the theoretical predictions. As is shown below, this comparison
is favourable. The lines in Figs. 4.5b and c indicate the average value of g for the
plotted data. These results are tabulated in Table 4.2 and are plotted in Fig. 4.6.

It is clear from Fig. 4.6 that, overall, g increases with a. At present, no direct
comparison between theory and experimental values of g is available for arbitrary
«. The weakly nonlinear theory that would calculate g is in progress.[5] On general
principles it is expected that g approaches a limiting value as @« — 1. The limit o — 1

was discussed briefly in Section 3.4. This limit corresponds to an unbounded lateral
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Figure 4.6: Experimental measurements of the coefficient of the cubic nonlinearity in
films without shear. A plot of the coefficient of the cubic nonlinearity g versus « for
annular electroconvection without shear. The value of ¢ is averaged over a range in P
in which it is independent. The error bars show one standard deviation of the mean,
treating the scatter in Figs. 4.5a, b and ¢ as random. On the plot are annotated the
range of P over which g was averaged at each a.

geometry in which the film is a strip of fluid suspended at its long parallel edges by
two semi-infinite plate electrodes; consequently it was called the ‘plate’ geometry. A
weakly nonlinear analysis of electroconvection in this geometry introduced in Ref. [6]
was successfully completed for the limiting case P = 00.[7] The result of that analysis,
g = 2.842 is encouragingly close to the experimental value of g at « = 0.80, g =
2.21 £ 0.29.

From linear theory the critical parameters RY and m?/7 at a = 0.80 is very close

to the limiting value for o = 1. See Fig. 3.6 and Table 3.1. The aspect ratio A
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Figure 4.7: Experimental measurements of the coefficient of the quintic nonlinearity
in films without shear. Plots of the coefficient of the quintic nonlinearity A versus

P for annular electroconvection without shear at @ = 0.33 (a), & = 0.47 (b), and
a =0.64 (c).
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Figure 4.8: The size of the hysteresis de at various P for a = 0.33. Since 0 < f <K 1,
the size of the hysteresis de = g*/4h when g < 0.

is a measure of the size of the system and is often the ratio of the longest to the
shortest length in the geometry. For annular electroconvection A is the length of
the film divided by the width of the film. The length of the film is taken as the
circumference of a circle with radius (r; +7,)/2. The aspect ratio A can be expressed
as A=7(l+a)/(1—a). At a =0.80, A =9r. Almost all the experiments performed
in the rectangular geometry had A < 10 [8, 9, 10, 11] and were thought to be well
modelled by the theory for an unbounded lateral strip which has A = co. With the
two foregoing reasons in mind, it is valid to treat a = 0.80 as large and suitable for
comparison to theory at @« = 1. From the data it has been demonstrated that ¢ is
independent of P for P & 10. See Fig. 4.5. Note that from the governing equations
the Prandtl-like parameter appears as P~ ! so that the dependence on P diminishes
rapidly as P increases. Hence it has been justified that data for P < 10 can be

compared to theoretical results for P = oo.
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Currently experimental data at a > 0.33 and P < 10 is unavailable; the regime
while not inaccessible would require larger electrodes. It would be interesting to de-
termine whether g becomes negative at large a as P decreases. All electroconvection
experiments on freely suspended films in rectangular geometry have reported super-
critical bifurcations[8, 9]. These experiments were at large P and so the possibility
of a subcritical bifurcation in rectangular films remains largely unexplored.

The coefficient h of the quintic nonlinearity in Eqn. 4.6 obtained from the mod-
elling the data is plotted in Fig. 4.7. The plots are for the same parameters as those
given for g in Fig. 4.5. These plots are included for completeness and h by itself is
not interpreted. Since 0 < f < 1 an approximate size of the hysteresis when g < 0
is given by de = g?/4h. When g > 0, e = 0. The quantity de is plotted for various
P for a = 0.33 in Fig. 4.8. Note that the hysteresis vanishes for P & 5 and when

non-zero it is always small 7.e. de < 0.05.

4.5 Coefficients of the Cubic and Quintic Nonlin-
earity with Shear

In the presence of shear, the coefficient of the cubic nonlinearity is strongly dependent
on the Reynolds number Re of the imposed Couette shear. The methods used to
determine g are as described in Section 4.4. As a representative example of the Re
dependence of g, consider Fig. 4.9 which shows the measurements at a = 0.47. At
Re = 0, the value of g is found, as described in Section 4.4, by averaging over a range
of P. In the case shown in Fig. 4.9, ¢ = 1.64 £ 0.06 for a mean P = 16.3. The data
for Re > 0 had 13.3 < P < 21.7. This range is divided into quartiles and different
symbols denote data obtained within the different quartiles. The major result here
is that the nature and strength of the primary bifurcation to electroconvection can
be ‘dialed’ by adjusting the shear. The bifurcation is supercritical at Re = 0 and
weakens as the Reynolds number increases. The bifurcation is tricritical at Re ~ 0.2

and is subcritical for Re & 0.2. The bifurcation becomes strongly subcritical with g
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Figure 4.9: Experimental measurements of the coefficient of the cubic nonlinearity
in sheared films. A plot of the coefficient of the cubic nonlinearity g versus Re at
a = 0.47. The different symbols denote the appropriate quartiles of P: 13.3 < o <
154 < e <175 <0< 19.6 < A < 21.7 The value of g at Re = 0 is for data with
mean P = 16.3.

decreasing between 0.2 S Re X 0.85 to a minimum value g = —3.7. For Re > 0.85,
the bifurcation remains subcritical but here g is overall an increasing function of the
Reynolds number. For the range of Reynolds numbers investigated the bifurcation
does not become supercritical again.

There is some scatter in the data; nonetheless, the overall trends are clear. The
sources of these systematic deviations are as described in Section 3.5. Note that the
systematic deviations are comparable to that in Figs. 4.5a, b and c. The results are

similar for o = 0.56, 0.60, 0.64 and 0.80. The value of Re at which g = 0 is different at
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radius ratio « | Reynolds number Repieriticar | Prandtl-like number P range
0.47 0.18 £+ 0.02 15.8 < P < 16.6
0.56 0.03 £ 0.02 754 < P < 854
0.60 0.03 £ 0.01 303 < P < 31.7
0.64 0.08 £ 0.06 29.1 < P < 61.2
0.80 0.01 £ 0.01 65.5 < P < 70.6

Table 4.3: Experimental measurements of the Reynolds number for g = 0.

different o. This Reynolds number will be denoted Reyyicriticar. Whether the variation
of Resricriticat With « is purely a consequence of changing the radius ratio « or is in
part due to the different Prandtl-like numbers is not clear from the data. Even though
in the absence of shear g was found to be independent of P for P < 10, there is limited
experimental data to draw any conclusions about the P dependence of g for Re # 0.
If linear theory is to be any guide, one expects that in the sheared case there should
in general be a greater P dependence. Recall that in Section 3.4 it was established
that the linear theory for Re = 0 was independent of P while the presence of shear
introduced a P dependence even at the level of linear theory. Table 4.3 lists the
values of Respicriticar- 1Theoretical work on the weakly nonlinear analysis of annular
electroconvection with shear is currently work in progress.[5] Consequently, there can
be no comparison with theory here. It appears from the tabulated results that as P

and « decrease, the Re for g = 0 increases.

radius ratio | Minimum | Reynolds number | Prandtl-like number | Maximum
Q@ value of g Re P value of Re
0.47 -3.68 £ 0.19 0.83 £ 0.18 15.3 2.59
0.56 -5.15 &+ 1.04 0.11 £ 0.05 63.3 0.22
0.60 -1.74 £ 0.04 0.05 £ 0.02 32.1 0.13
0.64 -4.34 £ 0.79 0.23 £+ 0.02 53.4 0.25
0.80 -9.17 £ 0.56 0.04 £+ 0.01 12.0 0.10

Table 4.4: Experimental measurements of the minimum value of g, the corresponding
Reynolds and Prandtl-like numbers. The uncertainty in Re is related to the density
of data for each a.
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Figure 4.10: Experimental measurements of the coefficient of the quintic nonlinearity
in sheared films. A plot of the coefficient of the quintic nonlinearity h versus Re at
a = 0.47. The different symbols denote the appropriate P-quartiles: 13.3 < o <
154 <e<175<0<196 <A <21.7.

The minimum values of ¢ = g(Re) are also different at different «. Table 4.4
lists the minimum values assumed by g as a function of the Reynolds number Re.
A look at Fig. 4.9 shows that the minimum value is only approximately known. It
must also be noted that the minimum reported is a local minimum and investigation
is for ranges of Re that are different for each a. The maximum value of the Reynolds
number investigated is also tabulated. Since the parameter space for the data is
defined by several parameters it becomes difficult to make meaningful comparisons
of the experimental results when more than one parameter changes. The experiment

warrants a greater degree of control so that the variables in the parameter space
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can be changed one at a time and more direct comparisons can be made. To what
extent this is experimentally feasible and to whether it is profitable will be discussed
in Chapter 5. However, one fortunate comparison can be gleaned from Table 4.4. At
a = 0.47, the film had P = 15.3 while at o = 0.80, P = 12.0. Since the radius ratios
are very different and the P are not, it is not unreasonable to directly compare the
minimum values of g and the Re for these cases. It is evident that the bifurcation
is much more strongly subcritical at « = 0.80 than at a = 0.47. Also note the very
different Re for these minima.

A representative plot of the coefficient of the quintic nonlinearity h as function
of Re is given in Fig. 4.10. In this plot o = 0.47 and 13.3 < P < 21.7. As before
different symbols indicate data obtained in different quartiles of the range in P. In
comparing Figs. 4.9 and 4.10 it appears that as ¢g decreases, h increases and vice
versa.

As always f < 1, so that when g < 0, the size of the hysteresis e is approximated
by g?/4h. For g > 0, de = 0. Figure 4.11 plots the size of the hysteresis de as a
function of Re. Note that de is vanishing for Re <~ 0.2 and non-zero for Re ~ 0.3.
Unlike the variation of de as a function of P for Re = 0 studied in the previous
section, the values of de here, are considerably larger. Given the differences between
these two examples, one may loosely say that the shear-induced-hysteresis is larger
than the P-induced-hysteresis in the absence of shear. With this Section terminates
the quantitative analysis of the data. For the remainder of this Chapter, the results

described are of a more qualitative character.

4.6 Secondary Bifurcations

Results that illustrate some of the properties of the secondary bifurcations in this
system are collected in this section. The primary bifurcation is the transition from the
conducting state to the convecting state or vice versa while the secondary bifurcations
refer to the instabilities of one convecting state to another. The current-voltage data,

when transformed into epsilon-reduced Nusselt data (e,n), is such that the primary
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Figure 4.11: The size of the hysteresis de as a function of the Reynolds number. In
this plot @ = 0.47 and since 0 < f < 1, the size of the hysteresis de = g*/4h when
g < 0. The different symbols denote the appropriate P-quartiles: 13.3 < o < 15.4 <
e <175 <DO<196 <A <21.7.

bifurcation is located at € = 0. The secondary bifurcations then appear for € > 0.

In this system, the secondary bifurcations are transitions between flows with m
vortex pairs and flows with m4n vortex pairs. m and n are integers and usually n = 1.
In the absence of shear, the only control parameter is € and the secondary bifurcations
that appear at € > 0 are, when € is being increased, transitions between flows with
mode numbers m and m + n. While € is being decreased the secondary bifurcations
are transitions between m + n and m mode states. The two foregoing statements
follow from observations of the patterns, where it is seen that increasing € leads by

secondary bifurcations to higher m modes. The current-voltage data corroborates
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these observations.

Figure 4.12a plots (€, n) data at & = 0.33 in which a secondary bifurcation occurs.
From experience, it can be said that secondary bifurcations are seldom encountered at
small a. In the case shown in Fig. 4.12a, the Prandtl-like number is ‘small’, P = 1.92.
The secondary bifurcation appears at € ~ 0.025 and is subcritical. From the results
of linear theory presented in Section 3.4 and from the measurements reported in
Table 4.1, it is known that the critical mode number at oo = 0.33 is 4. The secondary
bifurcation shown in Fig. 4.12a is a 4 — 5 transition. It is certainly naive to suppose
that the amplitude of the convection is proportional to the number of vortex pairs and
the velocity of the fluid flow where the vortices meet, nevertheless note that (5/4)? =
1.56 while from Fig. 4.12a (0.056 £ 0.011)/(0.034 + 0.010) = 1.65 & 0.58. Such a
simple argument assumes that the radial inflows and outflows where the vortices meet
have approximately the same velocity just before and after the secondary bifurcation.
Hence the amplitude must simply change in proportion to the number of inflows and
outflows and hence by the ratio 5/4. The reduced Nusselt number is proportional to
the square of the amplitude and therefore to (5/4)%2. The location of the secondary
bifurcation 4.e. the value of € at which the first secondary bifurcation occurs, say
€4, is dependent, for a given « and in the absence of shear, on only the Prandtl-like
number.

Figure 4.12b shows (¢,n) data for a film at o = 0.80. Whereas secondary bifur-
cations are often encountered at large « they are, from current-voltage data, even
more plentiful at small Prandtl-like numbers. In the case illustrated P = 10.13,
which is as small a Prandtl-like parameter as any of the data at a = 0.80. Unlike at
a = 0.33, there is a sequence of secondary bifurcations which, indicative of the order
in which they occur, are denoted €,,e,, etc. From the measurements and linear
theory results reported in Table 4.1, the onset mode number at o = 0.80 is expected
to be 20. Assuming that the primary bifurcation at € = 0 results in a convecting
state with m = 20 and that the secondary bifurcations increase this mode number
by 1 each time, so that at e, ~ 0.13 where the first secondary bifurcation occurs,

there results a 20 — 21 mode transition. Likewise at e;; ~ 0.21, €44 ~ 0.27,

106



0.08 | .

0.06 n

o 0.04 b

0.02 n

® Increasing € |

0.16 [
0.14 |
0.12
0.1]

0.08 |

0.06 |
0.04 | 1

0.02 |

® [ncreasing € |

0.2 0.4 0.6

Figure 4.12: Representative plots of secondary bifurcations in films without shear.
Plots of the reduced Nusselt number n versus the reduced control parameter e for
experiments in which multiple secondary bifurcations are observed in annular elec-
troconvection without shear. In (a) @« = 0.33 and P = 1.92. In (b) o = 0.80 and
P =10.13.
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€ryqq ~ 037 and €,y ~ 0.43 there occurs the sequence of mode or vortex tran-
sitions 21 — 22 — 23 — 24 — 25. The bifurcations are once again subcritical and
the values of €, €, etc. at which they occur are likely to be dependent on P.

The secondary bifurcations in the sheared system have, unlike the case without
shear, a wealthy phenomenology. Figures 4.13a through c illustrate three repre-
sentative examples of secondary bifurcations at moderately diverse P, Re and a.
Figure 4.13a shows (€,n) data for a sheared film demonstrating subcritical primary
and secondary bifurcations. The primary bifurcation appears at € = 0 for increasing
€. The secondary bifurcation, which results in one additional traveling vortex pair,
appears at €, ~ 0.22 for increasing e. When € is decreased, the removal of a trav-
eling vortex pair occurs at e ~ 0.12. Convection altogether ceases at ¢ ~ —0.1.
Figure 4.13b shows a case where, for increasing €, the primary and secondary bifur-
cations coalesce into a single strongly subcritical bifurcation at € ~ 0. However, for
decreasing ¢, €_ is distinct from € ~ —0.11 where convection stops. Finally Fig. 4.13c
illustrates a case with distinct primary and secondary bifurcations for increasing € but
€_ where the secondary bifurcation is ‘undone’ is no longer present. Instead there is
a single transition from convection to conduction.

That the cases presented in Figs. 4.13b and ¢ simply cannot occur in the absence
of shear is easy to understand. When shear is absent, there is for a given film a single
control parameter R, or equivalently the voltage V', or the reduced control parameter
€. Conduction is replaced by convection at ¢ = 0 with a integral number of vortex
pairs m; the number depends on the radius ratio . Upon further increasing €, the
first secondary bifurcation occurs at € = e, > 0 which results in the vortex change,
m — m+n, where the integer n is almost certainly unity. It may occur that n > 1 at
large a, say o ~ 0.85. The second secondary bifurcation occurs at € = €44 > €4 and so
on for subsequent bifurcations; the corresponding vortex transition is m+1 — m+ 2.
It follows that for a given film, the values €;,€e;, etc. form an increasing sequence.
These values depend only on the material parameters and geometry which, ideally,
for a given film are constant. Hence the case illustrated in Fig. 4.13b where €, = 0

cannot occur. An argument along the same lines as given above can be applied to
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Figure 4.13: Representative plots of secondary bifurcations in films with shear. Plots
of the reduced Nusselt number n versus the reduced control parameter € for experi-
ments in which secondary bifurcations are observed in annular electroconvection with
shear. In (a) a = 0.47, P = 15.30 and Re = 0.94. In (b) o = 0.47, P = 21.68 and
Re =0.58. In (¢) o = 0.64, P = 53.43 and Re = 0.23.
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sequence of removal of vortex pairs. In brief e =€ > € > €.onv.—scond. 1S a decreasing
sequence that demarcates the vortex transitions m +2 — m +1 — m — conduction.
Hence the case illustrated in Fig. 4.13c cannot occur. It is concluded that in the
absence of shear, the relative stability of different m modes is determined.

That shear alters this hierarchy of relative stability is well established, see Fig. 3.7.
In Section 3.4 it was demonstrated that as Re is increased, the marginally unstable
mode decreases from m? — m? —1 — m? —2... Hence there is a particular Reynolds
number, say Rep 1 at which both m? and m? — 1 are marginally unstable. Then

for Re < Reg 1 the primary bifurcation occurring at € = 0 is to a convective state

0

described by a mode number m = m_. The first secondary bifurcation occurs at
e = €4 > 0 to a state with m = m? 4+ 1. For Re > Reg,_; the primary bifurcation
occurring at € = 0 is to a convective state described by a mode number m = m? — 1.
The first secondary bifurcation occurs at € = €, > 0 to a state with m = m?. Clearly
it follows that as Re — Reg —; from above, e, — 0, resulting in the situation depicted
in Fig. 4.13b. The case illustrated in Fig. 4.13c can likewise be explained.

That shear merely alters the relative stability of different convective states is
insufficient to explain the behavior of the secondary instabilities. More precisely, and
it cannot be over emphasized, it is the fact that the shear flow selects convective
states of a lower mode number while the electrical driving favors convective states
with a higher mode number. Mathematically, increasing the electrical driving or €
results in mode transitions m — m + 1 — m + 2... whereas, increasing the shear or
Re results in transitions of the onset mode fromm - m—-1—-m —2...

Neither the experiment nor the theory has addressed the question of what mode
transitions occur as Re is altered for a convective state with mode m at constant e.
It has been the protocol to always hold Re constant and vary €, nevertheless, it seems
certain that as Re is increased the mode transitions are m - m—1— --- - 1 —
conduction. And as Re is decreased the mode transitions are m - m+1 — -+ —
m(Re = 0). The phenomonology described for the secondary bifurcations in the

sheared system can, in principle, occur in systems with two control parameters where

the increase of one control parameter results in selecting certain convective states
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while the increase of the other leads to selecting other convective states.

Figures 4.14a through h present a Re sequence of (¢,n) data plots at « = 0.56
and P = 75.80 4 0.78. These data, unlike the data discussed before, were obtained
at atmospheric pressure. This example is selected due to the minimal drift in the
electrical conductivity. It is expected that qualitatively the data closely resembles
that obtained at reduced ambient pressure. In Fig. 4.14a, the (¢,n) data at Re =
0.124 depicts a subcritical primary bifurcation from conduction to convection with
mode number 7. In the range of € investigated, secondary bifurcations were not
encountered. In Fig. 4.14b, the (¢,n) data at Re = 0.142 illustrates a subcritical
primary bifurcation from conduction to convection with mode number 6 followed by
a subcritical secondary bifurcation at e, = 0.26. Hence at some Reynolds number,
0.124 < Re < 0.142, there is nascent at € = 0 the mode change 7 — 6; whereas
this is expected from linear theory, the quantitative agreement as to the exact Re at
which this occurs is currently lacking. Perhaps this was a consequence of the inherent
air drag. When the experiment is repeated at the higher Re = 0.160, the secondary
bifurcation is suppressed to higher e, = 0.48, as shown in Fig. 4.14c. At Re = 0.178
and Re = 0.196, the secondary bifurcation is beyond the € range that was investigated,
see Figs. 4.14d and e. The sequence of events encountered in Figs. 4.14a through
e repeats with increasing Re. In Fig. 4.14f, the (¢,n) data which was obtained at
Re = 0.214 depicts a primary bifurcation to a rotating wave state with mode number
5 and a secondary bifurcation at e, = 0.07 to a state with mode number 6. When
the experiment is repeated at higher Reynolds numbers, Re = 0.231 and Re = 0.249,
the secondary bifurcation is suppressed to €, = 0.11 and e, = 0.16 respectively, as
is shown in Figs. 4.14g and h. Note that the rate at which the secondary bifurcation
to mode m = 6 was suppressed as a function of Re is greater than the rate at which
the secondary bifurcation to mode m = 5 was suppressed.

On analyzing the data obtained while € is being reduced, one finds equally inter-
esting behavior. In Figs. 4.14a, d and e, there is a single discontinuous transition
from the convecting state described by m = 6 or m = 7 to the conducting state.

This is not unusual since the increasing € data also were characterized by primary
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Figure 4.14: A representative plot of a sequence of bifurcations. Plotted are the
reduced Nusselt number n versus the reduced control parameter € at a = 0.56 for
a sequence of increasing Re. The open(filled) triangles denote data obtained while
increasing(decreasing) €. In (a) through (d) a subsidiary bifurcation appears at ¢ =0
as Re increases, replacing the existing bifurcation which eventually disappears.
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Figure 4.14: A representative plot of a sequence of bifurcations. In (e) through (h)
another subsidiary bifurcation appears at € = 0 as Re increases, replacing the existing
bifurcation. For plots (a) through (d) in Fig. 4.14 and for plots (e) through (h) above,
P =175.804+0.78
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bifurcations only. In the cases where secondary bifurcations were encountered, sev-
eral scenarios occur while € is decreased. For instance in Figs. 4.14b and c, there is a
continuous transition from m = 6 — 7 before a discontinuous transition to conduc-
tion. Note however, that for exactly these runs the data taken when € was increasing
show discontinuous secondary bifurcations yet when when € decreases, the events re-
verse continuously. While the data with increasing € in Fig. 4.14f clearly depicts a
m = 5 — 6 bifurcation, the data with decreasing e carries no inkling of the secondary
bifurcation. By a single discontinuous transition the convecting m = 6 state directly
exits to conduction without recourse to the m = 5 state. However, as Re is increased,
the m = 5 state is visited while € decreases, see Figs. 4.14g and h. What is differ-
ent here from the cases in Figs. 4.14b and c is that the transition m = 6 — 5 is
discontinuous. It is expected that if the experiments were performed to even higher
driving more secondary bifurcations may well be encountered. These phenomena are
likely to be explained by considering the pitchfork bifurcation diagrams for the modes
m and m — 1, for one can quite easily imagine how two bifurcation pictures can be
manipulated to result in the variety discussed.

A conceptually useful exercise, in the field of pattern formation and nonlinear
dynamics, is to ‘map out parameter space’. By this, it is meant that one should
determine and describe the solution or solutions that exist in regions of parameter
space. The task becomes very difficult when there are many parameters on hand.
In this system, a minimal description of the solution consists of identifying the value
of mode number m. A complete description would additionally require the traveling
rate and amplitude.

The parameter space for each solution consists of the ranges of the radius ratio
«, the Prandtl-like number P, the control parameter R and the Reynolds number
Re in which it persists. Since « is merely a geometrical constant one may map
parameter space at several different «. Ideally, in the absence of drift of the electrical
conductivity, P too is constant and therefore one may map parameter space at fixed
«a and P. To the extent that this mapping is possible is illustrated in Fig. 4.15. In this

figure, the abscissa is the Reynolds number Re of the shear flow while the ordinate
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Figure 4.15: An example of a mapping of parameter space. In this plot « = 0.56 and
P = 75. The data points consist of the location in (€, Re) space of the transitions:
conduction — convection, convection — convection, convection — conduction. Data
gleaned from Figs. 4.14a through h are indicated by the appropriate letters. The
conduction region is below the dashed line. Electroconvection occurs above the solid
line. Convection states with m =7, m = 6 and m = 5 are appropriately indicated.
The 7’ imply that the precise location where the various lines intersect is not known.
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is the suppression variable € defined in Eqn. 4.10; note that € is proportional to R.
The data is obtained from experiments performed at o = 0.56 and P = 75. The data
consists of the values of € at which, for a given Re, the transitions from conduction
— convection, transitions between different convecting m states and transitions from
convection — conduction occur. The transitions between convecting states are the
m — m + 1 and the m + 1 — m transitions which when they do occur, occur upon
increasing and decreasing € respectively. Some of the data can be identified in the
data presented in Figs. 4.14a through h and are denoted as such on the plot. Consider
the data obtained from Fig. 4.14h. By increasing € and so €, conduction persists until
€ = 0 or ¢ =5 where A in Fig. 4.15 at Re = 0.249 denotes the transition from
conduction to electroconvection with m = 5. Upon further increasing € a secondary
bifurcation m = 5 — 6 occurs and is denoted by 7. While decreasing € mode
m = 6 persists until the transition m = 6 — 5 which is denoted by the solid upside
down triangle at € = 4.2. Upon further reducing €, convection gives to conduction at
€ = 3.7 and is denoted by a solid upright triangle. It is in this manner that the data
in Fig. 4.15 is to be interpreted.

The lines in Fig. 4.15 simply connect relevant data points giving the figure the
appearance of a foliate. Below the dashed line, the only observed state was conduc-
tion. Above the solid line the only observed state consisted of electroconvection under
shear. Between these lines both conduction and electroconvection are observed. The
fact that these two lines exist imply the incidence of hysteresis or subcriticality. The
onset of subcriticality occurs where the dashed and solid lines intersect. Since the
intersection is imprecisely known, it is denoted by ‘?’. For data to the left of this
point of intersection, that is for data at lower Re the bifurcation between conduction
and convection was supercritical and hysteresis was not observed. To the right of the
intersection the bifurcation is subcritical and hysteresis was observed.

In the electroconvecting regime, the description of the convecting state is specified
by the mode number m. In Fig. 4.15 there are three m states. The primary and
secondary bifurcations are used to identify the m state. The secondary bifurcations

m — m + 1 and the transitions m + 1 — m are denoted by different symbols. A
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dotted line demarcates the region between the m = 6 and m = 5 while a hashed line
denotes the boundary between the m = 7 and m = 6 states. Once again these lines
are approximate and only connect the available data points.

As was discussed in Section 4.3, the solid line is measure of the suppression of
the onset of electroconvection by the shear. More acutely the solid line represents
the suppression of the primary onset mode. The hashed line is a measure of the
suppression of the mode m = 7 whether the mode appears at a primary or a secondary
bifurcation. Note that the suppression is greater and increases rapidly with Re when
the mode m = 7 is a secondary mode than when it is a primary mode. The dotted
line concerns the suppression of the mode m = 6 and once again when m = 6 appears
as a secondary bifurcation it is further suppressed and the ‘rate’ of suppression is
greater than that of the primary mode. Finally note that the ‘rate’ of suppression of
the secondary mode m = 7 is greater than that for the secondary mode m = 6.

The intersections between the convection state boundaries for the secondary bifur-
cations and the convection state boundary for the primary bifurcation are imprecisely
known and are denoted by ‘?’. At this point, it remains unknown whether the bound-
aries between convective states are single or supercritical or double and subcritical.
It is likely that the latter applies and it is clear that more work on this system is
required to further elucidate the picture. So it remains unclear whether other m
states occur in the region denoted by, for example, m = 6, ... However, it is without
question that convective states persist above the solid line while conduction persists
below the dashed line. Between these lines or equivalently in the hysteresis of the
primary bifurcation, one may have, as has presently been observed, as many as three
possible states (see for instance Figs. 4.14b, c, g, and h). That is not to say coexistent
states but three distinct possibilities. One is the conduction state, while the others
are convective states with mode numbers m+1 and m. It is an open question whether
more states can be found within the hysteresis of the primary bifurcation. Armed
with the predicted trends from the linear theory and with experience from experi-
mental work, one may be able to guess as to how the portrait presented in Fig. 4.15

changes as the radius ratio o and the Prandtl-like number P are varied. Nevertheless
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an actual determination of these trends is at present inadequately explored.

The foregoing exhausts, for this thesis, the investigation into the structure of the
secondary bifurcations, the manner in which they occur and their loci in parameter
space. There is clearly plenty of scope for further investigation. In the following
Section are grouped three cases of bifurcations which have been encountered and

warrant special comment.

4.7 Miscellany

In the course of performing current-voltage measurements on a multitude of annular
films, there were some data that illustrated certain features that were absent in the
data that has already been discussed. Examples of these data and the conditions
under which they were observed or not observed are presented here.

First, at « = 0.80 and in the absence of shear, the current voltage-characteristics
illustrate what appear to be several secondary bifurcations, see Fig. 4.16a. The pri-
mary and secondary transitions are shown by arrows. The primary and secondary
bifurcations appear to be continuous. When scaled into (€,n) coordinates, the data
takes the form shown in Fig. 4.16b. The primary bifurcation appears to be super-
critical but the secondary bifurcations appear to be only weakly subcritical. It is
clear that greater resolution of the experimental data is required. It becomes debat-
able whether the secondary bifurcations are always subcritical. By virtue of being in
a finite system, it is likely that all secondary bifurcations are subcritical with sub-
criticality getting weaker as a gets larger, all other things constant. The secondary
bifurcations necessitate a change from m — m+1 vortex pairs in the absence of shear
or change in the mode structure of the rotating wave when sheared. Such a change
is a discontinuous change in system of finite length since the transition m — m + 1
has no intermediate states. In a system of infinite length, the m mode can be shrunk
continuously to the m + 1 mode. Consequently it is postulated that all secondary
transitions are subcritical. The degree of subcriticality decreases with increasing «

and disappears in the limit « — 1. Note that at o = 0.80, the limits of experimental
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Figure 4.16: Multiple bifurcations at @ = 0.80. In (a) is plotted a current-voltage
characteristic which is annotated with arrows that indicate the positions of several
bifurcations. These bifurcations appear to be continuous. In (b) is plotted the cor-
responding n versus € graph. Arrows indicate the positions of the bifurcations which
with the exception of the first, appear to be only weakly subcritical.
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Figure 4.17: Backward and forward bifurcations in the same experiment. A plot of
the current-voltage characteristic that shows a subcritical bifurcation for increasing
voltage but a supercritical one for decreasing voltage.

resolution of the subcriticality are already being tested.

Figure 4.17 is a representative example of a current-voltage characteristic that
shows a discontinuous bifurcation from conduction to convection but a continuous
transition from convection to conduction. When primary subcritical bifurcations
are encountered, the transitions to and from the electroconvective state have almost
always been discontinuous. This is in keeping with the current understanding of
the subcritical pitchfork bifurcation. However, data like those shown in Fig. 4.17
question whether a bifurcation can be subcritical for increasing a control parameter
and appear supercritical for decreasing the control parameter. More likely, there
are ‘direction’ dependent or equivalently time-dependent processes that lead to these
differences. What these processes may be are not known but they probably arise from
electrical effects that depend on the time-dependence of the applied voltage i.e. is

the voltage increasing or decreasing and if so at what average rate? Data of the like
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plotted in Fig. 4.17 were observed at several o and P and often at small Re ~ 0.1.
Interestingly, such current-voltage characteristics were never observed in the data
obtained at atmospheric pressure. However, it is not conjectured from this that the
anomaly is an air-drag effect, but rather the absence of air and the accompanying
water vapour results in different electrical properties in the film.

In some experiments with strong shear, the current-voltage characteristic took
the form shown in Fig. 4.18. Such characteristics were not observed in the absence
of shear. In this plot, a linear fit to the conduction data for increasing voltages
in the range 85.0 < V < 93.0 is superimposed on the data. The extrapolation of
this line makes clear that the data for increasing voltages disagrees with the line by
more than that which would be expected from the drift of the electrical conductivity.
One then questions whether the anticipated subcritical bifurcation is preempted by a
supercritical bifurcation at a lower voltage. If so, does one interpret the discontinuous
transition as a secondary bifurcation? It is more likely that the deviation of the data
from the line is a result of sudden large changes in the electrical conductivity that arise
for reasons not known but different from the electrode reactions that account for the
drift in the electrical conductivity. Consider the scenario, in reference to Fig. 4.18,
when the voltage is increased to V' = 94.5 volts, the film is marginally unstable
to electroconvection and a velocity fluctuation is amplified. The flow that appears
results in mixing the fluid which somehow immediately results in an increase in the
electrical conductivity. Suppose that the conductivity is sufficiently increased that
the film is no longer marginally unstable to electroconvection at V' = 94.5 volts. Upon
further increase of the applied voltage, the process repeats until at V' = 98.7 volts
the increase in the electrical conductivity is insufficient to prevent electroconvection
and a transition to convection occurs. This plausible scenario leads to referring to
the bifurcation in Fig. 4.18 as a ‘delayed’ bifurcation. It is likely that if the electrical
conductivity was constant independent of the flow in the film, that the transition
to convection would have occurred at V' = 94.5 volts. At this stage, the foregoing
explanation should be treated as a guess and only further research on this aspect will

supply the true reasons.
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Figure 4.18: A ‘delayed’ subcritical bifurcation. A plot of the current-voltage char-
acteristic that shows a subcritical bifurcation which appears to have been ‘delayed’.
The line shows a linear fit to the data for 85.0 < V < 93.0 volts. The data in the
range 94.0 < V' < 98.0 disagrees with the line by an amount that cannot be accounted
for by simply electrochemical drift of the conductivity.

4.8 Other Similar Systems

At several levels of observation annular electroconvection resembles widely different
systems. In an effort to elucidate these similarities, brief albeit important contrasts
and comparisons between the system studied in this thesis and its most similar coun-
terparts have been collected in this Section.

Of the several systems that will be discussed below, the first that is considered is
that of thermal convection superposed on a shear flow. There have been some the-
oretical studies of 3D Rayleigh-Bénard convection (RBC) in the presence of a plane
Couette shear flow[12]. The canonical theoretical geometry of a fluid layer confined
between perfectly conducting flat horizontal planes of infinite extent is assumed. A

finite horizontal extent has significant implications and is discussed below. Linear
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stability analysis of the plane Couette base state to RBC reveals stability differences
between transverse roll disturbances (with axes perpendicular to the shear flow), and
longitudinal roll disturbances (with axes parallel to the shear flow). Longitudinal-roll
disturbances have identical stability properties to RBC in the absence of shear, and are
always more unstable than the transverse-roll disturbances. In fact the longitudinal-
roll disturbances have stability properties that are independent of any uni-directional
shear flow along the axis of these rolls. Transverse-roll disturbances, conversely, ex-
hibit suppression, or added stability due to the shear, plane Poiseuille or plane Couette
or any mixture of these two flows. The onset Rayleigh number for transverse rolls is
a monotonically increasing function of the shear Reynolds number, similar to what
was found for 2D annular electroconvection. Furthermore, the critical wavenumber of
the most unstable transverse disturbance was found to be a monotonically decreasing
function of the shear Reynolds number, as was observed in annular electroconvection
with shear. Transverse rolls (vortices, in the co-rotating frame) appear at onset in
the annular electroconvection system with circular Couette shear. This is perhaps,
in large part because it is a 2D system. Like annular electroconvection the presence
of shear converts the emerging roll-state from stationary to traveling.

Whereas RBC with plane Couette shear has not been, perhaps cannot be, studied
experimentally, RBC has been studied experimentally and theoretically with open
through-flows.[13, 14] The through-flow is generally a weak Poiseuille flow with a
very small Reynolds number. Its effects on RBC are well understood. In brief, the
onset of convection is again suppressed, but the first instability is convective (i.e.
it grows only downstream of a localized perturbation), rather than absolute. The
resulting convection pattern drifts in the direction of the through flow. It is interesting
that the clear distinction between convective and absolute instability is blurred in
annular electroconvection with shear, in which the ‘through’ flow loops back on itself.
The annular geometry is naturally closed. Whether longitudinal or transverse roll
disturbances grow in RBC with weak through-flows depends on the width of the
channel and the Reynolds number of the flow.[14] The finite horizontal extent of the

channel is seen to afford, in part, a selecting mechanism between longitudinal and
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transverse disturbances.

A system with geometrical similarity to annular electroconvection is the exten-
sively studied is Taylor Vortex flow (TVF).[13] The similarity is in the annular ge-
ometry of both TVF and the electroconvection system discussed in this thesis. This
however, is where the similarity ends. TVF depends crucially on the instability to
3D disturbances, in fact the 2D circular Couette flow is linearly stable.[15, 16] It is
important to note that TVF is a result of an instability of a shear flow, while what
is studied here is the effect of a shear flow on the electroconvectional instability.

Some electrohydrodynamic systems consist of an ‘insulating’ fluid confined be-
tween metallic electrodes. Charge injection, a process by which charge carriers are
created at the electrodes, occurs when strong electric fields are applied. It is the
interaction of this volume charge density with the applied electric field that leads to
electroconvection type instabilities; see Ref. [17] and references therein. Agrait and
Castellanos have theoretically studied the effect of a Couette shear on an electrohy-
drodynamic instability in TVF geometry.[18] They considered electroconvection due
to a radial field with charge injection on either cylinder. Both cylinders were per-
mitted to rotate to produce a general Couette shear. Their result was that shearing
enhanced the instability, leading to a 3D flow that resembles TVF. Recall that the
shear suppresses the 2D annular electroconvection flow and so is in sharp contrast
with this charge-injection driven instability.

The results of RBC in rotating cylinders have some similarity to the results for
electroconvection in sheared films, even though shear and rotation are quite different.
A concise summary of some of the work on rotating RBC can be found in Ref. [19].
Due to the similar symmetries in these various scenarios, some results are common
to most rotating RBC systems.[19] Since these systems are three-dimensional, the so-
lutions they support can generally be classified into axisymmetric, non-axisymmetric
(‘columnar’) or mixed (combinations of axisymmetric and non-axisymmetric) solu-
tions. The principal result is that for 3D mixed solutions, the onset bifurcation is no
longer steady as it is for non-rotating RBC. This leads to a flow pattern that precesses

in the co-rotating frame. The onset of these solutions is however suppressed, raising
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the critical Rayleigh number above its non-rotating value.[19, 20, 21] In this aspect
the effects of shear in annular electroconvection are similar to that of rotation in
RBC. In principle, purely non-axisymmetric or columnar solutions which are strictly
two-dimensional can occur in RBC under rotation. When they do occur, they do not
precess (in the co-rotating frame) and their onset occurs at the same critical Rayleigh
number as in the absence of rotation.[19, 22]

There have also been theoretical studies of the interesting but experimentally un-
realizable situation of 2D RBC in a rotating annular geometry with purely radial
gravity and heating[22]. These studies found similar columnar solutions. In fact,
purely columnar solutions (‘Taylor columns’[23]) have yet to be observed in any ro-
tating RBC experiment since the boundary conditions at the top and bottom of the
cylinder must be stress free[19, 22|, a requirement that cannot be attained in ter-
restrial RBC experiments. In contrast, two-dimensionality, stress free end boundary
conditions and radial driving forces all arise naturally in the electroconvection of an
annular suspended film that has been described in this thesis. As a result the vor-
tices that occur in annular electroconvection without shear which are identical to
those that occur when the annulus is rigidly rotated take the appearance of ‘Taylor
columns’. They are in fact the 2D analog of ‘Taylor columns’.

The added stability in sheared annular electroconvection is a consequence of the
shear and not of rotation. Under rigid rotation, where the inner and outer elec-
trodes are co-rotating, one can transform to rotating co-ordinates in which the elec-
trodes are stationary. This transformation introduces a Coriolis term —2Qz X U =
—2QV ¢ in Eqn. 3.5 which may be absorbed into the pressure gradient term VP and
eliminated.[22] Thus, in a purely 2D system, rigid rotation and the non-rotating, un-
sheared case have identical stability. It also follows, since the transformation is general
and the unsheared bifurcation is stationary, that the resulting nonlinear vortex pat-
tern above onset must be stationary in the co-rotating frame. These results are very
similar to that for the ‘Taylor columns’ mentioned earlier. This lack of dependence
under rigid rotation may be contrasted with a large class of 3D and quasi-2D rotating

Rayleigh-Bénard systems|[19, 20, 21, 24], where rotation produces added stability but
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the absence of strictly 2D flow results in time-dependence (precession) of the convec-
tion pattern in the co-rotating frame. Chandrasekhar[25] treated the classic problem
of the linear stability of RBC in a laterally unbounded layer rotating about its normal.
The case of a laterally bounded cylindrical layer has received much recent interest
theoretically[20], and has also been the subject of a precise experimental study|[21].

Electrically driven convection phenomena have been observed and extensively
studied in nematic liquid crystals for many years. Consult Ref. [26] and the extensive
bibliography therein for a detailed review. The convection in these “parallel plate ca-
pacitor like” nematic systems occurs due to an electrohydrodynamic instability whose
origin is entirely different from that discussed in this thesis. The mechanism depends
crucially on the anisotropic properties of the nematic liquid crystal, in particular the
electrical conductivity. For an introduction to this, the Carr-Helfrich mechanism, see
Ref [27]. Whereas the mechanism is electrical, Carr-Helfrich electroconvection has
very little in similitude to the surface driven electroconvection mechanism that has
been presented in this thesis.

Surface driven electroconvective phenomena have been observed and theoretically
explored in wide variety of experimental scenarios ranging from puddles of conduct-
ing fluids to partially filled capacitors.[28, 29, 30, 31] However, the study of elec-
troconvection in freely suspended fluid films began with S. Faetti et. al.[32] who
experimented with nematic liquid crystal films suspended between parallel wires in
the traditional rectangular geometry. Their observations of vortical flow are indeed a
result of the same surface driven electrohydrodynamic instability discussed in this the-
sis. Circumventing the problem of nonuniformly thick and metastable films, S.Morris
et. al. experimented with electrically driven convection in smectic A liquid crys-
tal films.[9, 33] Having established the utility of the 2D smectic A liquid crystals,
further experiments into nonlinear electroconvective phenomena in rectangular cells
have been performed.[34, 35] The phenomena that are observed in each of these
cases are consistent with each other though quantitatively they differ. Furthermore,
the phenomena are driven by the surface driven electroconvection mechanism that

is discussed in this thesis and was originally presented for the laterally unbounded
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geometry in Ref. [36].

Freely suspended film of other smectic phases have recently been experimentally
investigated in rectangular and annular geometries.[37, 38, 39] The smectic C and C*
phases have been used. The smectic C phase has a layered structure much like smectic
A, but within layers, the long axes of the molecules are at a fixed tilt, not perpen-
dicular, to the layer plane. As a result the material properties, and therefore optical
properties, within each layer are anisotropic. The smectic C* phase is also endowed
with a layered structure and much like smectic C. But unlike smectic C, the smectic
C* phase has a spontaneous polarization .e. a permanent electric dipole moment in
the layer plane. From layer to layer, the long axes of the molecules show chirality and
the polarization vector rotates in the layer plane, however the tilt with respect to the
layer normal is constant. Like smectic C, the smectic C* phase has anisotropic ma-
terial properties with the layer plane. The electroconvection phenomena observed in
rectangular films of smectic C are consistent with the phenomena observed in smectic
A films and with surface driven electroconvection theory. However, the observations
on electroconvection in smectic C* films differ from the experiments on smectic A and
C films.[38] The smectic C* phase is characterized by a permanent spontaneous po-
larization, which can be altered by the extent of chirality in this phase, and interacts
with the electric field in these experiments. The effects of this polarization have been
studied theoretically in, supposedly, a freely suspended geometry.[40] Surface charges
which are invariably present in a freely suspended have been neglected in Ref [40].
As it stands, the theory advocated is dependent on bulk or volume effects and the
predictions have a qualitative resemblance to Carr-Helfrich theory. While the exper-
imental results on smectic C* films disagree with surface driven electroconvection, it
is not clear that the results are consistent with the theoretical predictions of Ref. [40].

Experiments with smectic C* films have been recently performed in an annular
geometry.[39] Surface driven phenomena were clearly observed. It is now believed that
both surface and bulk effects are present and a crossover between bulk and surface
effects may be explored by varying the film’s thickness to width ratio. For a film
of thickness s and width d, the ratio s/d determines, roughly, how the bulk forces
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compare to the surface forces. For s/d < 1 the surface forces dominate. Most films
have s/d < 1, however, it is not unusual to alter s/d by a factor of 5 to 10. While
surface driven electroconvection is accessible in films, it is not clear whether the bulk

effects of the nature described in Ref. [40] have been observed.
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Chapter 5

Conclusions

5.1 Introduction

This Chapter presents a summary of the conclusions of this thesis. Also described
are the possible future directions for the experiment and theory. For convenience, the
conclusions regarding the experiment and the theory are separately discussed. Before
describing the detailed conclusions, the most significant results of this research are

listed below.

(i) An electrohydrodynamic model has been developed to describe annular electro-
convection with shear. It was demonstrated experimentally that this model precisely
describes the phenomena relating to the onset of electroconvection i.e. the predictions
of the model at the level of linear stability and the relevant experimental measure-
ments are in quantitative agreement. These consisted of the marginally unstable
mode m? and the shear dependent suppression €. Given this success, it is expected
that at the level of weakly nonlinear analysis, the model will prove instrumental in

explaining and further exploring nonlinear behavior.

(i) It has been demonstrated that the nature of the primary bifurcation in annular
electroconvection can be tuned from a supercritical through a tricritical to a sub-

critical bifurcation by varying the radius ratio «, the Prandtl-like parameter P and,
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the Reynolds number Re. For nonzero Re the bifurcation also changes from sta-
tionary pitchfork to Hopf. For some parameter ranges, the transition between the
same two ‘phases’ or states of symmetry i.e. conduction and a convection state with
mode number m, can be supercritical, tricritical or subcritical. A complex nonlinear
regime characterized by subcritical secondary bifurcations between states with mode

numbers m and m + 1 was briefly explored.

5.2 Conclusions: Experiment

The experimental work systematically explored electroconvective flows in freely sus-
pended, two-dimensional annular fluid films. The principal exploratory tool was
current-voltage data under a variety of situations. The experiments were initially
performed at atmospheric pressure, but were later more precisely and extensively
repeated in a reduced ambient pressure environment to eliminate air drag. In all,
six different radii ratios «, with 0.33 < o < 0.80, were investigated in both pres-
sure environments. For all the « investigated, the Reynolds number of the Couette
shear varied between 0 < Re < 3. Likewise, the Prandtl-like number varied between
1 <P < 150. The parameter space sampled by these o, P and Re is very broad and
sufficiently dense so that it is highly unlikely that any region of parameter space that
has been unexplored will have different phenomena.

Current-voltage characteristics were acquired for a large number of uniform films
of different thicknesses at each a under varying conditions of applied shear. By a
data analysis procedure, quantitative information regarding the onset and beyond
onset amplitudes were gleaned from the current-voltage characteristics. Films at
a = 0.33 were more prone to thickness variations than those at a > 0.47. All
films were similarly more prone to thickness variations at reduced ambient pressure
than at atmospheric pressure. Experiments at o < 0.33 and o > 0.80 were not
attempted due to the increased likelihood of nonuniform aspects due to a ‘broad’ and
‘narrow’ film width respectively. A broad film is prone to thickness variations while

a narrow film is influenced by the three-dimensional aspects of the electrodes which
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are proportionately greater in a narrow film.

The onset phenomena concern the transition from conduction to electroconvection
1.e. the value of the critical voltage V.. Consequently, the onset data can be compared
directly to the predictions of linear theory. Two quantitative comparisons were made,
the first concerning how the critical voltage varies with the conductance and the
second concerning by what amount the critical voltage is suppressed by shear. In
both cases, the comparison between experiment and theory is good. What is very
encouraging is that this agreement was over a wide range in «, P and Re.

Onset phenomena concerning the structure of the unstable flow were compared
to visual observations of films using their slight thickness nonuniformity for flow
visualization. Qualitative agreement is attained between the structure of the elec-
troconvective flow at and above onset, with and without shear, when compared with
the predicted flow field from linear theory. The unstable mode number at and above
onset in the absence of shear is in excellent agreement with the onset mode number
m? predicted by linear theory. The foregoing comparisons between the experiment
and the theory show that the theoretical model is well founded.

The above onset phenomena concern the nature of the primary and secondary
bifurcations. The data analysis procedure enabled the extraction of quantitative
information regarding the nature of the primary bifurcation. When shear is absent,
the primary bifurcation is expected to be a pitchfork bifurcation which can be either
subcritical or supercritical. In the presence of shear, the bifurcation is a pitchfork Hopf
bifurcation, which can also be either subcritical or supercritical. Since the current-
voltage data concern the total transport of charge through the film, they could be
modelled by the real Landau equation for the amplitude of electroconvection.

The simplest nonlinearity in the amplitude equation is cubic and its coefficient
was denoted g. The data were fitted to determine the functional dependence of g
as a, Re and P varied. It was found for a = 0.47,0.56,0.60,0.64,0.80 and P <
13 that g was independent of P. Furthermore in this range g > 0, showing that
the bifurcation was supercritical. For a = 0.33, g was found to be an increasing

function of P for 2 < P < 8. More importantly, it was found that the bifurcation is
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subcritical (g < 0) for P < 5 and supercritical (g > 0) for P & 5 at a = 0.33. As
an overall trend, it was found that g is an increasing function of a. It was argued
that a = 0.80 is sufficiently close to the limiting case of & — 1 that a comparison
between the measured value of g at @« = 0.80 and the calculated value of g for the
‘plate’ geometry is meaningful. This quantitative comparison gave good agreement.
Finally, measurements of g were obtained as a function of Reynolds number Re. It
was found that, for a = 0.47,0.56,0.60, 0.64,0.80, there was a Re below which g > 0
and above which g < 0. Hence, it was concluded that the shear can alter the nature
of the bifurcation from supercritical Hopf to subcritical Hopf via a tricritical point.
The coefficient of the quintic nonlinearity in the amplitude model was denoted h.
Measurements of A were presented for all the foregoing scenarios. The ‘imperfection’
term denoted f in the amplitude model was also fit. For all the data analyzed,
0< 1.

Secondary bifurcations were qualitatively studied but were not modelled. All
secondary bifurcations were found to be subcritical independent of o, Re and P. It
was argued that, given «, the secondary bifurcations in the absence of shear, occur
at values of the reduced control parameter €, that are dependent only on P. In the
presence of shear, it was established that the values of € at which the secondary
bifurcations occur are strongly dependent on Re. Since the secondary bifurcations
involve mode transitions m — m + 1 and m + 1 — m, it was found that various
possible routes from conduction to electroconvection to conduction were possible. At
a = 0.56 and P = 75, the mode structure of the flow was studied in more detail. From
this resulted a partial map of the persistent modes in the parameter subspace defined
by (Re,R) = (Re, €). The foregoing results have been reported in references [1, 2, 3.

The scatter in the fitted parameters is greater than the statistical uncertainty
in the data. There are three main reasons for the scatter. The first is the drift
in the electrical conductivity of the film. In order to partially compensate for the
drift, a systematic correction procedure was required. However, since the drift in
one data set is different in detail from another obtained under the same conditions,

the uncorrected part of the drift inevitably leads to some scatter. The second source
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of scatter is more directly related to the apparatus. When a liquid crystal film is
drawn across the annulus, the electrodes must be preferentially wet with the liquid
crystal. The wetting layer is observed to change as the ambient pressure changes and
is expected to be different for different film thicknesses and from film to film. This
non-ideal experimental feature may also give rise to some of the scatter in the results.
Thirdly non-ideal three-dimensional effects vary from film to film. Thicker films are
more likely to display weak three-dimensional flows due to preferential driving of the
surface layers than thinner films.

The experimental system warrants further development to eliminate some of its
non-ideal features. To reduce the effects of the drift in the electrical conductivity, one
should use electrodes that when in contact with the doped liquid crystal are more
inert as far as electrochemical reactions are concerned than the current stainless steel
electrodes. Experiments can be conducted to study the drift as a function of the
dopant concentration and thereby determine an optimal doping level. Alternatively,
it may be better to use different dopants or a different smectic A liquid crystal. As far
as the wetting problem is concerned, it can be rectified by re-designing the electrodes.
Instead of using electrodes fashioned about disks, one may use the ends of concentric
hollow cylinders or pipes. These electrodes may be inserted into, say a rectangular
film that was drawn on some other assembly. In this manner the issue concerning
wetting is almost wholly avoided. If after such improvements are implemented, the
experimental results differ significantly from theoretical predictions, only then should
higher order corrections in the theory be entertained.

There are many future directions. The annular geometry has a continuous az-
imuthal symmetry that is broken when the inner electrode is moved off-center. Elec-
troconvection with shear in the off-centered or eccentric annular geometry permits the
study of pattern-formation in a system that has no continuous symmetries. One may
question in what manner the phenomena of electroconvection change as the degree of
off-centering or asymmetry is varied. The nature of the shear flow too, varies signifi-
cantly from the Couette profile in the centered system to a non-axisymmetric profile

in the off-centered geometry. The experimental apparatus needs no modifications for
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studying eccentric electroconvection. A preliminary and qualitative study is reported
in Appendix F, Section F.1.

Having studied the effects of Couette shear on electroconvection, it is quite natural
to ask what effects other kinds of shear have on electroconvection. It was demon-
strated that Couette shear has a stabilizing effect on electroconvection and one may
ask whether that is a generic feature or whether a different shear flow may have a
destabilizing effect. A candidate for such a shear is an oscillatory shear that is im-
posed by sinusoidally oscillating the inner electrode. By varying the frequency of the
oscillation one may drastically change the shear profile in the film. There is added
novelty in that the base state flow is now time periodic and not stationary. Details of
how the oscillatory shear differs from the Couette shear are provided in Appendix F,
Section F.2. The current experimental apparatus is adequate for performing these
experiments.

In Appendix F it has been explained that the Couette shear flow is independent
of the viscosity of the fluid while the oscillatory shear flow is not. As a result the
oscillatory shear flow can be exploited to directly measure the fluid viscosity, a pa-
rameter that has yet to be measured and that in this work has only been indirectly
inferred. A plausible method to ascertain the viscosity by use of an oscillatory shear
in the existing apparatus is discussed in Appendix F, Section F.3.

Finally, the research presented in this thesis and the foregoing future directions
can be repeated in more exotic liquid crystal phases such as smectic C and smectic
C*. A significant advantage of using anisotropic liquid crystal phases is that their
optical anisotropy can be exploited to non-invasively visualize the electroconvective
flow. Non-invasive flow visualization techniques have yet to be developed for isotropic
fluid films. Preliminary results from recent experiments on annular electroconvection

with smectic C* [4] differ significantly from those presented in this thesis.
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5.3 Conclusions: Theory

The theoretical work presented as part of this thesis consists of a linear stability anal-
ysis of the annular electroconvection system with and without shear. The basic model
that describes surface driven electroconvection was first elucidated by the author and
reported in Refs. [5, 6]. The theoretical work in this thesis consisted of generalizing
the previous theory to include a shear flow in the base state. The theory was applied
to an annular geometry with a Couette shear. Whereas the method of linear stability
is well established, the system to which it is applied is fairly complicated by the non-
trivial base state for the shear flow and the surface charge density. In brief, the theory
is electrohydrodynamic in character, with the fluid flow confined to two dimensions
and while the electrical problem is three-dimensional it is coupled to the flow via
the free surfaces of the film. The system is described by incompressible viscous fluid
dynamics with an electrical body force. The fluid is a Navier-Stokes fluid driven by
a body force that must also satisfy a nonlocal electrodynamics. Thus at its core,
the model is a nonlinear, nonlocal partial differential equation system. The geometry
for which this system of equations is addressed is cylindrical. The annular system
is naturally periodic about the azimuth, closing on itself. The base state, though
non-trivial, is always axisymmetric. The linear theory questions the stability of the
axisymmetric base state to non-axisymmetric flow perturbations which are driven by
radial electrical forces.

The results of the linear stability theory predict the onset of electroconvection R,
and the non-axisymmetric structure of the flow that appears there as a function of the
various parameters of the system: «, P, Re. The marginally unstable flow is defined
fully by two parameters, the mode number m,. which counts the number of vortex
pairs that appear at the onset of electroconvection, and the traveling rate v’ of the
onset mode around the azimuth. It was found that in the absence of shear (Re = 0)
that the electroconvection flow that emerged was stationary (7% = 0) and consisted
of m? pairs of counter-rotating vortices. This vortex pattern has a discrete azimuthal

symmetry that replaces the continuous azimuthal symmetry of the base state. In this
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sense, electroconvection is a symmetry breaking bifurcation. Furthermore for Re = 0,

the critical value of the control parameter, R? was independent of P and overall

0

c

increased with a. The onset mode number m_ was a nondecreasing function of a. At
certain values of o, both m? and m? + 1 were simultaneously marginally unstable.
At these values of o, R? attained a local maximum. In the presence of a shear flow,
it was found that the onset of electroconvection was non-stationary and the rotating
wave that emerged traveled at an angular speed ~'/m,. The pattern was a traveling
non-axisymmetric flow. When viewed in a frame that rotated at +'/m., the pattern
consisted of m, pairs of counter-rotating vortices. In each pair, the vortex that had
the same sense of rotation as the inner electrode was narrower than the vortex that
rotated in the opposite sense. This additional symmetry breaking is attributed to the
shear flow which distinguishes between clockwise and counter clockwise rotations.

It was also demonstrated that for Re # 0 the onset of electroconvection is sup-
pressed i.e. R, was an increasing function of Re. The onset mode number m, was a
nonincreasing function of Re. For nonzero Re, it was found that R, was an increasing
function of P. More detailed predictions and numerical values are given in the text.
This theoretical work has been reported in Ref. [2].

Wherever possible, comparisons between the predictions of linear theory and the
experiment were made. The qualitative features of the electroconvection flow pat-
tern, with and without Couette shear, are seen to agree quite well with observations
made on films with slight thickness nonuniformities. The onset mode numbers are
in excellent agreement while the relative suppressions of the electroconvection onset
with shear are in good agreement. These results are encouraging and show that the
essential physics is properly accounted for by the model.

Now that the basic mechanism and linear theory have been explored, there are
several avenues for further theoretical work on this project. A nonlinear theory could
be developed to quantitatively test the predictions of the experimental work as far as
the primary bifurcation is concerned. A theoretical value for the constant g in the am-
plitude equation that describes the primary bifurcation is currently being computed

as a function of the other parameters such as «, P, and Re.[7] Coupled amplitude
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equations for electroconvection states in the presence of shear defined by modes m
and m — 1 should be explored. It is the relative stability of the m — 1 and m rotating
wave states that determines the mode that appears at onset and thereafter the values
of the reduced control parameter € at which the secondary bifurcations occur. A
fundamental goal raised by the experiment is to understand the m — 1 — m and the
m — m — 1 transitions. It would also be interesting to see how far simple amplitude
equations may be used to describe the nonlinear regimes. Direct numerical simulation
of the system may well be the next step towards mapping out parameter space. This
endeavour is strongly recommended.

In terms of other theoretical enterprises, electroconvection in an eccentric geome-
try and electroconvection in the presence of an oscillatory shear are challenging and
interesting candidates. The former, considering the utter lack of symmetry, may
be best left to numerical simulation or perturbatively explored for small degrees of
off-centering. Significant new phenomena may be expected when the degree of off-
centering is large. See Appendix F for further comments.

Electroconvection in annular geometry in the presence of an oscillatory shear is
certainly an interesting project. It is likely to have important implications on the
stability of the fluid film. The attraction of an oscillatory shear is that the base
state flow is now time-periodic as opposed to stationary as was the case with the
Couette flow. Furthermore the shear flow profile for the oscillatory shear is markedly
different from the Couette shear profile. The oscillatory shear profile is dependent
on P suggesting that the electroconvective flows that ensue will be more strongly
dependent on nonlinear interactions. The current theoretical model can quite easily
be modified to include an oscillatory shear and subsequently a linear stability analysis
can be performed. See Appendix F, Section F.2 for further details. Finally, the
current theory can be generalized, a step at a time, to take into account the more
complicated effects that are present when anisotropic liquid crystal phases are used.
These effects originate from the spontaneous polarization in smectic C* liquid crystals,
the anisotropic electrical conductivities and dielectric properties as well as orientation

dependent elastic torques.
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Chapter 6

Afterword

‘‘In going where you have to go, and doing what you have to do,
and seeing what you have to see, you dull and blunt the instrument
you write with. But I would rather have it bent and dull and
know I had to put it on the grindstone again and hammer it into
shape and put a whetstone to it, and know that I had something

to write about, than to have bright and shining and nothing to

say, or smooth and well-oiled in the closet but unused.

Now it is necessary to get to the grindstone again.’’

Ernest Hemingway
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Appendix A

Colourimetric Determination of

the Film Thickness

In Chapter 2, it was indicated that the film thickness was measured by observing
its colour under reflection. This Appendix, by recounting a standard calculation,
describes how the film thickness can be inferred from its colour under reflection in
white light. Since there are several different colour systems|[1] currently in use, it is
best to introduce some definitions from Gunter Wyszecki’s chapter on colourimetry
[2].

Colour is the characteristic of a visual stimulus by which an observer can distin-
guish differences between two fields of view resulting from differences in the spectral
composition of the stimulus. Primary Colours are the colours of three reference lights,
often red, green and blue, by which nearly all other colours can be produced by addi-
tive mixing. The Commission Internationale de 1’'Eclairage (CIE) 1931 colourimetric
system, which is often the standard in calculations of this sort, uses the non-real
primary colours X, Y and Z. Tristimulus Values are the amounts of each of the three
primary colours that when mixed additively give the desired colour. Colour-matching
Functions are the tristimulus values at each wavelength of the stimulus for a fixed ra-
diant flux. The CIE 1931 Standard Colourimetric Observer uses the colour matching
functions (spectral tristimulus values) Z(A), T(A) and Z(A\). Chromaticity Coordi-

nates are the ratio of each tristimulus value to the sum of the three tristimuli values.
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Hence, only two of the three chromaticity coordinates are independent. Specifying
the chromaticity coordinates of a stimulus then specifies the colour of the stimulus.
The objective is to determine the chromaticity coordinates of the reflected light from
the film. Given a colour-stimulus function ¢(A), it follows that the tristimulus values

are

The constant k£ is a normalizing constant. In practice the integrals in Eqn. A.2 are

replaced by the discrete sum

The chromaticity coordinates (z,y, z) are then

X Y A

_ _ - -4 A3
"TXyv+z VT x3vyz T X+v+z (A.3)

The colour-stimulus function ¢(\) for the experimental situation is the spectral
intensity of light reflected from the film. The spectral intensity of the reflected light
can be calculated as a function of the film thickness given the spectral intensity of
the incident light, the index of refraction and the angle of incidence. For optically
anisotropic materials, there are added complications. However, for smectic A where
the optic axis is normal to the film and for normal incidence the well known expres-
sions for reflectivity can be used. Following Sirota et al. [3] closely, let I4(\) be the
incident light intensity (incident colour-stimulus function), then the reflected light in-

tensity (reflected colour-stimulus function) ¢(A, N) off a film with N layers (let each
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layer have thickness ), at normal incidence and index of refraction n is given by

Fsin’a
AMN) =T (\)——mM— A4
where )
2T 4R 1—n
=""IN F=—"_  R= . A5
TN (1-R) <1+n> (A.5)

The light source for illumination purposes was a Fostec EKE 8375 Tungsten-halogen
lamp that operates at a colour temperature that can be varied between 2000 - 3200K.
It was operated at roughly 3000K. The lamp is assumed to be a black-body radiator.
Thus the incident light intensity is given by

&

IO()‘aT) = )\5(602/,\'1" . 1)

where

1 =3.7415 x 107 Wm?, ¢, =14388x10?m K, 7T =3000K. (A7)

For 8CB, the layer thickness [ = 3.16 nm [4] and the index of refraction is taken to
be n = 1.5375, [5] which is appropriate for the range of wavelengths in white light.
Using Eqn. A.6 the reflected intensity (colour-stimulus function) given in Eqn. A.4 is
calculated. Using this colour-stimulus function for each N, the corresponding tristim-
ulus value from Eqn. A.2 was calculated. The CIE 1931 colour-matching functions
are tabulated in several references [2]. The chromaticity coordinates for each N can
then be obtained from these tristimulus values. Since only two chromaticity coor-
dinates are required the pair (z(N),y(N)) are calculated. These are plotted in the
chromaticity diagram Fig. A.1 Whereas the chromaticity diagram is a standard tool
in colourimetry, it is convenient to have a direct map between the observed colour
and the number of layers. The tristimulus values X, Y and Z are transformed to
the tristimulus values R, G and B. The transformation equations between the XYZ

primary colours and RGB primary colours are well known [1] viz:
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Figure A.1: A chromaticity diagram for smectic A 8CB films. Chromaticity dia-
gram for a film illuminated with white light at a colour temperature of 3000K, for
2 < N <100 layers.
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X = +42.36460R — 0.51515G + 0.00520B
Y = —-0.89653R + 1.42640G — 0.01441B

Z = —0.46807R + 0.08875G + 1.00921B

Mathematica is used to create a plot of colour versus film thickness based on

these R, G and B values. In Fig. A.2 are given colour plots of observed colour

versus film thickness. Most of the experiments were performed with films between

25 and 85 layers thick. Over most of the middle of this range, the film thickness

can be determined to within +2 layers, while close to the ends of the range a more

conservative determination of within £5 layers was used.

0 20 40 60 80 100

Number of Layers

40 50 60 70

Number of Layers

Figure A.2: Colour charts for smectic A 8CB. These two plots are colour charts
for smectic A films of 8CB under reflection in white light. The abscissa is the film

thickness measured in numbers of smectic layers.
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Appendix B

Cylinder Functions

B.1 Expansion functions for the stream function

The standard methods of Sturm-Liouville theory are exploited to determine a set
of expansion functions for the stream function. Since the stream function ¢,,(r) is
constrained by rigid boundary conditions at » = r; and r = r, and obeys Eqn. 3.36,
it can be expanded in the eigenfunctions of the square of the Laplacian operator.[1]

Hence, the eigenfunctions sought are defined by the eigenvalue relation
r2

2\ 2
(D*D - m—) Conin = B Conin - (B.1)

The boundary conditions are C,,.,,(7;) = Cpin(70) = 0 and DC,,.,(1;) = DCppon (1) = 0.
The desired solutions of Eq. B.1 are

cm;n(r) = Jm(/gmn'r) + anYm(ﬂmnT) + CmnIm(ﬂmnT) + DmnKm(ﬁmn’r) ) (B2)

where J,, and Y,, are the Bessel functions of order m, I,,, and K,, are the modified

Bessel functions of order m[2, 3]. The parameters [3,,, are successive solutions of the
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secular equation det M(3) = 0, where

Jn(Bri)  Yu(Bri)  Ln(Bri) Kon(Brs)
M(,B) _ Jm(ﬂro) Ym(ﬂro) Im(ﬂro) Km(ﬁro) 7 (B.3)
Jm—1(57‘i) Ym—l(/BTi) Im—l(/BTi) —Km—l(ﬁﬁ)

Jm—l(/BTO) Ym—l(ﬂro) Im—l(/B’ro) _Km—l(ﬁro)

and (1, By, Cruny Dinn) s the eigenvector corresponding to eigenvalue zero for each
Bmn. At each radius ratio «, the (,,, and the eigenvector (1, By, Crny Dimn) were
calculated by using Mathematica routines.

The functions defined by Eq. B.2 form a complete, orthogonal set with orthogo-

nality condition

/ " dr 1ConinConip = N, Oy (B.4)

It is convenient to define functions[1] U, and V,,., by

U (1) = T (BrnT) + B Yo (Bmn) (B.5)

and

It follows that Cpn(7) = Upn (1) + Vinen (7) and
m? )
(D*D o 7,_2> Cm;n = - mn(z/{m;n - Vm;n) . (B7)

Using the definitions Eqns. B.5 and B.6 and the relation B.7, the normalization N,,

in Eqn. B.4 can be expressed quite simply and is given by

Ne

min

= 7"02Z/lglm(r0) — riQUi;n(ri) ) (B.8)
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B.2 Expansion functions for the potential

The potential perturbation ¥,,(r) satisfies homogeneous boundary conditions at the
inner and outer edges of the film and obeys Eqn. 3.37 so that an expansion in terms of
the eigenfunctions of the Laplacian operator may be sought. The relevant eigenvalue

relation is

m2
<D*D - T‘—Q) d)m;l = _anlz/}m;l ’ (Bg)
which has solutions

The parameters X, solve the secular equation det N(x) = 0, where

N(y) = | PO Yulra) ) (B.11)

Imn(XT0) Y (xTo)
and (1,b,,,) is the eigenvector corresponding to eigenvalue zero for each x,u,. At
each radius ratio «, the xm,, and the eigenvector (1,b,,,) were calculated by using
Mathematica routines. The functions defined by Eq. B.10 satisfy the orthogonality

condition

/ Od,r ,rwm;nd}m;p = Nwm;nénp; (B12)

where the normalization Ny, . is given by [2]

N¢m;n _ (B.13)

[ s~ o] + b [V )~ Yo )] ) |
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Appendix C

Exact Nonlocal Solution

This Appendix presents a solution that solves the nonlocal problem for the charge
density perturbation and is referred to as the exact nonlocal solution in contrast to
the local approximation introduced in Eqn. 3.53. The electrostatic Eqns. 3.38 - 3.39,
in which the charge density and electrostatic potential are related nonlocally, are
solved numerically. The solution that is presented here is due in large part to the
efforts of Vatche Deyirmenjian and Stephen Morris.

The first step in the present method is to find the appropriate expansion functions
of the field variables. Substitution of Eqns. 3.40 - 3.43 into Eqns. 3.37 - 3.39 yields
equations which can be solved for A, ¢mn, Ymmn, Yamn, and Qn.,. The stream
function ¢y, (1) = Cyin(r) as in Eqn. 3.48. The potentials V,,,.,, and U3, and the

charge density Q.,,, are further expanded as

Un(r) = zl: Vet Wma (1) 5 (C.1)
Usnn(r) = zl: Vet W3ma (1) (C.2)
Quin(r) = ; Uit @it (T) (C.3)

where 1, is given by Eqn. 3.49 and v, are complex coefficients. The functions

Y3my and g,y are computed as follows. After substituting Eqns. 3.42 and C.2 into
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Eqgn. 3.38, the resulting equation

2

m 0?

is solved numerically on a finite 2D grid by an over-relaxation algorithm|[1] for the
functions s, (r, 2), subject to the boundary conditions as in Eqns. 3.46 - 3.47 with
Y3mi(1,0) = YPpq(r) for r; < r < r, and 0 otherwise. Then Eqns. 3.39, 3.42, 3.43,
and C.2 - C4 give

qm;l('r) - _28Z¢3m;l(ra z)|z:0+ ; (CS)

where the differentiation is performed numerically. Figure 3.4 shows a plot of the
charge density g¢;1 at o = 0.5, and compares the numerical result to the approximate
one given by Eqns. 3.53 and 3.56 in Chapter 3. The approximate solution does not
contain the divergences which occur near the film’s edges, due to the sharp changes
in the derivative of the potential. These are a feature of the 2D model, which treats
the film and electrodes as having zero thickness.

By substitution of Eqns. C.1 and C.3 into Eqn. 3.37 and using
Dq© Dq©
Cm;n(T) - Z Cm;n<T>¢m;l wm;l 5 (CG)
1
results in an equation which is projected against 1)y, to obtain a matrix expression
that can be solved numerically for the complex coefficients vp,,p;.
Finally, substituting the various expansions in %,,; into Eqn. 3.36 and taking
the inner product with C,,,, yields a set of linear homogeneous equations for the

constants A,. This set is written as the matrix equation ), A,T,, = 0. For a

nontrivial solution, the compatibility condition is

Real(det [T]) = Imag(det [T]) = 0, (C.7)
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with the elements of the matrix T given by

(C.8)

The first two inner products of Eqn. C.8 can be simplified using Eqns. B.1 and B.7

and the matrix elements F,,.,, are
Conip (0) (0)
Foin = 3 vt 2 (D¥)as — (Dg )i ) ). (9
1

The real values of R and ~* which satisfy Eqns. C.7 and C.8 at each m define the
neutral stability boundary R = R (o, P, Re, m,~"). The critical parameters m., R,
and 4’ are obtained when R is minimized.

The numerical over-relaxation calculation used to solve Eqn. C.4 involved a grid
spacing such that there was a minimum of 160 points across the width of the film. For
the purposes of integration, the discrete values of ¢,,; found numerically from Eqn. C.5
were Chebyshev interpolated. The series in Eqns. C.1 - C.3 and C.6 were calculated up
to [ = 20. Three modes (n = p = 3) were employed in the compatibility conditions
Eqn. C.7 when the shear was zero. This was reduced to one mode (n = p = 1)
when the shear was non-zero. All r-integrations were performed by the Romberg
method.[1] Real(det [T]) = 0 (Eqn. C.7) was solved for R for a given trial 4* and
associated coefficients v,,.,; of the field variables. The R and trial vy, were employed
in the search for the 4* which satisfied Imag(det [T]) = 0. The new value of v* was
then used to find new coefficients v,,,.,;. The iterative cycle was continued until the

parameters and field variables had converged.

157



Bibliography

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in C, Cambridge University Press, Cambridge (1992).

158



Appendix D

Data at Atmospheric Pressure

In this Appendix are collected some results from experiments that were conducted
at atmospheric pressure. The majority of these experiments were performed prior
to the experiments at reduced ambient pressure. The experimental protocol, while
not identical, was similar to that described in Section 2.3. However, the analysis
of the data was quite different. In fact the current-voltage characteristics were not
modelled by the methods described in Sections 4.2 and Appendix E. In analysing the
data discussed here, the interest was in the primitive parameters such as the critical
voltage V. and the conductance ¢ at onset. These quantities are easily determined
from the current-voltage characteristics.

For the data obtained in the absence of shear, the dependence of the critical

voltage on the conductance given by Eqn. 4.9 is rewritten, a little differently, below:

Ln(j;—)eo\/ﬁl VO = \/ZZ’; c. (D.1)

Note that in the above expression, there is a single unknown parameter \/n3/o3. The
quantity on the left hand side of Eqn. D.1, here referred to as the scaled critical
voltage, is computed as follows. From the current-voltage characteristics are deduced
the critical voltage V¥ of electroconvection and the onset conductance c. The value of
R?(a) was the highest order numerical result of the nonlocal theory: see Table 3.1. In

Fig. D.1 is plotted the left hand side of Eqn. D.1 versus the onset conductance. The
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Figure D.1: A plot of the scaled V,° versus the onset conductance at several a.. The
line is a one parameter least squares fit to the data.

scaled critical voltages were obtained from 108 current-voltage characteristics at six
different . The data encompassed a broad range of conductivities and consequently
the range of Prandtl-like number P is equally broad. Despite the diversity in the
experimental parameters i.e. the different o, s, o3 and P, Fig. D.1 confirms the
linear relationship that is predicted by Eqn. D.1. And like Fig. 4.3, there is some
scatter in the data in Fig. D.1. Nevertheless, one is confident that the linear trend
is indicative that the geometric scaling with respect to the film thickness s and the
radius ratio « is properly accounted for. A linear fit to the scaled critical voltage
as a function of the conductance, for the entire range of data illustrated in the plot,
provides a measure of the viscosity of the film; the single unknown parameter. A

weighted least squares minimization leads to 13 = 0.19 #+ 0.05 kg/ms.[1] This value
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for the viscosity is within uncertainty identical to that determined in Section 4.3 and
is also of order 0.1 kg/ms as is expected from other studies.[2] Since this viscosity is
determined from onset data i.e. the film has no flow, it is unlikely that significant air
drag effects are incorporated into it. Nonetheless it is probable that when the film
has some flow, either Couette shear or electroconvection, the air drag will have more
significant effects.

Data from sheared films were treated as described in Section 4.3. The suppression
of the onset of electroconvection by the Couette shear is measured by Eqn. 4.10 which

is repeated below:

(D.2)

¢ (0, Re, P) = [M] 1= (M)z_l'

R () V(e c)

The first equality in Eqn. D.2 is used to calculate the suppression theoretically, while
the second, experimentally. The theoretical calculation is described in Section 3.4.
The experimental determination of € is as follows. At each radius ratio «, the critical
voltage for a sheared film V. (¢, Re) is determined by examining the current-voltage
characteristic. Due to the drift in the electrical conductivity and hence of the con-
ductance, it is unlikely that V?(c) can be determined from a single current-voltage
characteristic. Instead a current-voltage characteristic for a film in the absence of
shear and ‘nearby’ conductance is used and adjusted to determine V?(c) for the same
conductance as the sheared film. It follows that the experimental value of € can be
computed. The uncertainty in the suppression is due to the uncertainties in V,(c, Re)
and V?(c).

Each experimental measurement of the suppression is at a given radius ratio a, a
measured conductance and therefore Prandtl-like number P and a measure Reynolds
number Re. As discussed in Section 4.3, the experimentally accessible variables are
the radius ratio a and the Reynolds number Re. The Prandtl-like number P, due
to the slight drift in the electrical conductivity, varies slightly during the experiment.
As a result, the suppression € is measured at several « as a function of Re while

the P is simply measured and noted. Figures. D.2a through d plot the experimental
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measurements of the suppression at @ = 0.33,0.56,0.64 and 0.80 respectively. Since
the measurements at a given a span a range in P, a reasonable comparison to theory
can be made by computing the theoretical suppressions at the extremes of the range.
The test is then to see how well the two theoretical suppression curves contain the
data. In Fig. D.2a is plotted suppression data at o = 0.33. The data had Prandtl-
like numbers: 9.8 < P < 12.4. The dashed line is a local theory calculation of
the suppression at P = 9.8 while the dotted line is the local theory suppression at
P =12.4. In Figs. D.2b through d are three other data sets at different a. They too
are accompanied by the appropriate theoretical curves, with the details given in the
caption to the plot.

It is clear that the agreement is good for a« = 0.56 and 0.64 but is poor for
a = 0.33 and 0.80. More important, perhaps, is that the disagreement is systematic.
At a = 0.33 the measured suppression is lower than the predicted values while at o =
0.80 it is higher. This systematic discrepancy is attributed to the effect of air drag on
the film, since the suppressions at reduced ambient pressure, while agreeing no better
than those in Figs. D.2b and ¢, did not show any systematic trends in agreement.
In Figs. D.2a through d, the range of the Reynolds number is the same making it
quite easy to see the effect of the radius ratio on the suppression by observing the
scale of suppression axes. The (lack of) agreement shown in Figs. D.2a through d
is, as indicated in Section 4.3 fundamentally independent of the value of 73 that was
determined by fitting data to Eqn. D.1. Since the 73 dependence in the Re scaling
of both the theory (via P in Eqn. 3.20) and the experiment (according to Eqn. 4.3)
are proportional to 1/n3, any change in 13 multipies both by the same factor. This
simply results in a rescaling of the Re axis in Figs. D.2a through d, with no change

in the quality of (dis)agreement.
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Figure D.2: Comparison between experimental measurements of suppression and the-
oretical predictions. Shown are plots of the experimental measurements of the sup-
pression € versus the Reynolds number Re. In (a) @ = 0.33 and the data spans
9.8 <P <124, (b) a =0.56, 72.5 < P < 82.0, (¢) o = 0.64, 49.6 < P < 85.5 and
(d) @ =0.80, 62.8 < P < 92.4. The predictions of the local theory are calculated at

Reynolds number, Re

the respective minimum(dashed line) and maximimum(dotted line) values of P.
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Appendix E

Data Modelling

This Appendix presents the detailed procedure used to extract the best fit parameters
of the amplitude equation starting from the current-voltage characteristic. An exper-
imental run consists of current-voltage data that is, as described in Section 2.3, ob-
tained by first incrementing the applied voltage across the film followed by decrement-
ing the voltage. Hence the current-voltage characteristic, see for example Fig. 2.7,
consists of four regions which are acquired in the following order: a region where the
film is does not convect while the voltage is being incremented, a region where the
film electroconvects while the voltage is being incremented, a region where the film
electroconvects while the voltage is being decremented, and a region where the film
does not convect while the voltage is being decremented.

In the regimes where the film does not convect, the current is due to conduction. In
these regimes the film behaves ohmically. As a result, it is easy to calculate the film’s
conductance: ¢ = I/V, where (I,V) are the current-voltage data. However, in the
regimes that the film electroconvects, it is not possible from the current-voltage data
to determine the conductance. In the absence of drift of the electrical conductivity
there would be a constant conductivity and thus for each film a constant conductance.
The drift in the electrical conductivity results in a likewise variation of the film
conductance. Figure E.1 plots the conductance of a film during an experimental run.
On the abscissa is plotted the data acquisition index which is simply the order in which

the data was acquired. It is roughly proportional to time, but not exactly since the
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Figure E.1: The conductance of the film during a single current-voltage run. The
conductance can be measured while the film is conducting. While convecting, the
conductance is assumed to be given by linear interpolation.

duration spent at each measurement is different, see Section 2.3. On the ordinate,
in the conduction regimes, is the measured value of the conductance. The three
vertical broken lines demarcate the four regions in each current-voltage characteristic.
Between data acquisition indices 1 and 129, the film is not convecting and the voltage
is being incremented. Between data acquisition indices 130 and 168, the film is
convecting and the voltage is being incremented. Between data acquisition indices
169 and 224, the film is convecting and the voltage is being decremented. Between
data acquisition indices 225 and 338, the film is not convecting and the voltage is being
decremented. Note that the lengths of the four intervals are unequal and therefore

the duration in each regime is likewise different. The plot Fig. E.1 is not typical of the
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conductance during an experimental run. In fact, there is a great diversity in how the
conductance changes during the course of an experimental run and seems to depend
in some complex manner on how much time and therefore how much current was
transported through the film as well as on the state of flow of the film, the ambient
pressure and even the perimeter of the annulus, see Sections 2.3 and 4.2.

As the objective is to approximate the conductance of the film while it convects,
the simplest assumption is that the conductance varies linearly from the its value
before convection begins to the value when convection stops. In Fig. E.1 the solid
line, extending between data acquisition indices 122 and 233, shows the values that
the conductance is assumed to take during convection. Note that a few data points to
the left of index 129 are ignored and a few are averaged so that the conductance does
not interpolate between the boundary of the conduction — convection regime where
fluctuations are expected to be large. The foregoing also applies to the convection —
conduction boundary. The residual error after the linear interpolation is not known
but it is certainly less than the intrinsic error in assuming a constant conductivity.
By this procedure, for every current-voltage measurement, a corresponding conduc-
tance, ¢ can be determined. The augmented data at each acquisition index is then
(V,I,Alc).

Assume that a critical voltage V. has been determined; say it takes a value of V'
somewhere between the values of V' at acquisition indices 128 and 129. Then this
critical voltage corresponds to a conductance somewhere between the values that the
conductance assumes at indices 128 and 129. In Section 4.2 it was explained that the
drift in the electrical conductivity implies a drift in the critical voltage, see Eqn. 4.7.
Combining Eqns. 4.1 and 4.7, the critical voltage for a uniform film of thickness s

and radius ratio a can be expressed as

Vi(e) = \/57737?,C In(1/a) ¢ ' (B.1)

27e€n2

It is crucial to note that the critical voltage is not constant during an experimental

run! Since the conductance drifts, so does the critical voltage. Then what precisely
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does one mean by the critical voltage? Whether a film is convecting or not, the critical
voltage for the film at that moment is none other than that voltage which would have
to be applied so as to make that film marginally unstable. However, the critical voltage
that is deduced from the current-voltage characteristics is in fact unique and is the
voltage at which the conduction state lost stability to convection. The distinction
should not be lost, the critical voltage is by definition a potentiality, however in the
experiment it is an actuality. Henceforth, the critical voltage determined from the
experimental current-voltage measurements will be denoted VI and the corresponding
conductance c'. If (c,V]) have been deduced from the current-voltage data, then
the critical voltages V.(c) can be determined from Eqn. E.1 and the measured and
interpolated values of the conductance. As a result the augmented data at each
acquisition index is then (V,I,Al, ¢, V,).

There are three ingredients that are required to augment the raw data from
(V,I,AI)to (V,I,Al,c,V,); a critical voltage and conductance pair from the current-
voltage data (c, V) and the conductance of the film during the experiment. In
practice, the following algorithm was employed. It is easy to ascertain bounds on
the critical voltage by observing the current-voltage characteristics, see for example
Figs. 2.7a and b. Each current-voltage characteristic was observed by-eye and two
voltage intervals were chosen. The first interval &; contained the critical voltage
at which the conducting state becomes marginally unstable to the electroconvecting
state. The second interval &y contained the voltage at which the convecting state
becomes marginally unstable to the conduction state. A guess at the critical voltage
VI e Qp and a voltage V.Y € J, are chosen at random by use of a suitable uniform
deviate random number generator[1]. The conductances are then determined for the
conduction regimes V' < V* and V < VY. A linear interpolation between the two
regimes is effected as described earlier. The conductance ¢" corresponding to the
randomly chosen critical voltage can then be determined. With these ingredients;
(¢, V1) and the conductances, the raw data can be augmented.

For each of the 100 randomly chosen (V*, V.Y) there will be a corresponding aug-
mented data set (V,I,Al,¢,V,). This data set is then transformed according to
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Eqgns. 4.4 and 4.5 for the reduced control parameter € and the convection amplitude

A, conveniently repeated below.

|4 I

e:<70>2—1, A=yn=y[4 -1, (E.2)

Following standard procedures for handling measurement errors, the augmented data
set is transformed to the set (¢, A, AA). The relevant amplitude model equation given

by Eqn. 4.6 is rewritten more conveniently as
€A =gA®>+hA® — f. (E.3)

The transformed data is also expressed after another transformation as (A, €A, A(eA)).
The dependent variable €A is fit as a function of A given by the amplitude model
Eqgn. E.3. In this model A > 0 and f > 0. The fit procedure is a Levenberg-
Marquardt nonlinear routine.[1]. Whereas A(eA) = €AA, it is found more useful to
use A(eA) = \/eAA for greater sensitivity of the fit to the region € ~ 0. The re-
sult, consisting of the identifiers (V, V.Y) and the fitted parameters (g, h, f) for each
augmented data set is collected as (V, V.Y, g, h, f,x,?), where x,? is the goodness
of fit statistic referred to as the chi-square per degree of freedom.|[1, 2] The degree
of freedom v = N — 3, where N is the number of data points and there are three
fit parameters. From the 100 such results, the lowest y,? is selected. The random
voltages (V,V.Y) for this set are denoted (V.",V."). New intervals 3, and Sy of
a tenth of the length of the original intervals &; and &5 respectively are now cho-
sen centered about (V;m, VCU). Another 100 selections are made at random in these
intervals and the fitting process is repeated. The best fit parameters are selected
by minimizing the x,? statistic. This randomly chosen voltages of this set are de-
noted (VJ,V}) and enable the transformation: (V,I,AI) — (A, eA,A(eA)) by the
procedures outlined above. Also corresponding to this set are the best fit parameters
from the Levenberg-Marquardt nonlinear fit to Eqn. E.3 which are simply denoted as
(g, h, f). The method employed in the above fitting procedure is to a priori constrain
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the two fitting parameters (V/,V¥) and fit the three parameters (g, h, f). By the
Monte-Carlo method of using many instances of (V/*,V.Y), a 3-parameter nonlinear
fit is used to determine the five best fit parameters for what would be an otherwise
unwieldy 5-parameter nonlinear fit.[1, 3].

Often it was deemed necessary to restrict the fit to a neighborhood of € ~ 0. There
are two compelling reasons for this. Firstly the amplitude equation models are valid
only for € < 1 and secondly the shorter the range of € the less the overall impact the
uncorrected part of the drift in the data would have on the results. As a consequence,
more often than not, only the data acquired with increasing voltages or equivalently
increasing € was fit. Thus there are four parameters of interest (V.I, g, h, f), however
all five parameters are needed to transform the raw data.

Finally, it remains to determine the uncertainties on these best fit parameters.
The uncertainty AV is taken to be the standard deviation of a uniform deviate or
uniform probability distribution on the interval ’. The uncertainties (Ag, Ah, Af)
are determined by a Monte-Carlo bootstrap method.[1] The data set (A, eA, A(eA))
corresponding to the best fit parameters consists of say N measurements. The Monte-
Carlo bootstrap method entails choosing N data points at random and with replace-
ment from the data set (A, eA, A(eA)). Each of these instantiations, a subset of the
best fit data, is fit by the Levenberg-Marquardt method and the results (g, i, f, x,?)
are collected. A total of 500 instantiations are modelled. A probability measure based
on the chi-square statistic proportional to e 3% s computed for each data subset.
The probability measure is normalized over the 500 data subsets and a weighted
standard deviation of the parameters (g, h, f) is calculated. These weighted standard

deviations are measures of the uncertainties (Ag, Ah, Af).
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Appendix F

Some Future Investigations

F.1 Electroconvection in an Eccentric Annulus

This Section reports results of some of the preliminary investigations into electrocon-
vection in an eccentric annulus. A schematic is shown in Fig. F.1. The outer electrode
is supported on a translation stage allowing the investigation of electroconvection in
annuli with differing degrees of off-centering. In a centered annulus, the centers of
the circles that define the edges of the inner and outer electrodes are coincident. A
measure of the off-centering is given by the distance of the separation between these
two centers. In dimensionless units, where lengths are measured in units of the film
width in a centered annulus, r, — r;, the dimensionless separation [ varies from zero
in a centered configuration to 1 in the extreme case where the electrodes touch.

The methods are similar to those in Chapter 2. The film can be drawn with
the electrodes in a centered or eccentric configuration and it is quite easy to change
the degree of off-centering without changing the film thickness. The preliminary
results discussed here were obtained at atmospheric pressure and at reduced ambient
pressure. In Fig. F.2 is shown a pair of current-voltage characteristics at radius ratio
a = 0.80 but with different extents of off-centering. The data displayed here were
obtained at atmospheric pressure. The data, which are quite similar to that of a
centered annulus, displays a conduction region which is ohmic. A threshold voltage

or a region where there is a sharp increase in the current can be easily identified and is
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Figure F.1: A schematic of the eccentric annular geometry. The centers of the circles
that define the inner and outer electrodes are a nondimensional distance [ apart. The
polar coordinate system has its origin at the center of the inner electrode.

related to the rapid increase of electroconvection. The imperfect bifurcations implicit
in the current-voltage data shown appear to be continuous and there is no hysterisis
in the data. The greater the off-centering, the greater the current carried, the lower
the threshold voltage and the more imperfect the bifurcation appears.

The resistance of the film can be obtained from the ohmic part of the current-
voltage data. At [ = 0.26, the film’s resistance is approximately 22% larger than
at [ = 0.55 for the data shown in Fig. F.2. This difference is not wholly related to
the drift in the electrical conductivity of the liquid crystal. As can be seen from the
slightly different resistances of the film on the forward and reverse runs, drift in the
electrical conductivity can account for about a change of 3% per current-voltage run.
The drift thus accounts for a modest 6% increase in the resistance, yet the data shows
a variation of 22%. This apparent disparity can be explained when one realizes that a

uniform film in an off-centered annulus has a different resistance than a uniform film

173



i & ]
L 4 Increasing voltage with 1=0.26 ;5 ]
7 | x Decreasing voltage with 1 = 0.26 5
- © Increasing voltage with 1=0.55 ; 1
6 + Decreasing voltage with 1 =0.55 38 8
[ 33 &53’
=5 $ X
<C i 33 55
N ] %"
= 4 S X .
= ) X
O | 5 X"
O 35 8
2 ¢ & x® ]
[ 33 X
[ &5 %
i -(|3$ 5&
1 = $$ KK ]
- xx
i §§§K
[ Qﬁgﬁ
0 [at® §
0 5 10 15 20

Voltage (volts)

Figure F.2: A representative plot of current-voltage data from an eccentric annular
film. Plotted are current-voltage characteristics for a film with radius ratio a = 0.80
but with off-centering given by [ = 0.26 and [ = 0.55.

of the same thickness in an annulus of dissimilar off-centering. After all, resistance
is a property of geometry as well as conductivity. Before sparingly presenting an
elementary but tricky calculation of the resistance of an eccentric annular film, it is
noted that the resistance of a film at o = 0.80 and [ = 0.26 is 15.4% larger than the
resistance of a film of the same thickness and conductivity at a = 0.80 and [ = 0.55.
This geometrical difference and the drift in combination account for the changes in
the film resistances in Fig. F.2.

Since any further analysis will require calculating the resistance of a film in an

arbitrary eccentric configuration, the necessary formulation is presented here. Con-
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sider a film of uniform thickness s, that spans the eccentric region between two circles
of radii r; and 7, shown in Fig. F.1. The centers of the two circles are a distance [
apart, with distances nondimensionalized by d = r, — r;. When [ = 0, the annulus
is centered. In a polar coordinate system with origin at the center of the circle with

radii r;, and with the radius ratio o = r;/r,, it is easy to show that

Tin = ) (Fl)

l—«

1 2
Tour = lcosO + \/(1 ) — [2sin%0 , (F.2)

—

where 7, and r,,; parametrize the edges of the inner and outer electrodes respectively.
The space between the two circles can be smoothly filled by defining a general curve

whose radial position is given by
7‘(9, 6) = Tip + 6(T0ut - Tin)y (F3)

where § is a variable which satisfies 0 < § < 1. A differential element dr(0) is defined

as

dr(6)

If

r(6,0 4+ d§) —r(6,0)
(Tout — Tin)do. (F.4)

With the bulk conductivity denoted by o, an element of resistance d?R is defined by

1 dr(9)

d’R = — }
osr(0) db

(F.5)

Integration over the azimuth € and the radial coordinate (in actuality over &) gives

the resistance R of the film:
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Figure F.3: The resistance of an off-centered film. The dimensionless resistance versus
the off-centering parameter for annular films with a = 0.33 and a = 0.80.

where F(a,l) is the numerical integral

—1
171 - N (1 —a)\?
F(a,l) = / [w cos (2mp) — 1 —l—\l <—> - <w> sin2(27r<p)] dep.
0 o} o o}
(F.7)
By use of Eqns. F.6 and F.7 and from the experimental determination of the film
resistance, it is possible to apply much of the analysis developed in Section 4.2. In
the simpler case of a centered annulus i.e. | = 0 Eqn. F.7 simplifies considerably

resulting in a closed form expression for the resistance:

R(a,0) = 5 ! 1og<l). (F.8)

woS (0%

It is at a first glance, perhaps striking that the resistance of the annular films

of the same thickness whether centered or otherwise, are independent of the radial
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dimensions and vary only with the geometric proportions « and [. A little thought
makes clear why this is so. A plot of the dimensionless resistance versus the off-
centering variable [ is given in Fig. F.3. Note the resistance is a maximum when
the annulus is centered and vanishes for complete off-centering. Also note that the
resistance varies inversely with the radius ratio.

A preliminary investigation was also conducted into eccentric electroconvection
experiments in the presence of shear. The simple Couette shear profile is increasingly
perturbed as [ increases from zero. The shear profile is significantly different from the
Couette profile for large [ and large rotation rates w of the inner electrode. A sys-
tematic study of the correlation between the shear profile and electroconvection may
prove informative. Figure F.4a illustrates the effect of shear on the current-voltage
data at a = 0.8 and [ = 0.26. It is unlikely that at this rather large radius ratio
and weak off-centering that the shear profile is significantly different from Couette
flow. The data displayed were obtained at atmospheric pressure. It is evident that the
shear lengthens the conduction regime with rapid electroconvective flow suppressed to
higher voltages. The stronger the shear the greater this suppression, however the rela-
tive degree of suppression is likely to be a function of off-centering. There is currently
no systematic study of this suppression, experimental or theoretical. Figure F.4b
plots the current-voltage characteristics of an eccentric annular film at o = 0.33,
[ = 0.55 and at a reduced ambient pressure ~ 1 torr. In spite of the drift in conduc-
tivity, it is evident that higher shears lead to increased suppression even though at
the smaller radius ratio and greater off-centering, the shear profile is hardly expected
to resemble the Couette profile. It is however, the relative suppressions that are likely
to be very different. In the few experiments conducted in an eccentric geometry, at P
and Re numbers comparable to the study of the centered annuli, there is no evidence
of strongly subcritical behavior.

From this brief study of electroconvection in freely suspended fluid films in off-
centered annuli, it is clear that some further experiments should be dedicated to
making a simple study of the relative rates of suppression at a few « and [. More

interesting however, is the study of the nature of secondary vortex changing transi-
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Figure F.4: Representative plots of the current-voltage characteristics of sheared films
in eccentric annuli. Shown are current-voltage characteristics of electroconvection in
eccentric annuli at a few different rates of shear. In (a) a = 0.80 and [ = 0.26. In (b)
a = 0.33 and [ = 0.55. While the plot in (a) was obtained at atmospheric pressure,
the plot in (b) was at a reduced ambient pressure of ~ 1 torr.
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tions. Do they always occur in the region of the film which is most narrow? Are these
transitions ever subcritical? Other interesting questions concern the effect of the ap-
pearance of the stagnation point in the shear flow of a small « and large | annulus on
the flow pattern of electroconvective flow. Theoretical work may also be warranted,
however computational simulation may be the fastest route to an exploration of the

parameter space.

F.2 Electroconvection with Oscillatory Shear

Having studied the effect of a circular Couette shear flow on electroconvection, it
is natural to ask how other shear flows alter electroconvection. Circular Couette
flow is very special in certain respects. Specifically, it is a steady state flow which
is independent of the fluid viscosity, see for example Eqn. 3.19. The viscosity and
hence the Prandtl-like number P do not appear in Eqn. 3.19 which describes the
azimuthal velocity of the fluid under Couette flow. This absence of the viscosity can
be seen to originate from the fact that the total frictional torque on any ring of fluid
is zero, see for instance Ref. [2]. Since it has been established in Chapter 3 that
arbitrary independent rotations of the inner and outer edges of the annulus can, by
changing one’s frame of reference, be transformed away, one may question as to how
other mechanically imposed shears can be studied. The one that is discussed here is
a time-dependent shear that is imposed by sinusoidally oscillating the inner edge of
the annulus in the theory or the inner electrode in the experiment. Such a shear will
hereafter be referred to as an oscillatory shear.

The experimental apparatus, as described in Section 2.2, is adequate for imple-
mentation of this oscillatory shear. The theoretical treatment would require some
generalization to time-dependent shears. It should at once be clear that while the
steady state Couette shear is dependent only upon the rate of rotation of the inner
electrode, the time-dependent oscillatory shear depends on both the amplitude and
frequency of sinusoidal oscillation of the electrode. As shall be established below, the

time-dependence necessarily implies a dependence on the viscosity, unlike the Cou-
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ette shear flow. Even though the time-dependence of the oscillatory shear is simple
it has significant consequences on the shear profile and therefore one expects impor-
tant effects on electroconvection. Like the Couette flow, the oscillatory shear is an
axisymmetric flow.

Determining the shear profile of the oscillatory shear is simply an exercise in
fluid mechanics or partial differential equations. Using the relevant electroconvection
length and time scales, the film width d and time scale €yd/o (see Section 3.2),
the oscillatory shear is described by a dimensionless frequency w and dimensionless
azimuthal velocity amplitude of the inner electrode Y. The Navier-Stokes equation

for the azimuthal dimensionless velocity Y(r,t) in polar coordinates is
Oy y<3—2’r 10y 1) | (F.9)
The boundary conditions at the inner and outer edges of the annulus are

Y (rs,t) = Toe™", Y(r,,t) = 0. (F.10)

Leaving out the details, the solution for the radial derivative of the streamfunction

0

osc 1S

0
% =—-"(rt)= {AJl(XT) + BN (X7r)|e™t, (F.11)
r
where
3/ W %
X = (¥
' <7D> !
B NG -
B = TolNl(XTz) mN]_(XTO)] s (F12)
__gMilr,)
A = le(xro)’

and J;(Ny) is the first order Bessel function of the first(second) kind.
The oscillatory shear is dependent on P and as a consequence, it is expected

that the P dependence of electroconvection under oscillatory shear will be markedly
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Figure F.5: A comparison of the Couette and Oscillatory shear profiles. A ‘snapshot’
of the shear profiles for Couette and Oscillatory shears in an annulus at a = 0.80.

different from that under Couette shear. Recall that in the theory, the expressions
regarding stability were simplified due to Couette shear satisfying D(D*Dgé(o)) = 0.
For the oscillatory shear this is not true and leads to different stability properties. It
is enlightening to compare the Couette and oscillatory shear profiles. A comparison
at @ = 0.80 is provided in Fig. F.5. Plotted are the steady state Couette profile
and a ‘snapshot’of the oscillatory shear profile at ¢ = 0. The parameters are chosen
such that the velocity amplitude of the inner electrode for the oscillatory shear is
identical to that for the Couette flow. The oscillatory profile is then dependent on
the X, or w and P. For the parameters chosen, the oscillatory profile is very different
from the Couette profile, in fact, there is in the oscillatory case a retrograde flow.
Keep in mind that what is illustrated in Fig. F.5 is only a ‘snapshot’ and the profile
oscillates in time. A preliminary and approximate theoretical work on the stability

properties indicate markedly different results from the Couette shear case, in fact there
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is some expectation that at high oscillation frequency the oscillatory shear flow would
be destabilizing to electroconvection. A more accurate analysis will be undertaken
by the author. Experimental work on the oscillatory system, which is quite easily

performable in the current apparatus, should be undertaken.

F.3 Measurement of Viscosity

One of the problems that was encountered in interpreting the experiments that were
performed was that the material properties of the liquid crystal with dopant were
poorly characterized. Whereas the electrical conductivity could be measured directly,
the viscosity was only indirectly determined, see Section 4.3. A direct measurement
of the viscosity is thus desirable. Since the oscillatory shear, unlike the Couette shear,
is dependent on the viscosity(see Equs. F.11 and F.13), it can be exploited to measure
the viscosity.

The experiment recommended is to suspend particles on a film while it executes
an oscillatory shear. It is expected that the particles will execute an oscillation
much like that depicted in Fig. F.6. In the experiment to determine the viscosity,
the protocol would be to determine the ‘angular spread’ of the particles at several
radial positions at a given amplitude and frequency of oscillation. Since it is likely
that experiment would be difficult to perform in a reduced pressure environment, the
effects of air drag can be subtracted away by considering the limit w — 0. Hence the
experiment would have to be performed at several w’s. The ‘angular spread’ or the
angular displacement can also be calculated theoretically. For instance if the chosen
experimental measurement is twice the amplitude 2Z(r) of oscillation as a function
of r, then one need only determine this from the expressions for the velocity field of
the oscillatory shear:

t=m/2
2Z(r)=2 - Y(r, t)dt, (F.13)
where Y (r,t) is given by Eqns. F.11 and F.13. Without doubt, the expressions will get

complicated, but they are comprised essentially of well behaved cylinder functions.

The details are left to the interested experimenter. A nonlinear fitting routine would
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Figure F.6: A schematic for measuring the in-plane viscosity. Measurements of the
angular deviation of particles suspended in the film at several different radii and
for various amplitude and frequency of oscillation will provide the necessary data to
obtain the in-plane viscosity.

be used to determine X and thereby with a knowledge of P through the knowledge
of the film conductivity and thickness, one would determine the viscosity. This is
a measurement that is highly recommended for it determines a heretofore unknown

material parameter.
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