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Solitary waves were produced in a narrow channel-shaped tank filled with water. Images of the
waves were taken at 100 frames per second as the wave propagated. Image analysis methods were
used to convert the images into position data for the water’s surface. This data was then compared to
the Korteweg-deVries (KdV) equation to determine if the waves being produced were KdV solitons.
Counter-propagating soliton collision were studied, as were collisions between one soliton and the
end of the tank. These were compared with the theoretical predictions of Su & Mirie [10] and the
experimental data of Maxworthy [9].

I. INTRODUCTION

Solitary waves are localized nonlinear waves that prop-
agate at a constant velocity and maintain their shape as
they travel. They occur in nature due to a balance be-
tween the non-linear properties of the medium and dis-
persion, and can be modelled by an exact solution to the
Korteweg-deVries (KdV) equation. Solitary waves retain
their initial velocity and shape after a collision with an-
other solitary wave, and are consequently referred to as
“solitons”.

During head-on collisions, the maximum run-up am-
plitude of the solitons is greater than the superposition
of the incident waves. After collisions, the trajectories
of the solitons experience a phase lag from the incident
trajectories. These phenomena have been studied ex-
perimentally in [9], theoretically in [10], and numerically
in [5].

The goal of this experiment is to determine whether
the solitary waves produced by our apparatus are indeed
KdV solitons, and to determine if the characteristic prop-
erties of run-up and phase-lag are observed during col-
lisions between two solitary waves and during collisions
with one solitary wave with the end wall.

II. THEORY

A solitary water wave propagating in the +x direction
can be modelled by an exact solution to the KdV equa-
tion [2].

In the laboratory frame, the KdV equation in physical
units is as follows:(
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where H is the quiescent water depth, h(x, t) is the eleva-
tion above the quiescent depth as a function of position
x and time t, and c0 =

√
gH where g is gravitational

acceleration.

The exact solution to (1) is found to be
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where h0 is the wave’s amplitude (see FIG. 1.), and the
speed U and width w are given by
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Note that the only free parameter in (2) is h0.

FIG. 1: A visual showing the parameters in equations (2)
and (3). Source: [1]

A. Collisions

1. Run-up

The maximum amplitude of two colliding solitary
waves is greater than the sum of the amplitudes of the
incident waves. Su & Mirie [10] found through perturba-
tion analysis, to third order, that the maximum ampli-
tude reached during collision is given by

εmax = εR + εL +
εRεL
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εRεL(εR + εL) (5)

where ε = h0/H is the dimensionless amplitude. The
subscripts R and L refer to the right and left waves re-
spectively and εmax is the dimensionless amplitude dur-
ing the peak of the collision.
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2. Phase-lag

Solitary waves exhibit a retardation in phase after a
head-on collision. Su & Mirie [10] show that the phase
lag after collisions is given by
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However, Maxworthy (see Figure 3 from [9]) showed
experimentally that the phase lag and the amplitude of
the incident waves have no correlation.

III. APPARATUS

The experiments described here were performed in a
channel-shaped tank filled with water. At one end of
the tank is the wavemaker, a motor powered paddle that
generates the solitary waves. At the other end is a wall,
off of which the solitons reflect. Images of the solitons
as they propagate down the wave tank are captured by a
120 fps camera. The water is coloured with red dye and
backlit by a 60 V LED light to aid in the surface detection
process. The region in which data for the propagating
solitons could be collected is just over one metre long.
The quiescent water depth can be set up to 10 cm without
risk of the water leaving the tank when solitary waves are
produced.

IV. METHOD

The images of the waves were cropped so as to re-
move everything except the water and the backlit region
(FIG. 2). The images were then analyzed pixel by pixel
to determine which pixels were red and which were not,
yielding binary data. The vertical pixel columns were
then scanned to determine where the red pixels met the
not red pixels, thus determining the location of the wa-
ter’s surface. A visualization of this data is shown in
FIG. 3. Two sources of systematic error that arise from
this method of data acquisition are parallax and wave
shadows. The error that arises from parallax is practi-
cally negligible, as can be seen by viewing an image of
a metre stick. However, when a wave propagates down
the tank it leaves a trailing residue on the front facing
wall of the tank (as can be seen in FIG. 2). Sometimes it
is possible to set the colour thresholds so not to include
this “shadow” in the edge data but other times it is not.

FIG. 2: Cropped image of solitary wave propagating down the
tank

FIG. 3: Visualization of the edge data describing the location of
the water’s surface obtained from FIG. 2

V. ANALYSIS

A. KdV Equation

Sets of images for solitons of various sizes with vari-
ous quiescent water depths were converted to edge data
using the methods described in Sec. IV. The time inter-
val between each pair of images was set to 0.01 seconds.
Each frame of a given set was fit to the exact solution of
the KdV equation (2). An example of such a fit is shown
in FIG. 4. The data was converted from pixel data to
physical units using a calibration image of a metre stick.
The systematic error that arises from this calibration is
small in comparison to other sources of systematic error,
namely the difference between the data and the KdV so-
lution.

From these fits, values for the amplitude h0, position
x0, and width w were extrapolated from the fit parame-
ters. A plot of the position x0 in relation to time was fit
linearly to determine the wave-speed U . All of the data
was then normalized so that properties of solitons propa-
gating along water of different quiescent depths could be
compared. Distance measurements (x0, h0, and w) were
normalized by H, speed U was normalized by c0 =

√
gH,

and time was normalized by
√
H/g.

FIG. 4: The data from FIG. 3. fit to the solution to the KdV
Equation (2)
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A plot of various dimensionless speeds in relation to the
dimensionless amplitude of the wave is shown in FIG. 5.
The green line shows the relationship between speed and
amplitude given by (4). A plot of various dimensionless
widths in relation to the dimensionless amplitude of the
wave is shown in FIG. 6. The green line again shows the
relationship between width and amplitude given by (4).

FIG. 5: Dimensionless speed plotted against dimensionless ampli-
tude. The green line shows the relationship predicted by (4)

FIG. 6: Dimensionless width plotted against dimensionless ampli-
tude. The green line shows the relationship predicted by (4)

Nine of the fifteen data points for dimensionless speed
plotted against dimensionless amplitude in FIG. 5 agree
with equation (4) within error, while only five of fifteen
points agree for dimensionless width plotted against di-
mensionless amplitude in FIG. 6. The poor quality of the
fit for the width data could be due in part to the effects
of the wave “shadow” described in Sec. IV.

B. Head-on Collisions

Head-on collisions were produced by sending a soli-
tary wave down the tank to reflect off the end wall, then
sending a second solitary wave to collide with the first,
as shown in the space-time plot (FIG. 7.).

FIG. 7: Space-time plot of two waves colliding head-on

1. Phase lag

Before and after the two waves collided, their positions
x0 and amplitudes h0 were calculated using the meth-
ods described in Sec. V A. The trajectories of the two
waves could then be plotted in the regions before and af-
ter the collision and the wave-speed and phase lag could
be determined. An example of such a plot is shown in
FIG. 8, where the wave coming from the right has di-
mensionless amplitude εR = 0.27 ± 0.02, the left wave
has dimensionless amplitude εL = 0.29 ± 0.02, and the
quiescent water depth is H = 7.2 ± 0.1 cm. The mea-
sured phase lags for the two waves shown in FIG. 8 are
∆θR = 11.9 ± 2.6 and ∆θL = −11.7 ± 1.4 cm. The
values for ∆θR and ∆θL that we obtain by plugging
εR = 0.27± 0.02 and εL = 0.29± 0.02 into equations (6)
and (7) are 2.77±0.06 cm and -2.70±0.06 cm respectively.
These are significantly smaller than the experimental val-
ues for ∆θR and ∆θL. Note, however, that the wave
with the smaller amplitude experiences a greater phase
lag, as predicted by equations (6) and (7). Also note,
that the experimental results of Maxworthy [9] do not
obey the theoretical predictions of Su & Mirie [10] given
by equations (6) and (7). A look at Figure 3 from [9]
shows that regardless of the amplitude of the incident
waves, the phase lag is just over 1.2 × H (Maxworthy’s
experiments were done only with two waves of equal
amplitudes). Considering that our incident amplitudes
were almost equal and our equilibrium depth was set at
H = 7.2 ± 0.1 cm, taking 1.2 × H yields ∆θ = 8.6 cm,
which is still less than the phase lag values we obtained,
but much closer. It is also worth considering that equa-
tions (6) and (7) desribe the phase lag long after the
collision has occurred. From [5] and [11], we know that
the phase lag is greater right after the collision than long
after the collision. It is possible that our wave tank is not
long enough to measure the phase lag far away enough
from the collision to agree with (6) and (7). Another
cause for discrepancies between our measured phase lag
and equations (6) and (7) could be that the right wave
is still experiencing effects of its collision with the end of
the tank.
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FIG. 8: εL (blue)= 0.29 ± 0.02, εR (orange)= 0.27 ± 0.02

(a) The dimensionless amplitude εL = 0.29 ± 0.02 before,
during, and after the collision

(b) The dimensionless amplitude εR = 0.27 ± 0.02 before,
during, and after the collision

FIG. 9

2. Run-up

Since the frames and corresponding edge data during
the collision are not modelled by equation (2), the am-
plitude during the collision had to be determined by sim-
ply taking the maximum height value in the data for
the water’s surface (as opposed to taking the h0 term

of the fit to (2)). The maximum run-up data for the
εR = 0.29 ± 0.01 and εR = 0.27 ± 0.01 waves from
Sec. V B 1 are shown in FIG. 9. Notice how in FIG. 9b,
after the collision the amplitude dips below its incident
amplitude then returns to the incident amplitude. Ac-
cording to [5], this phenomenon occurs in the numerical
solution of two colliding solitons. More specifically, the
amplitude is supposed to dip below the incident ampli-
tude then return to the incident amplitude asymptoti-
cally (see Figure 4 from [5]), however our wave tank is
too small and our amplitude measurements are too im-
precise to witness any asymptotic behaviour. In FIG. 9a,
the image region is too small to detect the amplitude re-
turning to its incident amplitude after the collision.

Since we are considering the same collision as in
Sec. V B 1, again we have that εR = 0.27 ± 0.02 and
εL = 0.29 ± 0.02. The measured run-up εmax ob-
tained by analyzing the edge data of the collision is
εmax = 0.73 ± 0.02. The value obtained for maximum
run-up by plugging εR = 0.27±0.02 and εL = 0.29±0.02
into equation (5) is 0.62±0.04. Our experimental mea-
surement for run-up exceeds the theoretical prediction for
run-up from [10], albeit not as much as our measurement
for phase-lag exceeded the theoretical prediction. How-
ever, if we again compare our experimental result to Max-
worthy (see Figure 4 from [9]) we find that our results
our in agreement: two waves colliding, each with dimen-
sionless amplitude slightly less than 0.3, should produce
a maximum run-up between 0.7 and 0.8.

3. Collisions with the end of the tank

Reflections with the end of the tank were analyzed us-
ing methods similar to the analysis done on head-on col-
lisions. When a solitary wave collides with the end of
the wave tank, this can be interpreted as the wave un-
dergoing a head-on collision with its reflection. Setting
εR = εL ≡ ε in equation (5) yields

εmax = 2ε+
ε2

2
+

3

4
ε3. (8)

Setting εR = εL ≡ ε in equation (6) yields

∆θ = H
(ε

3

)1/2(
1 +

7ε

8

)
(9)

FIG. 10 and FIG. 11 show the run-up and phase-lag
of a solitary wave with initial amplitude ε = 0.54± 0.01
colliding with the end wall. The water depth is 6.6±0.1
cm.

The maximum run-up amplitude is measured (from the
data shown in FIG. 10) to be 8.4±0.1 cm,
i.e. εmax = 1.27 ± 0.03. Plugging ε = 0.54 ± 0.01 into
equation (8) yields εmax = 1.34±0.05. These values agree
within error. It is interesting to note that while our data
for head-on collisions between two waves did not agree
with the theoretical prediction for run-up, our data for
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FIG. 10: The dimensionless amplitude ε = 0.54 ± 0.01 before,
during, and after colliding with the end of the tank

reflections off the end of the tank did agree. This also oc-
curs with Maxworthy’s experimental data, as can be seen
in Figure 4 of [9]. Note how the amplitude after the colli-
sion is less than the incident amplitude (FIG. 10). Again,
unfortunately the region in which data can be collected
is too small to observe if the amplitude asymptotically
returns to its initial value. It is possible that since this
wave is interacting with the end wall, the dissipative ef-
fects of the collision mean that the amplitude after the
collision will remain at this lower value.

The phase lag of FIG. 11 is measured to be 4.2±0.1
cm. Plugging ε = 0.54± 0.01 into equation (9) gives us
∆θ = 4.1 ± 0.1 cm. These values also agree. Note that
there is an additional source of systematic error stem-
ming from the measurement of the position of the end
wall. The wall’s location was determined by inspecting
the uncropped images. The error in its location in the
image is 2 pixels which corresponds to about 0.1 cm.
A change in the position of the end wall directly corre-
sponds to a change in the phase lag measurement, so if
the wall’s position was actually 0.1 cm to the left, the
phase lag would be 0.1 cm larger. Hence, the measure-
ment of the phase lag is actually 4.2±0.1±0.1 cm.

VI. SUMMARY & CONCLUSIONS

Solitary waves were produced in a narrow channel filled
with water. The position of the surface of the water as
the wave propagated down the channel was determined
using image analysis. The speed, width, and amplitude
data collected for waves of various sizes at various quies-
cent water depths were compared with the relationships
predicted by the exact solution to the KdV equation. It
was found that the speed obeyed the KdV equation to a
reasonable extent. And although the width decreased as
amplitude increased, it did not fit the relationship pre-
dicted by the KdV equation. This could be due to the
KdV equation not being an adequate model for the waves
produced in this experiment, or due to systematic errors

FIG. 11: Trajectory of an ε = 0.54 ± 0.01 wave reflecting off the
end of the tank. The blue dots are data, the solid horizontal line
is the position of the wall, and the dashed lines show the trajec-
tories of the data as well as the trajectory of an elastic collision
off of the wall. The water depth H is 6.6±0.1 cm.

that arise when converting the images into edge data of
the water.

Collisions between solitons were then studied, first be-
tween two seperate solitary waves then between a single
solitary wave and its reflection when it collides with the
end wall of the wave tank. Although the two solitons
colliding head-on qualitatively exhibited the phase shift
and run-up properties expected of colliding solitons, the
measurements of these phenomena did not agree with
the theoretical predictions (equations (5), (6), & (7)) of
Su & Mirie [10]. However, neither did Maxworthy’s ex-
perimental data [9], with which our run-up measurement
agrees. It is possible that the region in which wave data
is collected is too small to properly witness properties of
the two incident waves far away enough from the colli-
sion.

The run-up and phase lag of a single soliton colliding
with the end of the tank did agree with the predictions
of [10]. Maxworthy’s experimental data for collisions
with the end wall agreed with the theoretical predictions
also. However, more recent experiments on head-on soli-
tary wave collisions, such as [5] and [12] have gotten the
experimental data and theoretical predictions of two col-
liding waves to agree as well.
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