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We present an experimental investigation of the phenomenon of fractal viscous fingering: the
interface instability associated with a bubble of a less viscous fluid displacing a more viscous fluid in
a Hele-Shaw cell. We image radially expanding bubbles throughout their growth with a high-frame
rate digital camera. This allows us to introduce a novel application of linear stability analysis in
which the number of fingers for the fastest growing mode of the instability is computed at many
points throughout the initial growth of the bubble, taking into account the variation in time of the
dimensionless quantities Ca and R/b. Thus, in addition to using only initial values, we predict the
number of fingers present once finite-sized fingers form by integrating the growth rates of all relevant
modes throughout the linear regime. We find that, in the regimes studied, existing linear stability
analyses fail to adequately predict the number of fingers that will emerge from an expanding circular
bubble.

Furthermore, we use high speed image data to study the overall magnitude of the effects of
shadowing and tip splitting by examining how the number of fingers on the boundary of a bubble
changes throughout its growth in the nonlinear regime.

We explore these phenomena for flows described by a Reynolds number in a range between
Re ≈ 0.03 (slow growth, narrow plate spacing), and Re ≈ 3.4 (fast growth, wider plate spacing).

I. INTRODUCTION

FIG. 1: A composite image of the boundary of a round
bubble as it grows in a Hele-Shaw cell, exhibiting

viscous fingering behaviour.

A. Laplace instability in Hele-Shaw flow

Fluids often exhibit nonlinear behaviour when the so-
lutions to the equations governing their flow are unstable.
Here, we explore one such instability that occurs in Hele-
Shaw flow, when a fluid is confined between two narrowly

separated rigid plates. Hele-Shaw flow can be used as a
simplifying model for the flow of viscous fluids in porous
media, as occurs, for instance, in the extraction of oil
from porous rock [1]. These circumstances are typically
said to give rise to low-Reynolds number ’Stokes flow’ [2].

Reynolds number is the familiar dimensionless param-
eter characterizing flow [2]:

Re =
ub

ν
(1)

where u is the characteristic speed of the flow, b the char-
acteristic length (in Hele-Shaw flow, the spacing between
the two plates), and ν the kinematic viscosity. Even
at relatively high speeds, low Reynolds number can be
achieved in Hele-Shaw flow due to very narrow plate spac-
ing.

The phenomenon of fractal viscous fingering (or radial
viscous fingering) occurs in Hele-Shaw flow when a less
viscous fluid forms a bubble by displacing a more vis-
cous fluid. The source of the less viscous fluid is confined
to an area much smaller than the Hele-Shaw cell itself,
and the apparatus is radially symmetric about the axis
perpendicular to the cell at this source (taken to be the
z-axis), leading to a moving fluid-fluid boundary that is
initially circular [1, 3–5]. This is a variation on the prob-
lem originally explored by Saffman and Taylor, in which
the fluid-fluid boundary is linear, and, spans the width of
a canal, down which the boundary travels as it is pushed
by the displacing fluid from the source [6].

Under these conditions, the presence of two rigid
boundaries with no-slip conditions (the top and bottom
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FIG. 2: (a) Air displaces oil in a Hele-Shaw cell. (b) Pressure gradients in the horizontal plane give rise to a fluid
velocity with a magnitude that is parabolic in z, peaked half-way between the plates. Diagrams courtesy of Morris

[5].

plates of the Hele-Shaw cell) significantly enhances the ef-
fect of viscosity, such that the viscous term of the Navier-
Stokes equations of motion for fluids is said to dominate
over the inertial term [2]:

|(u · ∇)u|
|ν∇2u|

� 1

Where u is the velocity vector and ν the kinematic vis-
cosity. The Navier-Stokes equations then simplify to a
set of linear equations in the Stokes flow approximation
[2]:

∇p = µ∇2u (2)

Where p is pressure and µ is molecular viscosity. The
velocity of the viscous fluid varies along the z-direction,
slowest at the no-slip plates and fastest exactly half-way
between them [2]. However, the z-averaged velocity of the
boundary can be shown to be proportional the pressure
gradient:

〈u〉 = − b2

12µ
∇p (3)

Where b is the distance between the two plates. Since the
motion of the fluid-fluid interface is precisely the motion
of the more viscous fluid directly adjacent to it, and the
pressure of the less viscous fluid is effectively uniform,
the boundary is spatially parabolic in z and we take its
velocity to be v = 〈u〉 (see Figure 2) [6].

This system exhibits a Laplace instability. Since pres-
sure obeys the Laplace equation, ∇2p = 0, a steeper
pressure gradient occurs wherever the boundary surges
ahead (see Figure 3), increasing the interface velocity at
that point and leading to a runaway effect wherein the
boundary develops a long finger. This effect is limited
by the constraint on the pressure drop across a curved
boundary given, schematically, by [1, 5]:

∆p = γκ (4)

Where γ is the surface tension, and κ is the curvature of
the interface. Larger discrete pressure drops across the

boundary reduce the magnitude of the gradient in the
adjacent fluids. Thus, more sharply curved interfaces,
and fluids with greater surface tension, are less prone to
fingering.

If, instead, a more viscous fluid displaces a less viscous
fluid under otherwise identical conditions, we can see that
the reverse effect occurs, creating a stable boundary: a
point in the interface that surges ahead exhibits a lesser
pressure gradient, slowing it down and allowing the rest
of the boundary to catch up. Thus, this phenomenon
of viscous fingering is exclusive to the case where the
displacing fluid is of lesser viscosity.

B. Linear Stability Analysis

The behaviour of this boundary instability as it man-
ifests in an expanding bubble under the aforementioned
circumstances is modeled using the perturbative tech-
nique of linear stability analysis [5]. The boundary shape
is said to be composed of various spatially periodic sinu-

FIG. 3: The effect of a protuberance on the pressure
gradient in the nearby fluid, leading to the development
of a finger. Adapted from Couder [1], courtesy of Morris

[5].
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soidal ’modes’. In the radial situation under investiga-
tion, to satisfy periodic boundaries, each allowed mode
is associated with a natural number, n, of wavelengths,
corresponding to as many fingers.

While linear stability analysis is valid only in the case
where the amplitude of all these modes is infinitesimal
(i.e. in the period of the bubble’s growth during which
it is still round), this method predicts the number of
fingers by identifying the mode with the highest growth
rate during the initial growth of the bubble. That is,
each mode’s amplitude, ξ, changes in time with a growth
rate, σ as:

ξ ∝ eσt (5)

Where σ < 0 for a stable mode, σ = 0 for a marginally
stable mode, and σ > 0 for an unstable mode–the unsta-
ble modes are those growing larger, thus contributing to
finger formation. The mode with the greatest value of
σ at a given moment is growing the fastest–we use this
to predict which mode’s growth is dominant throughout
the initial growth of the bubble [7]. The value of n for
this mode is the predicted number of fingers. As soon as
a finite-sized set of fingers forms, their own growth accel-
erates. Thus changes to the number of fingers may occur
only due to nonlinear effects during a later phase of the
bubble’s growth.

Theoretical work [3, 4, 7, 8] has been done to predict
at a given instant during the early life of a bubble which
mode has the highest growth rate, in terms of dimension-
less quantities R/b relating the radius, R, of the bubble
(which is assumed to be approximately circular during
the phase of initial growth) to the plate spacing, and the
capillary number Ca, a dimensionless quantity relating
boundary velocity to fluid viscosity and surface tension:

Ca =
µ

γ
v

The basis for these predictions is the determination of
the specific form of the boundary condition (4) for the
case of radial Hele-Shaw flow. Since there is curvature
due to both the circular shape of the bubble, and the no-
slip condition at the two plates, we expect a dependence
of ∆p on both R and b. Based on a naive prediction for
∆p, the fastest-growing mode is described by [3]:

Amax = 2 (6)

Where A = kb/
√

Ca is a dimensionless modified wave
number, with k = 2π/λ (the ordinary wave number). The
boundary condition on ∆p was derived more precisely by
Park and Homsy, giving a slightly modified prediction
[8]:

Amax = 2.26 (7)

A further updated model for ∆p due to takes into ac-
count the wetting layer–a thin layer of the more viscous

fluid remains coating the two plates even as the less vis-
cous fluid displaces it–and gives rise to yet another pre-
diction for the modified wave number of the fastest grow-
ing mode, where this mode varies with varying Ca [3, 7]:

πJ

216
Ca

1
6A3

max +
π

16
A2
max − 1 = 0 (8)

Where in the Park-Homsy formulation, J = 3.8. Max-
worthy [3] found (8) to agree well with experiment in the
regime of very slow flows, where Ca is less than about
10−2. Faster-growing bubbles were found to exhibit a
smaller value of A than predicted. Note that even this
most advanced prediction for the dominant mode does
not account for the effects of wetting layers: the thin
films of the more viscous fluid that coat the two plates,
remaining in parts of the cell in which the less viscous
fluid is present [5, 9].

While these predictions find the modified wave num-
ber to be a function only of Ca, the extraction of the
predicted number of fingers, n, from this dimensionless
quantity has further dependence on Ca, as well as on
b and R. However, both Ca and R vary significantly
throughout the initial (pre-fingering) growth of an in-
dividual bubble, raising the question of how to choose
values of these quantities with which to calculate the
predicted number of fingers. Maxworthy’s predictions
extract n from a single value of A, using initial values
of R and Ca: those realized the instant bubble growth
begins [3].

C. Nonlinear Features of Bubble Growth

Once finite-sized fingers have emerged in the interface
of an expanding bubble, linear theory fails to predict its
further behaviour as a bubble grows. However, mecha-
nisms exist by which the number of fingers present can
continue to change in this nonlinear regime.

One such mechanism is tip splitting. Once fingers grow
large enough, their own boundaries may broaden to the
point that they become subject to the same Laplace in-
stability described in I A. Thus, while the condition of a
circular expanding bubble necessary for precise linear sta-
bility analysis is no longer present, we expect to identify
viscous fingering phenomena wherein a broad tip splits
into two distinct fingers by a similar mechanism to that
governing initial finger formation. In the regime of high
Reynolds number (fast-growing bubbles), tip splitting
may give rise to fractal behaviour–modeled by diffusion
limited aggregation–as bubbles exhibit shapes character-
ized by many branching fingers [1, 5].

Conversely, shadowing (or shielding) may occur if an
individual finger exhibits slower growth than the two ad-
jacent fingers. The interface around surrounding larger
moves with greater velocity, and reduces the amount of
space around the smaller one occupied by the viscous
fluid, limiting the magnitude of pressure gradients in that
region. This slows the growth of that particular finger
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(see I A). Surface tension may even cause shielded fin-
gers to shrink, and potentially disappear [5].

II. EXPERIMENTAL SETUP AND
PROCEDURE

A. Apparatus

We used a Hele-Shaw cell constructed of 2.5 cm thick
acrylic plates; the bottom plate formed the floor of a 7
cm deep tank, while the top plate was a separate round
piece 50 cm in diameter, with a hexagonal pattern of
holes near its edge. Threaded rods through these holes
with brass finger nuts fastened over top fixed the upper
plate in place. Sets of six plastic spacers of a variety
of thicknesses (in mm: 0.52(2), 0.791(4), 1.051(3), and
1.512(3)) set the spacing between the two plates. Spacers
were either rectangular (held in place near the rods by
pressure from the plates above and below) or washer-
shaped (looped around the rods, in addition to being
fixed by the compression from the plates). We kept the
finger nuts snug, but not over-tightened, so as to prevent
damage to the acrylic. We limited, to the best of our
ability, spatial variation in spacing due to differences in
compression between the six finger nuts. The tank was
filled with heavy industrial grade mineral oil supplied
by McMaster-Carr, of surface tension γ = (3.3 ± 0.1) ×
10−2 N/m, density ρ = (0.860± 0.001)× 103 kg/m3 and
molecular viscosity µ = 0.155±0.002 kg/(m·s) at 22.5◦C.
The oil rose 3-5 mm above the bottom of the upper plate
to ensure that it would fill the space between the plates
(see Figure 4).

Below the tank was a large LED light, turned on during
runs of the experiment, with the voltage across it held at

FIG. 4: The Hele-Shaw cell.

FIG. 5: The pneumatic system.

40 V by a variable a power supply. A digital camera was
mounted such that its lens was about 70 cm above the
tank, pointed down toward the cell; this camera was con-
trolled through a desktop computer using FlyCapture2
software, and took greyscale images of the Hele-Shaw cell
from above. At a frame rate of 120 fps, the camera was
able to capture the entire cell; in some cases, the frame
rate was increased without compromising image resolu-
tion, but at the cost of capturing a smaller area.

The centre of the upper plate had an injection hole
with a fixture, onto which we could attach a removable
hose carrying compressed gas from a cylinder with a reg-
ulator valve. Along this hose was a large pressure gauge,
a vent valve to release air from the hose without it enter-
ing the Hele-Shaw cell, an inlet valve, and a needle valve
(see Figure 5). Air could only enter the cell through the
injection hole when the inlet valve was held open. The
speed of air entering the cell, and thus of the fluid-fluid
boundary, was controlled by modulating both the pres-
sure of the air exiting the regulator valve and the position
of the needle valve.

Also attaching to the central injection hole was a re-
movable hose connecting to a peristaltic pump, which was
used to reset the apparatus before each run by drawing
air out of the Hele-Shaw cell, replacing it with mineral
oil that enters through the edges.

B. Procedure

1. Data Collection

Prior to a run of the experiment, a desired number of
frames (TIFF images) to be captured in succession at the
set frame rate was chosen in the FlyCapture2 program.

https://www.ptgrey.com/flycapture-sdk
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Typically, the frame rate was set to 120 fps, though frame
rates as high as 180 fps were used to capture more detail
during runs of the experiment with high interface veloc-
ities.

Before each run, we pumped all air bubbles and debris
that may have been present out of the Hele-Shaw cell.
We set the pressure of incoming air to a desired value us-
ing the regulator valve, and when the injection hose was
connected to the opening in the upper plate, we grad-
ually let some air in, by gently opening the inlet valve,
to create an initial bubble (to serve as a starting point
for bubble growth). We required initial bubbles to be
round; to create it, air had to be let into the cell slowly
enough that the boundary instability under investigation
does not take effect.

A run of the experiment consisted in clicking start
recording on FlyCapture2, and subsequently fully open-
ing the inlet valve to let air enter the Hele-Shaw cell at
the rate determined by the pressure and needle valve.
An air bubble would then grow in the Hele-Shaw cell. A
run was complete once any air reached the edge of the
Hele-Shaw cell and bubbles out (see Figure 6). Even be-
fore this point, once the fluid-fluid boundary approached
closely enough to any of the six rods holding the upper
plate in place, the effects of these rods on the pressure
gradients in the fluid may be said to influence the bound-
ary shape, rendering the run effectively over. After each
run, we deleted images (frames) captured before bubble
growth began and after the run ended.

Once every 4-6 runs, we removed the top plate and ro-
tated it (some multiple of 30 degrees, as permitted by the
hexagonal geometry of the fixtures), to reduce the influ-
ence of small imperfections in the rotational symmetry of
the apparatus on finger growth in any particular direc-
tion. We used a single piece of masking tape on the edge
of the upper plate to keep track of its angular position.
We typically conducted 5-10 runs of the experiment at
the same adjustable parameters (pressure, needle valve
setting, and plate spacing).

2. Data Processing

Images were processed using ImageJ and Python Im-
age Library (PIL). A centre pixel could be identified in
ImageJ. Then, for each image, a PIL image matrix was
created and a minimum and maximum radius was set so
that pixels in the centre (around the injection hole) and
near the edge (finger nuts) could be removed. Pixels were
also removed along a horizontal band of a set thickness
(usually about 50 pixels) from the centre to the right
side of each image, to remove the injection pipe. In what
remains after these modifications, the darkest pixels in
the image are those depicting the fluid-fluid boundary.
Thus, threshold values (typically between 90 and 140, on
a scale from 0–black–to 255–white) could be set such that
only the boundary is darker than the threshold; binarized
images were produced in which the interface is a black

(a) A run begins with an initial bubble.

(b) Finite-sized fingers begin to form in the boundary.

(c) Fingers increase in size as bubble growth progresses.

(d) The run ends as the boundary reaches the edge of the
Hele-Shaw cell

FIG. 6: Unprocessed images of a bubble’s growth
captured throughout one run of the experiment (3 psi,

0.52 mm plate spacing).

https://imagej.net/Welcome
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curve on a white background, by turning all pixels darker
than the threshold black, and all others white (see figure
7). Usually, we created a binarized image of every photo-
graph taken in a run. Sometimes, when there were many
frames recorded (slower flows, 500-2000 frames), the data
was decimated, and only one in every set of some num-
ber of frames (values between 2 and 10 were used) was
binarized and used for analysis.

FIG. 7: A greyscale image captured during a run of the
experiment and its processed, binarized counterpart.

Desired information–namely, interface radius and ve-
locity, as well as standard deviation in the radius, which
would grow as nonlinear effects take over–could be ex-
tracted from the set of binarized images produced of each
run of the experiment. This was also done in Python, by
using the position of each black pixel in the binarized
images to compute its radial (r) and angular (φ) coordi-
nates. A pixel corresponding to the centre of the bubble
was chosen for each run by fitting a plot of r vs φ for
the first frame to a cosine curve of period 2π, and us-
ing the choice of centre-pixel that returned the smallest
amplitude. Then, the average radial coordinate of all
black pixels in each image from the run was computed
to describe how the average radius changes through the
run. In the linear regime, the average radius is approxi-

mately the radius of the bubble. Polynomial fitting (3-5
degrees of freedom) was then used to describe radius as a
function of time (frame number divided by frame rate);
this polynomial was differentiated to describe the inter-
face velocity throughout the run. These velocity values
could then be multiplied by the necessary factors to ob-
tain capillary number and/or Reynolds number values.
This radius and velocity data was used to perform linear
stability analysis on the data, for predictions regarding
the number of fingers that would form in each run (see
III A).

We counted the number of fingers (n) that formed in
each run (to compare to the predictions of linear stabil-
ity analysis) manually, by selecting a frame from shortly
after the fingers corresponding to the dominant mode
grew to finite size. In some cases, we also investigated
how the number of fingers changes throughout a run. To
achieve this, in addition to manually counting fingers, we
employed a Python program that automatically counted
the number of fingers present in every frame of a run (see
Appendix A).

Appendix B lists the names and purposes of all of the
Python scripts we used to process and analyze the data.

C. Experimental Limitations

1. Limits on Reynolds Number

The low end of the range of Reynolds number values
we were able to explore was determined by the capabili-
ties of the apparatus itself. The slowest flow achieved was
with the narrowest spacers (0.52 mm) in, the pressure at
2 psi, and the needle valve just under one half-turn open
(out of a total of three full turns). These runs exhib-
ited capillary numbers in a range between 0.03 and 0.1
(see Figure 8a), where the highest value obtains at the
start of bubble growth, and the boundary speed slows as
the bubble grows larger and the air pressure is spread
over a larger fluid-fluid interface. This corresponds to
a Reynolds number range between 0.015 and 0.06 (or-
der 10−2), with an average Reynolds number throughout
the linear regime of about 0.03. For bubble growth any
slower than this, the interface would stop moving part
way through a run, when the bubble reached a critical
size at which the incoming air pressure was not enough
to overcome opposing pressures and surface tension.

The upper end of the Reynolds number range explored
was determined by our capacity to collect meaningful
data in the linear regime (before finger formation). With
a functional upper bound on our camera of 180 fps,
bubbles growing too quickly would form fingers before
enough frames could be collected to adequately use a
polynomial fit to measure the speed of their growth while
they were still circular. Since we require this speed data
to run our linear stability analysis, we were limited to
bubbles growing slowly enough to collect about ten or
more frames in the linear regime. The fastest flows we
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(a) The slowest flows studied: 2 psi with 0.52 mm plate spacing.

(b) The fastest flows studied: 20-28 psi with 1.512 mm plate spacing.

FIG. 8: Capillary number vs. radius throughout the linear regime for the slowest and fastest flows examined.
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FIG. 9: Capillary number vs. radius throughout the linear regime exhibited consistent behaviour, even as the initial
radius of the run varied.
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were able to study occurred with the thickest spacers (1.5
mm), and the pressure set between 20 and 28 psi, with
the needle valve wide open. Under these conditions, cap-
illary number ranged between 0.8 and 2.1 and Reynolds
number between 1.5 and 3.4, averaging around 2.2 (see
Figure 8b).

Our apparatus could be used to study fractal vis-
cous fingering phenomena at pressures (hence, speeds)
far higher–up to about 50 psi–if sufficient data in the lin-
ear regime for stability analysis is not required. For in-
stance, future experiments may involve running at these
higher pressures to collect data for the study of fractal
branching behaviour in the nonlinear regime.

2. Stochastic Elements and Consistency

While the Laplace instability responsible for fractal
viscous fingering is a well-understood result of fluid me-
chanics, the onset of finger formation during any given
run is due to inherently stochastic processes. In an ide-
alized version of the experiment, the Hele-Shaw cell is
perfectly rotationally symmetric about the perpendicu-
lar axis through the injection hole, and the unstable dy-
namical equilibrium of the circular boundary is broken by
an assumed uniform perturbation, allowing all modes of
the instability to grow during the linear regime at rates
predicted by linear stability theory (see I B). In reality
(or anything remotely close), despite attempts to control
for imperfections, such as rotating the upper plate and
ensuring near equal torque on all six finger nuts, small
deviations from this rotational symmetry (imperfections
in the surface of the plates, spatial variations in the plate
spacing, etc.) allowed protuberances like those discussed
in I A to form, initiating finger formation. In addition,
these imperfections would often cause the initial bub-
ble of a run to become elliptical in shape, or off-centre,
before the run began. The overall result was, in many
cases, that fingers would begin to form in one region of
the boundary before forming elsewhere (see Figure 10).
We often found this effect to propagate throughout the
entire run, with the fingers that formed first reaching the
edge of the cell first. Rotating the upper plate (holding
all other parameters equal) was found to cause the region
of earliest finger formation to move to a different part of
the interface.

Despite this, runs at the same settings for all ad-
justable parameters (spacing, pressure, needle valve, size
of initial bubble) consistently resulted in similar finger
counts. This was most extensively tested with the 0.52
mm spacers, at 3 psi, with the needle valve just over one
half turn open, and the initial bubble radius 4.5(2) cm.
We achieved consistency in initial bubble radii by setting
the regulator valve to 3 psi, closing the auxiliary valve on
the gas cylinder, and slowly emptying the injection pipe
into the cell. We then re-opened to the auxiliary valve for
the run. In doing this, care must be taken to begin the
run shortly after the initial bubble is produced, before

FIG. 10: Finger formation begins in some regions of the
boundary before others.

the oil from the wetting layer on the upper plate forms
droplets; this is easier with more narrowly spaced plates,
when the lower Reynolds number manifests in longer time
scales for flow.

We conducted fourteen runs at these parameters, peri-
odically rotating the plate, for an average of 28.5 fingers
with a standard deviation of 3.0 fingers. This gives a
random error of 0.9 fingers: significantly less than the
’counting uncertainty’, which ranged between 2 and 5
for each run, and is due to slight ambiguity concerning
which boundary curvature elements we identify as fingers
when counting.

Furthermore, we found that holding the adjustible pa-
rameters constant led to good consistency in interface
velocity between different runs. See Figure 9a–despite
some variation in the length of the runs, the capillary
number as a function of radius throughout each run, as
determined by Numpy polynomial fits, exhibit very sim-
ilar curves. The continuity equation for fluid mechanics
would suggest that these curves decay as R−1 to leading
order.

We also found this consistency in boundary velocity to
generalize when we varied the initial radius (See Figure
9b). This observation may support the claim that the
Stokes Flow approximation applies in this situation: a
negligible inertial term in the Navier-Stokes equations
manifests in the boundary speed depending only on its
radius, and the pressure of the air driving it, and not on
whether it is already in motion.

III. FINDINGS

A. Results of Linear Stability Analysis

We applied the linear stability analysis methods dis-
cussed in I B (equation (8)) in two ways: (1) assuming
that the parameters Ca and R identified at the start of
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FIG. 11: Predictions of linear stability analysis against counted values of n for 0.52 mm plate spacing.

the run are sufficient to predict the mode of the insta-
bility with the maximum growth, matching the method
of Maxworthy [3], and (2) using Python to compute the
growth rates throughout the linear regime (examining all
frames before the formation of finite-sized fingers), and
integrating throughout this phase of each run to identify
a mode with the maximum overall growth. ’Instanta-
neous’ values of all variables required could be obtained
from the polynomial fits for R and v at each frame in
a given run (from which the dimensionless variables of

interest, R/b and Ca, are calculated); a numerical inte-
gration computed growth rate of the various modes, up
to a maximum number of 200 fingers (well above any
value of n predicted or observed) and identified the one
with the greatest global growth.

In general, both applications of linear stability anal-
ysis failed in the regimes studied even to serve as rea-
sonable leading-order approximations, predicting values
for n as high as double those observed. Figures 11, 12,
13, and 14 plot the number of fingers predicted by linear
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FIG. 12: Predictions of linear stability analysis against counted values of n for 0.791 mm plate spacing.

stability theory on the vertical axis, against the counted
numbers of fingers for corresponding runs; the position-
ing above the diagonal of virtually all points indicates
that linear stability theory consistently predicted values
of n higher than what we observed. Our plots separate
runs into coarse-grained categories based on initial bub-
ble sizes. As expected, larger initial bubbles gave rise
to larger predicted and counted values of n. Maxwor-
thy [3] found good agreement between theory and ex-
periment for flows slower than the ones we studied here
(log10 Ca ≤ 2), but showed results deviating from theory
for faster flows (in the lower end of the regimes we stud-
ied). Our experiment raised the upper bound of interface
speeds examined into the regime where log10 Ca ≈ 0.3.
No existing experimental findings suggest that linear sta-
bility analysis adequately predicts the dominant mode for
viscous fingering in these regimes. Indeed, for flows with
higher Reynolds number (characterized by higher speed
and length scales), we should expect the Stokes flow ap-
proximation, wherein the inertial term in the Navier-
Stokes equations is said to be negligible, not to apply.
Since it is this very approximation from which the pre-
dictions for the growth rates of the various modes are de-

rived, the failure of linear stability analysis in this regime
is not taken as a surprise.

We saw the best agreement between theory and exper-
iment for runs conducted with the greatest plate spac-
ing (1.512(3) mm). In these runs, at lower speeds, the
two predicted values of n were typically within five fin-
gers of the observed value (See Figure 15b), and the dis-
crepancy between linear stability theory and experiment
grows gradually with capillary number (and thus, at fixed
spacing, Reynolds number), as we may predict given the
decreasing validity of the Stokes flow approximation. The
widest plate spacing corresponds to the regime of high-
est Reynolds number (0.2 to 3.4), where we expect our
theory to fail due to the failure of the Stokes flow approx-
imation. However, wider plate spacing also corresponds
to the situation where the wetting layers on the plates
make up the smallest proportion of the distance between
them (assuming the thickness of these layers varies rela-
tively little with plate spacing itself). Since our theoret-
ical model does not account for these wetting layers, im-
proved correspondence to experiment in cases where the
wetting layers are the least significant suggests that the
failure of the theory may be attributed in part to the role
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FIG. 13: Predictions of linear stability analysis against counted values of n for 1.051 mm plate spacing.

played by these layers in the fingering phenomenon. The
larger gap between theory and experiment with lesser
plate spacing is then explained by the fact that wetting
layers in these cases, occupying a larger proportion of the
vertical distance between the two plates, may be more
relevant to determining the value of n realized.

For most runs, the linear stability analysis method
making use of integration over growth rates through-
out the linear regime returned predictions for n slightly
greater than that making use only of initial growth rates

(see Figure 15). We attribute this to the fact that the
integration method accounts for predicted finger growth
as the bubble’s radius, R increases, and not only at its
initial (and smallest) value of R. An increase in R theo-
retically gives rise to two opposing effects. Firstly, with
the incoming air at fixed pressure, a larger radius, and
hence, a larger fluid-fluid interface, means a slower inter-
face velocity, and thus a lower value of the modified wave
number, A, for the mode with the greatest instantaneous
growth rate (see I B). However, with a larger radius, a
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FIG. 14: Predictions of linear stability analysis against counted values of n for 1.512 mm plate spacing. Here, the
proximity of points to the diagonal, particularly for runs with fewer than 30 fingers, demonstrates the greatest

success we found for the predictions of linear stability analysis.

greater number of wavelengths for a given modified wave
number fit along the boundary, leading to a larger pre-
dicted value of n. We see that this latter effect is more
significant; even though the additional data taken into
account by the integration method corresponds to slower
growth, the increased size of the boundary as the bubble
grows leads the model to predict more, not fewer, fingers.

This resulted in the integration method giving predic-

tions for n that deviate further than the initial value-
method’s predictions from experimental values. How-
ever, the difference between these two predictions was
typically significantly less than their deviation from the
observed value of n. Therefore, we do not conclude that
the model in which only initial values of R/b and Ca af-
fect bubble growth is more accurate than the one in which
values of these quantities throughout the entire period of
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(a) Predictions and counts for n with 1.051 mm spacing.

(b) Predictions and counts for n with 1.512 mm spacing. The runs at lower capillary number for this plate spacing exhibited
the closest correspondence between theory and experiment.

FIG. 15: Both integration and initial-value predictions, as well as manual counts. The horizontal bars span the
range of capillary number values obtained throughout each run. The points correspond to the initial-value

predictions, and are located at the value of Ca associated with the beginning of each run. The integration method
typically predicted a slightly higher value of n than the initial-values method.
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initial growth (prior to fingering) are taken into account.
In fact, the Stokes flow approximation effectively states
that the ’history’ of a fluid flow does not affect its be-
haviour. Thus, if the bubble remains qualitatively round
for a finite period of time at the start of its growth, we
are not in a position to conclude that any special role is
played by its radius and interface velocity at the instant
its growth begins. Therefore, in any situation for which
our models more accurately predict n values, we should
expect the integration method to perform better than the
initial values-method.

Furthermore, future investigations may involve a novel
method: one which makes predictions for the dominant
mode by taking into account only values for R/b and Ca
for a small time interval around the end of the linear
regime, when finger formation occurs. This model could
be made more advanced by taking into account the fact
that finger growth begins at different times in different
regions of the boundary II C 2. Therefore, the prediction
for n would be computed from a combination of different
dominant modes corresponding to different regions of the
boundary, each determined by the values of R/b and Ca
that obtained when finger growth began in its respective
region.

However, the failure of linear stability analysis to pre-
dict the results of our experiment is primarily taken as a
more general indication of the discrepancy between the
instability giving rise to finger formation in reality, and
the type of instability the theory implicitly assumes to
be at play. The theory is based on a sort of white noise
perturbation that places all modes on an equal footing,
allowing their growth rates to be computed by the meth-
ods discussed in I B. On this assumption, each mode is
effectively growing with infinitesimal amplitude through-
out the linear regime, and integrating growth rates as we
have done provides the most mathematically legitimate
description of how the interface instability is believed to
behave. In the experiment, stochastic systematic features
(uneven plate spacing, imperfections in the plate mate-
rials, elliptical nature of initial bubble, etc.–see II C 2)
play a role in initiating finger growth that we believe to
be the dominant factors affecting mode selection. The
linear theory cannot account for the way that these fac-
tors may favour certain modes, and influence where and
when finger formation begins. Thus, future investigations
should attempt to minimize these systematic flaws, for
instance by constructing Hele-Shaw cells with smoother
and more rigid materials, and using a method for set-
ting the plate spacing that applies pressure more evenly
around the perimeter of the cell.

B. Shadowing and tip splitting in the Nonlinear
Regime

We qualitatively investigated the effects of shadowing
and tip splitting (see I C) on the realized value of n by
using our finger counting algorithm to count the num-

ber of fingers present in every frame collected during a
few selected runs. This algorithm was found to be ac-
curate to within about 3 fingers for our runs with the
greatest values of n; most error was due to the gap in
our binarized images where the inlet pipe was removed.
We plotted n against t for individual runs. In general,
we found that for the Reynolds number ranges under in-
vestigation, after the phase of initial finger growth, each
bubble would settle on a value of n, at which it would re-
main for a significant portion of the run (see Figure 16a).
This value was typically the one associated with the dom-
inant mode in the linear regime. In some cases, this value
of n would be the final one; tip splitting and shadowing
would not have a significant effect on the overall number
of fingers present. For faster flows, the tip splitting insta-
bility would sometimes cause n to begin to increase late
in the run, as the tips of the fingers began to broaden
enough that smaller pressure drops across the boundary,
as given by equation (4), allowed for large enough pres-
sure gradients in the fluid for the Laplace instability to
generate a finger. Figure 17a represents the boundary at
the end of a run where the pressure was set to 5 psi with
1.051 mm spacing; blue dotted lines track where finger
tips have been present throughout growth.

One exception to this was bubbles with relatively few
fingers overall. We tracked n throughout a run for which
only 7 fingers were observed to emerge in the linear
regime (see Figure 16b). In this case, each finger oc-
cupied a relatively large angular region of the boundary,
and so had a chance to broaden to the point that tip split-
ting could occur, even with the lower interface speed (see
Figure 17b). Here, n steadily and gradually increased
throughout the run.

Shadowing did occur on the boundaries of the bub-
bles studied–many fingers were stunted in their growth
by larger surrounding fingers–but pressure gradients and
surface tension did not typically cause more than one or
two shadowed fingers for any given bubble to fully disap-
pear. When this did happen, it did so relatively early in a
run. Blue dotted lines in Figure 17 that do not terminate
in a red ’X’ indicate the few cases where shadowing led
to the complete disappearance of a finger. Usually, shad-
owing would cause fingers to remain small, but present.

For the regimes studied, (Re ≈ 0.03 to Re ≈ 3.4),
we conclude that the effects of tip splitting and shad-
owing were present, but rather limited. When they did
affect the number of fingers present throughout a run,
they never led to ambiguity in how many fingers were
associated with the dominant mode in the linear regime.
We would expect the tip splitting instability to have a
more significant effect for faster-growing bubbles, where
steeper pressure gradients around the interface would
mean less broadening of the tips is required for them
to split.
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(a) n reaches a value after the linear regime, where it remains for a period of time and then begins to grow again toward the
end of a run.

(b) In cases with few fingers, n grows continuously throughout the run.

FIG. 16: n against time throughout the entire growth of selected bubbles.
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(a) Finger tip positions tracked throughout a run at 5 psi, with 1.051 mm plate spacing (also
represented in Figure 16a).

(b) Finger tip positions tracked throughout a run at 2 psi with the needle valve less than 1/2 turn
open, and 0.52 mm plate spacing (also represented in Figure 16b).

FIG. 17: Radial coordinate vs. polar angle for the final frame of selected runs. Finger tips present at the end of the
run are marked with a red ’X’. Blue dotted lines indicate the paths of the finger tips throughout the growth of the

bubble.

IV. CONCLUSIONS

We studied fractal viscous fingering phenomena for an
air bubble displacing mineral oil in a Hele-Shaw cell, in
flow speed regimes specified by Reynolds number ranging

between approximately 0.03 and 3.4.

In general, predictions for the growth rates of vari-
ous modes of the instability giving rise to the fingering
phenomenon, based on existing linear stability analysis,
failed to accurately predict how many fingers would form
for the regimes of Re studied. This is true of predictions
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based on initial values of R/b and Ca for a given run,
and those based on integrating growth rates throughout
the initial growth of a bubble. The greatest discrepancy
between prediction and observation occurred for the nar-
rowest plate spacing; we suggest that a more advanced
theory taking into account the wetting layer left behind
on the plates as air displaces oil may have more success
in these cases. Furthermore, at fixed plate spacing, the-
ory performed worst at higher interface speeds, where the
Stokes flow approximation is least valid. The predictions
of linear stability theory may also have more success for
an experiment that is more effectively controlled for the
stochastic processes that initiate finger formation allow-

ing the instability to be caused by a perturbation more
closely resembling the uniform ’noise’ the theory assumes.

In the regime of nonlinear growth, we found that shad-
owing had a very small effect on the number of fingers
present, as fingers would remain small, but seldom dis-
appear. Tip splitting had a more significant effect, par-
ticularly in runs with a small number of broad fingers.
With more fingers, tip splitting would mostly occur to-
ward the end of bubble growth when fingers are broadest.
The techniques we employed in our study may be used to
examine viscous fingering phenomena at higher speeds,
to track how n increases throughout a run for bubbles
exhibiting more manifestly fractal behaviour.
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Appendix A AUTOMATED FINGER
COUNTING

A Python script entitled count run FVF.py for auto-
mated finger counting takes as its input all the binarized
images from a run, after they have been skeletonized in
ImageJ (modified such that black lines are only 1-2 pix-
els thick). It searches through a PIL image matrix for
black pixels (greyscale value of 0) and records their ra-
dial coordinate value and polar angle value (using x-
and y-distances from a stipulated centre point), begin-
ning where the curve is broken due to the removal of
the pipe, and travelling along the curve by finding the
nearest black pixel to the most recent black pixel iden-
tified. In this case, the black pixels are indexed by the

order in which they are found; the result is a curve of
r vs. this index. This curve is single valued at every
point. Thus, after Savitzky-Golay smoothing is applied
to the curve to prevent double-counting due to scatter,
the program may treat it as a function (see Figure 18)
and identify the number of fingers as the number of local
maxima present. A similar method had previously been
attempted, which instead searched for peaks in an r vs φ
plot, but ’overhangs’ where the fingers widen along the
radial direction caused it to identify peaks where there
was no tip of a finger. Using this program, a value of n
could be associated with every frame in a run.

If desired, count run FVF.py also generates a plot of
r vs φ for every frame of a given run, with a red X mark-
ing where each fingers tip is identified, and blue dotted
lines tracking where finger tips were present in previous
frames, as seen in Figure 17. These plots can be used to
produce videos that serve as a dynamic visualization of
the effects at play in fractal viscous fingering phenomena.

This algorithm is subject to some of the sources of er-
ror associated with manual finger counting, such as the
gap in the boundary not captured in the image due to
the inlet pipe. However, it defines a finger concretely as a
point were, when moving along the boundary, the radial
coordinate peaks. It does not return accurate values of
n for the beginning of a run, when fingers are not yet
present, but there may still be a few peaks in the radial
distance due to the slightly elliptical shape, or displace-
ment from the centre, of initial bubbles.
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FIG. 18: A radial distance vs. ’counting index’ curve for the image shown above. As a visual aid, the location of
each the 44 finger tips identified by the program is marked with a red X.
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Appendix B USEFUL PYTHON SCRIPTS

A process FVF images.py

Produces a set of binarized images from the set
of raw images captured in a given run. May deci-
mate the data so there are fewer binarized images than
there were frames captured. Uses functions defined in
kill outliers.py to ensure that only the boundary of
the bubble remains in the binarized image.

B FVF getradius.py

Given a set of binarized images, identifies the pixel
closest to the centre of the initial bubble. Subsequently
produces a .txt file of all the values of R (max, min,
mean, and standard deviation) and v from throughout a
run. Produces a plot of the values associated with R.

C velocity vs R FVF.py

Uses data from the .txt files produced using
FVF getradius.py to plot boundary speed, capillary
number, and Reynolds number against radius through-
out the initial, circular phase of a bubble’s growth.

D plot fingers FVF.py

Using the .txt files produced using FVF getradius.py,
calculates and saves predicted values of n for each run

of the experiment, based on both integration of growth
rates and initial values. Uses functions defined in
sigma bv.py. Generates a variety of plots for represent-
ing how these predictions compare with observed values.

E finger count FVF.py

Counts the number of fingers present in one skele-
tonized, binarized image of an FVF bubble. Generates
an ’unfolded’ plot representing the boundary’s radial dis-
tance vs polar angle, and indicates the locations of the
finger tips it identifies.

F count run FVF.py

See Appendix A. Applies the technique of
finger count FVF.py to every frame in a run. Gen-
erates a plot of n against time for a single run, and a
series of the ’unfolded’ plots that indicate the tips of
fingers. These plots can be combined to produce a video
demonstrating the formation of fingers throughout a
bubble’s growth.

G composite image.py

Generates from a set of skeletonized, binarized images
associated with a run a composite image of the boundary
throughout the growth of a bubble.
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