Skip to Content

Fermions coupled to Ising gauge fields: Symmetry breaking, confinement and emergent Dirac excitations

Lattice gauge theories are ubiquitous in physics, describing a wide range of phenomena from quark confinement to spin liquids. At finite fermion density, gauge theories are notoriously hard to analyze due to the fermion sign problem. Here, we investigate the Z(2) gauge theory in 2+1 dimensions, a problem of great interest in condensed matter, and show that it is free of the sign problem at arbitrary fermion density. At generic filling, we find that gauge fluctuations mediate pairing leading to a transition between a deconfined BCS state to a confined BEC. At half-filling, a pi-flux phase is generated spontaneously with emergent Dirac fermions. The deconfined Dirac phase, with a vanishing Fermi surface volume is a non-trivial example of violation of Luttinger’s theorem due to fractionalization. At strong coupling, we find a single continuous transition between the deconfined Dirac phase and the confined BEC, in contrast to the expected split transition.

Ref: S. Gazit, M. Randeria & A. Vishwanath, arXiv:1607.03892