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1. Introduction

It is a pleasure to celebrate Ikuko Hamamoto’s coming of age and the fiftieth

anniversary of the Bohr–Mottelson papers1 that have guided the research

of most of us here during our academic careers. I plan to talk about a

problem that I learned about in Copenhagen in 1962.

Two competing coupling schemes in nuclear physics are aligned coupling

and pair coupling. The former leads to deformed states and rotational

bands. The latter leads to pair coupling and nuclear superconductivity.

These coupling schemes suggested early on that a simple model Hamiltonian

H =
∑

j

εja
†
jmajm − χQ · Q − GS+S− (1)

containing a sum of “independent-particle”, “quadrupole”, and “pairing”

interactions could explain the broad systematics of much of low-energy nu-

clear collective structure. Although the separate terms of this Hamiltonian

are easily handled, e.g., within the space of a single harmonic-oscillator

shell, the diagonalization of H is virtually impossible, except by approxi-

mate methods or numerical computations in relatively small spaces. This

is because the pairing and quadrupole interactions are associated with in-

compatible symmetry groups.
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To understand the nature of incompatible symmetries and how to han-

dle them, I will first review some new insights we have recently obtained

with the aligned and pair coupling schemes and then discuss a model with

competing pairing and quadrupole degrees of freedom. A new and poten-

tially powerful concept of quasi-dynamical symmetry emerges

2. Aligned coupling

2.1. Three algebraic rotor models

It is known that a Hamiltonian with a pure Q ·Q interaction is analytically

solvable if the quadrupole tensor Q is replaced by a tensor Q whose matrix

elements are equal to those of Q within the space of a single harmonic shell

and zero otherwise. This is because the Hamiltonian

Ĥsu3 = − 1
2χQ̂ · Q̂ , (2)

is a rotationally-invariant quadratic in the elements of the SU(3) Lie algebra

spanned by three components of angular momentum {L̂k} and the five

components {Q̂ν} of the quadrupole tensor Q. For a suitable (λ, 0) irrep,

and a value of χ adjusted to fit the lowest energy levels of the ground state

rotational band of the 168Er nucleus, the SU(3) model? gives the results

shown in fig. 1. The energy levels of a rigid (axially symmetric) rotor with

Hamiltonian

Ĥrotor =
~2

2= L̂2 (3)

are also shown and, of course, they are indistinguishable from those of the

SU(3) model.

The SU(3) and rotor models have two adjustable parameters each: λ

and χ for SU(3); the moment of inertia = and an intrinsic quadrupole

moment Q̄0 for the rotor. In the rotor model, quadrupole matrix elements

are given by

〈L′‖Q‖L〉 =
√

2L + 1(L0,20|L′0) Q̄0 (4)

and in the SU(3) model by?

〈L‖Q‖L〉 =
√

2L + 1 (L0, 20|L0) (2λ + 3) , (5)

〈L + 2‖Q‖L〉 =
√

2L + 1 (L0, 20|L + 2,0) [4(λ − L)(λ + L + 3)]1/2 . (6)

Fits to the E2 transitions of 168Er using these the two models are shown in

the figure and seen to be experimentally indistinguishable. (Details of the

SU(3) model as applied to heavy nuclei are given in ref. ?.)
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Figure 1. Energies and E2 transition rates for the ground state band of 168Er described
by the SU(3) model, the symplectic model with a Davidson potential, and the rigid rotor
model.

The low-energy states of 168Er can also be described by the symplectic

model3 with a Hamiltonian

H =
∑

n

p2
n

2m
+ 1

2mω
∑

n r2
n + V (Q) , (7)

where the potential

V (Q) = χ
(
Q · Q − ε

Q · Q

)
(8)

is adapted4 from the Davidson5 potential of molecular physics. The energy

levels and E2 transition rates for this Hamiltonian are essentially identical

to those of the rigid rotor and SU(3) models. The three rotor models are

experimentally indistinguishable.

2.2. Algebraic relationships of the three rotor models

The symplectic Sp(3,R) model3 has an algebra of observables spanned, in

the context of the nuclear shell model, by the operators

Qij =

A∑

n

xnixnj , Kij =

A∑

n

pnipnj , Sij =

A∑

n

(xnipnj + pnjxni) , (9)
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where xni and pni are the Cartesian position and momentum coordinates

of the n’th nucleon, with n running from 1 to A, for a mass number A

nucleus, and i = 1, 2, or 3. The algebra of observables for the rigid rotor

model is the subalgebra spanned by the angular momenta and quadrupole

operators

Lk = Sij − Sji , Qij , (10)

and the SU(3) algebra is the subalgebra spanned by

Lk = Sij − Sji Qij = Qij + Kij . (11)

These subalgebra relationships make it possible to express the wave func-

tions of the symplectic model in either a rigid rotor or SU(3) basis and

thereby attempt to understand the successes of the latter two models.

A rigid rotor representation is characterized by precisely defined intrinsic

quadrupole moments {Q̄ν}, whereas the intrinsic states of a soft rotor, like

the symplectic model, have a distribution of quadrupole moments about

the minimum of the potential, as illustrated qualitatively in fig. ??. Thus,

if |Q̄; L〉 are rigid rotor model states, the states of a soft rotor are linear

superpositions

|soft rotor; L〉 =

∫
ψ (Q̄) |Q̄; L〉d2Q̄ . (12)

Furthermore, to the extent that centrifugal stretching effects are negligible,

the function ψ (Q̄) is independent of L. The remarkable fact, is that the

quadrupole matrix elements of a soft rotor with wave functions of this form

are identical to those of a rigid rotor representation. We then say that the

rigid rotor algebra is a quasi-dynamical symmetry for such a soft rotor.

Figure 2. Wave functions for a rigid ro-
tor and for a symplectic model rotor with
a Davidson potential.

Expansion of the symplectic-Davidson model states in an SU(3) basis,

|σLM〉 =
∑

nλµ

Cnλµ
σKL |(nλµ)KLM〉 , (13)
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shows that SU(3) is also a remarkably good quasi-dynamical symmetry for

this soft rotor model. This is demonstrated by the fact that coefficients of

this expansion, shown for L = 0, . . . , 10 in fig. ??, are not only independent

of M , as they must be for a rotationally-invariant Hamiltonian, but are also

essentially independent of K and L. The implication is that the results of

the symplectic model calculation should be the same as for the SU(3) model

with an average value of the SU(3) irreps appearing in the above expansion.

This relationship evidently parallels the relationship between the rigid and

soft rotor models.

Figure 3. Wave functions for the symplectic-Davidson model calculation in a U(3) basis.

3. Pair coupling

3.1. Seniority

The simple pairing force

Vpairing = −GŜ+Ŝ−

is just one of many interactions that conserve seniority. In fact, for nucleons

of a single type (all protons or all neutrons), the number of independent

rotationally-invariant two-body interactions that mix seniority in a (j)n

configuration is [(2j − 3)/6], the integer part of (2j − 3)/6. Thus, for

j = 7/2 all single-j interactions conserve seniority, and for 9/2 ≤ j ≤ 13/2
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all but one conserve seniority. We have also found? that the most general

Hamiltonian for a single j shell nucleus is expressible

H = H0 − χQ · Q , (14)

where H0 is seniority-conserving. Fits to the low-energy levels of 214Ra,

for example, both with a seniority conserving Hamiltonian, for which the

algebra observables is USp(10), and with the extra Q · Q interaction, for

which the algebra of observables is U(10), are shown in fig. ??. It is found

that seniority is a remarkably good quantum number for this singly-closed

shell nucleus. However, when multiple j shells are involved, particularly

for doubly-open shell nuclei, seniority becomes strongly mixed by the Q ·Q
and other components of the two-body interaction.

Figure 4. Energy levels of
214Ra fitted to the lowest J =
0, 2, 4, and 8 levels by a se-
niority conserving interaction
(USp(10) dynamical symme-
try) and by a seniority non-
conserving interaction, with
an extra Q · Q interaction
which also fits the energy of
the lowest J = 6 state (U(10)
dynamical symmetry).

3.2. Multilevel pairing models

Consider first the Hamiltonian for 2j+1 particles in two levels of the same

spin j:

H =
∑

j

εj n̂j − G
∑

ij

Ŝi
+Ŝj

−. (15)

The ratio of the number of nucleons in the upper to the lower level is

shown for the ground state of this Hamiltonian in fig. ??. The results of

a numerical diagonalization are seen to be poorly reproduced by the BCS
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approximation but become increasingly better as the value of j increases.

In contrast, a number-projected quasi-particle approximation does exceed-

ingly well. It is found that, for this model?, a second-order phase transition

occurs in the j → ∞ limit at a critical value Gcrit of the interaction strength.

Figure 5. Ratio of the number of nucleons in the upper to the lower level for the ground
state of the two-level Hamiltonian (??) plotted as a function of g = G/Gcrit.

For many levels of different spins, the pure pairing model can be solved

because of an SU(2)⊕SU(2)⊕· · · dynamical algebra. For a more general

interaction, especially one that mixes multishell seniority, the complexity

of the problem becomes intractable. However, the number-projected quasi-

particle approximation remains viable. Thus, it is of considerable interest

to know that there is an elegant algebraic method for solving this problem

using the fact that number-projected multishell wave functions are well

known as Schur functions in the theory of orthogonal functions.? Unfortu-

nately, there isn’t space to present the theory here.

4. A pairing plus quadrupole model

We now consider a simple model with incompatible pairing plus quadrupole

interactions

H(α) = H0 + (1 − α)VSU(2) + αVSU(3) (16)

acting within the space of a single harmonic oscillator shell. When α =

0 or 1, this model is exactly solvable having SU(2) quasispin and SU(3)

dynamical symmetries, respectively. However, for 0 < α < 1, the eigenvalue
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equations are generally too complicated to solve because there is no simple

subgroup that contains both SU(2) and SU(3). Thus, to assess the nature

of the problem, we considered? a model system in which SU(2) and SU(3)

are embedded in the simplest algebraic structure that could contain both

of them, namely the compact symplectic algebra Usp(6). The eigenvalues

of the Hamiltonian obtained in this way are shown as a function of α in

fig. ??.

Figure 6. Energy levels of the pairing plus
quadrupole Hamiltonian (??) as a function
of α.

The results of this model are very insightful. First, we find that the

model exhibits a second-order phase transition which becomes increasingly

sharp as the particle number (48 for the results shown) increases. However,

what is most instructive is the structure of the wave functions in an SU(3)

basis, as a function of α. The expansion coefficients are shown in fig. ??. For

α = 1, the states are those of a single SU(3) irrep (32,8). For values of α .
0.58, the wave functions are complicated in an SU(3) basis. However, for

α ≥ 0.6 the amplitudes for all L values become essentially equal. According

to the definition given in section 2.2, the model suddenly acquires an SU(3)

quasidynamical symmetry. This results in a very subtantial reduction in

the effort required to compute the spectrum. In the first place, if one has

a solution for the L = 0 states, one has a very good approximation to the

solutions for the L > 0 states of the ground state band. And, in the second
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Figure 7. Eigenstates of the pairing plus quadrupole Hamiltonian (??) in an SU(3)
basis.

place, one can make good meaningful first guesses for the amplitudes of the

SU(3) coefficients for an iterative solution of the eigenvalue equations by a

method of successive approximations.

5. Conclusions

We have only given a solution to the pairing plus quadrupole problem in an

unrealistic situation. And we have certainly not given a solution to the gen-

eral problem of a Hamiltonian with components of incompatible symmetry.



December 13, 2002 16:41 WSPC/Trim Size: 9in x 6in for Proceedings RoweCM2002

10

However, we have gained valuable insights into the nature of the problem.

In particular, we have identified the concept of a quasidynamical symmetry,

both of the rigid rotor and SU(3) types, as a characteristic of a soft rotor

whose quadrupole shape fluctuations are caused either by centrifugal forces

or residual pairing interactions.

In this brief review, I have outlined the appearence of highly coherent

mixings of rigid rotor and SU(3) irreps in two models. In fact, the idea

of a quasi-dynamical symmetry was conceived on purely physical grounds,

and phrased mathematically in terms of an embedded representation, be-

fore the model examples to illustrate its occurence were constructed?. The

underlying idea is that rotational states are seen in nuclei only when the

rotational motions are adiabatic relative to other internal degrees of free-

dom. In such a situation, a rotating intrinsic frame of reference is close to

being an inertial frame in as much as the Coriolis and centrifugal forces are

negligible. Moreover, in the adiabatic limit, any residual interactions which

are rotationally invariant and not functions of the angular momentum, can

have strong effects on the intrinsic structure of a rotational nucleus. More-

over, whatever structure emerges should be the same for all states of a

rotational band for which the angular momentum and, hence, the inertial

forces are sufficiently small. These ideas lead naturally to the concept of

quasi-dynamical symmetry.
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