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Abstract

1 Introduction

Let me precede my introductory remarks by showing you (in fig. 1) the re-
sults of a model calculation I did recently. The model concerns the pairing of
interacting fermions at zero temperature and their condensation into a lowest
single–particle level when the strength of the interaction between the fermions
falls below a critical value. The details of the model are not important. What
is interesting is that the results are characteristic of a number of systems that
exhibit a persistent symmetry in the face of relatively strong symmetry breaking
interactions. As the number of particles approaches infinity, the model exhibits
a sharp second order phase transition at a critical strength of the interaction.
Such a model lets one examine the approach to a phase transition in a finite
system and try to understand the nature of persistent symmetries. I shall show
several such examples in this talk and discuss the symmetries of the systems in
the two phases. They will be shown to have some remarkable properties and
lead to the concept of a quasi–dynamical symmetry. This is an example of how
physics can lead to new mathematical concepts.

I suggest that without symmetry, in some form or other, the theoretical
physicist would be completely stymied. This raises the questions: “is symmetry
really prevalent in nature?” or “is its presence merely assumed by theoretical
necessity?”. I believe it is prevalent in nature provided one extends the concept
of symmetry to include quasi–dynamical symmetry.

Symmetry, in a dynamical sense, can be associated with the decoupling of
degrees of freedom. It is the essential ingredient that separates the physical
world into a hierarchical structure [1] and results in the objects of one level
becoming the building blocks of the next. Thus, for example, condensed matter
is described in terms of molecules, molecules in terms of atoms, atoms in terms
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Figure 1: The fractional occupancy of the upper single particle level of a two–
level model with interaction strength G in units of a critical value Gcrit. One
curve is for 14 particles and the other for 98. It is seen, when the particle
number is large and G < Gcrit, there is a clear reluctance of the system to give
up the symmetry in which all particles occupy the lowest level.

of nuclei and electrons, and so on. Symmetry makes chemical and physical pro-
cesses predictable. Without symmetry I cannot imagine that life, as we know
it, could have any order or even exist. Certainly it is hard to envisage how
we could relate to a physical world in which all degrees of freedom were inti-
mately coupled and chaotic. So what is the mechanism by which the decoupling
comes about? There are two important operational principles: adiabaticity and
symmetry.

Adiabaticity has to with differences of scale. For example, an atom comprises
a nucleus and electrons. Nuclei are 4 to 5 orders of magnitude more massive
than electrons and occupy a minute fraction of an atom’s volume. Atomic
excitation energies are ∼ 1 eV whereas nuclear excitation energies are typically
100 keV. Thus, for nuclear physics, atomic electrons are like flies on the back of
an elephant whereas, for atomic physics, the nucleus can be regarded as frozen
and inert; there is an adiabatic separation of the nuclear and atomic degrees of
freedom. Such a separation of dynamical degrees of freedom is the fundamental
requirement for the validity of the renowned Born–Oppenheimer approximation
[2].

Symmetry enters the picture because it is the essential mathematical lan-
guage for describing adiabatically decoupled collective motions. However, we
need to go beyond the elementary concepts of static symmetry. We need dy-
namical symmetry to construct and solve models. I shall argue that we also
need quasi–dynamical symmetry to describe real physical systems.

In this talk, I shall first illustrate the concept of dynamical symmetry as a
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mechanism for describing the adiabatic separation of rotational and vibrational
motion for a diatomic molecule. I will then consider the soft, fluid–like, rota-
tions of a nucleus for which quasi–dynamical symmetry is more appropriate.
After that, I will show that the phenomenon of quasi–dynamical symmetry is
robust and survives even when there are huge symmetry breaking interactions. I
will conclude with a model having two fundamentally incompatible phases and
show the emergence of superfluid rotational motions as the union of the two
incompatible phases.

2 The rotations of a diatomic molecule

The rotational motions of a diatomic molecule provides a simple example of
adiabatically decoupled degree of freedom.

Consider the energy–level spectrum of the HCl molecule shown in fig. 2. It
can be seen that the lowest states are rotational and the angular momentum has
to exceed 50~ before the rotational energy becomes comparable to the energy
of the first vibrational state. Thus, the lower rotational states are adiabatic.

Figure 2: Energy levels of the ground-state rotational band and first excited
vibrational band of the HCl molecule.

Solution of the Schrödinger equation for the molecule is possible because of
a separation of variables for the radial and rotational degrees of freedom. This

3



separation of variables is associated with a direct product group SU(1,1) × O(3),
where SU(1,1) is a dynamical group for the Hamiltonian and O(3) is a symmetry
group in the following sense. A group G is said to be a dynamical group for a
Hamiltonian on a Hilbert space H if the Hamiltonian leaves all the G–invariant
subspaces of H invariant. G is a symmetry group of the Hamiltonian if it leaves
the Hamiltonian invariant.

Analytical solutions are possible for a diatomic molecule when the interaction
between the two atoms is approximated by the so–called Davidson potential [3]

V (r) =
1

2
mω2

(
r2 +

ε

r2

)
, (1)

where m is the reduced mass for the two atoms; ω and ε are adjustable param-
eters. This potential is shown in fig. 3. It has a minimum, corresponding to the
equilibrium separation distance of the two atoms, at r0 = ε1/4 and a strength
proportional to ω2.

Figure 3: The Davidson potential for a diatomic molecule.

With addition of the relative kinetic energy for the two atoms, the Hamilto-
nian for the molecule becomes, in harmonic oscillator units of length,

H =
1

2
~ω

(
−∇2 + r2 +

ε

r2

)
. (2)

This Hamiltonian is invariant under the group O(3) of inversions and rotations;
thus it commutes with components of the angular momentum

L̂ = −r×∇ , (3)

where the latter are the infinitesimal generators of SO(3). Moreover, H ∝
Z1 + Z2 is an element of the SU(1,1) Lie algebra spanned by the operators

Z1 = −∇2 +
ε

r2
, Z2 = r2 , Z3 = 1

2 (r · ∇ + ∇ · r) . (4)

Thus, its eigenvalues are easily determined [4] to be given by

Enl =
[
2n + 1 +

√
(l + 1

2)2 + ε
]
~ω , (5)
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where n and l are radial and angular momentum quantum numbers, respectively.
Eigenfunctions can also be derived without difficulty.

For a relatively large value of ε, the rotational motions for such a potential
become adiabatic relative to the vibrational motions and the energies are given
by the expansion

Enl = E0 + 2n~ω + Al(l + 1) −Bl2(l + 1)2 + . . . . (6)

This expression gives energy levels for the HCl molecule which the eye can-
not distinguish from the measured values; the model values for the A and B
parameters are shown on fig. 2. Details of the model are given in ref. [4].

3 Rotational states of a heavy nucleus

The emergence of rotational states in molecules is easy to understand because
molecules are relatively rigid. In contrast, nuclei are more fluid–like. Never-
theless, numerous rotational bands are seen in a wide range of nuclei. The
property that nuclear rotations share with molecular rotations is that, when
they are seen, they are adiabatic relative to the competing degrees of freedom.

3.1 The nuclear symplectic model

Although it is not widely known, there is a partial separation of nuclear variables
into collective coordinates and a complementary set of intrinsic coordinates [5, 6,
7]. It turns out that, in parallel with that for diatomic molecules, this separation
is also associated with a direct product group. The group is Sp(3, R) × O(A),
where Sp(3,R) is a dynamical group for a collective Hamiltonian [8] and O(A),
where A is the nucleon number, is a complementary intrinsic group [9, 10, 11].
Some of the remarkable “dual pair” properties of the group Sp(3, R) × O(A)
were identified in a nuclear physics context by Moshinksy and Quesne [12] and
subsequently exploited widely in representation theory [13, 14].

The symplectic group Sp(3,R) is basically the group of all linear canonical
transformations of a set of position and momentum coordinates for a single
particle in three dimensions. Thus, it acts on a many–nucleon phase space by
transforming all nucleon coordinates in the same way. Thus, by definition, it is
group of collective transformations.

The Lie algebra sp(3, R) of Sp(3, R) is spanned by the bilinear products of
nucleon position and momentum coordinates summed over all nucleons; i.e., the
combinations

A∑

n=1

xnixnj ,
A∑

n=1

pnipnj

A∑

n=1

(xnipnj + pnjxni) . (7)

It contains, for example, the harmonic oscillator shell model Hamiltonian

H0 =

A∑

n=1

3∑

i=1

[ 1

2m
p2

ni +
1

2
mω2x2

ni

]
(8)
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and all components of the nuclear mass quadrupole tensor Q;

Qν =

A∑

n=1

r2
nY2ν(θn, ϕn) , ν = 0,±1,±2 . (9)

Thus, it is possible to make collective Hamiltonians that are polynomials in
the elements of the sp(3, R) algebra and which, therefore, leave an Sp(3, R)
irrep invariant. Moreover, because the sp(3, R) algebra contains the quadrupole
operators, it is also possible to compute E2 transition rates between Sp(3, R)
model eigenstates.

A suitable Hamiltonian for the study of nuclear rotational bands with fully
microscopic wave functions is the Hamiltonian

H = H0 + V (Q) , (10)

where

V (Q) = χ

(
Q · Q +

ε

Q ·Q

)
(11)

is a Davidson potential with respect to quadrupole deformation degrees of free-
dom. The Davidson potential was first used in the nuclear collective model con-
text by Elliott et al. [15]; it has a minimum when the nucleus has a spheroidal
shape with a quadrupole moment equal to ε1/4.

The Hamiltonian of eqn. (10) is not analytically solvable. But, it can be
diagonalized numerically in a sequence of subspaces of an infinite–dimensional
Sp(3,R) irrep, defined in terms of a partially–ordered basis of harmonic states
(eigenstates of H0), until convergence is obtained to within the desired level of
accuracy.

The results of this model with adjusted values of χ and ε are shown in
comparison with the observed energy level spectrum of 166Er in fig. 4. Also
shown for comparison are the results of a phenomenological rigid rotor model.
The interesting result is that, although the parameters of the Davidson potential
were adjusted to get the observed deformation of the nucleus, the Hamiltonian
of the model contains the full microscopic kinetic energy. In contrast to the
rigid–rotor model, it has no adjustable moments of inertia. Thus, the fact that
the moments of inertia, that characterize the low–lying energy–level spacings,
come out right is a remarkable result which supports the proposition that the
dynamical content of the symplectic model is essentially correct. The figure also
suggests that real nuclei are not as rigid as those of either the rigid rotor model
or the symplectic model with a Davidson potential. Less rigid results can be
obtained in the symplectic model with a more realistic potential.
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Figure 4: Energy levels of the ground-state rotational band of the 166Er nucleus
in the SU(3) model, the Davidson model, and the phenomenological rotor model.
The numbers in boxes attached to arrows are E2 transition rates.

3.2 Symplectic model wave functions in an SU(3) basis

The symplectic model results shown in fig. 4 were computed in a shell model
space with basis states that reduces the subgroup chain

Sp(3,R) ⊃ U(1) × SU(3) ⊃ SO(3) ,
N0(λ0µ0) ρ N (λµ) K LM

(12)

where U(3) ∼ U(1) × SU(3) is the symmetry group of the harmonic oscillator
shell model Hamiltonian H0. Thus, basis states are labeled by the quantum
numbers and multiplicity indices shown and the rotational states that emerge
from the model are obtained as coefficients in the expansion

|αLM〉 =
∑

ρN(λµ)K

CρN(λµ)KL |ρN(λµ)KLM〉 . (13)

The coefficients are plotted for the angular momentum states L = 0, . . . , 10 in
fig. 5
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Figure 5: Histograms of the SU(3) amplitudes for the L = 0, . . . , 10 states.

The remarkable result is that the coefficients are essentially independent of
L; i.e., the rotational states are to a high degree of accuracy expressible in the
L–independent form

|αLM〉 =
∑

ρN(λµ)K

CρN(λµ)K |ρN(λµ)KLM〉 . (14)

What is going on? Clearly U(3) is not a symmetry nor even a dynamical sym-
metry for the model; there is an enormous mixing of its irreps. However, the
mixing occurs in a highly coherent way which indicates a completely new kind
of symmetry; we call it quasi–dynamical symmetry. It turns out that this kind
of symmetry is associated with a mathematically unusual kind of representation
of a Lie algebra called an embedded representation [16].

4 Embedded representations; quasi–dynamical

symmetry

An embedded representation of a Lie algebra is a true representation. But it is
embedded in an unusual way in some other representation.
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Definition: Let T be a (generally reducible) representation of a Lie algebra g
on a vector space V . Let E : U → V be an embedding of a vector space U in V
and let Π : V → U be the left inverse of E so that ΠE is the identity operator
on U . Then if the set {S(X) = ΠT (X)E; X ∈ g} of transformations of U is
a representation of g, i.e., if S(X)S(Y ) = S(X + Y ), then S is said to be an
embedded representation.

The embedding E : U → V identifies U with a subspace E(U ) of V . If
the representation T leaves this subspace invariant, then the representation S is
seen to be a subrepresentation of T . The interesting embedded representations
are those that are not subrepresentations.

To make the concept appear less strange, recall that if a representation T of a
Lie algebra contains a number of equivalent irreps, one can form subrepresenta-
tions by taking arbitrary linear combinations of the equivalent representations.
Embedded representation are obtained by taking linear combinations of irreps
that are merely similar to the extent that their matrix elements depend at most
linearly on some representation labels. The Lie algebras which exhibit such ir-
reps are the semidirect sums with Abelian ideals. However, many Lie algebras
(perhaps most) contract in the limit of large–dimensional irreps to semidirect
sums and, for them, embedded representations become possible as limiting sit-
uations.

Elementary examples of embedded representation are given for any Abelian
Lie algebra. For example, if g is a real Abelian Lie algebra, then any irrep
over the complex field is one-dimensional and defined by a linear function χ on
g, i.e., a function such that χ(αX + βY ) = αχ(X) + βχ(Y ), where X and Y
are elements of g and α and β are real coefficients. Thus, if T is a reducible
representation on a multidimensional Hilbert space V and |ϕ〉 is any state in V ,
then the function on g defined by

χ(X) = 〈ϕ|T (X)|ϕ〉, ∀X ∈ g, (15)

is an irrep of g. However, unless |ϕ〉 is a common eigenstate of every T (X), this
irrep is not a subrepresentation of T .

A more interesting example is provided by the SGA of a two–dimensional
rotor; i.e., an algebra with basis {x, y, L}. This algebra has infinite–dimensional
unitary irreps, {T R}, labeled by a continuously variable real number R; they
are carried by the square integrable functions on the circle, L2(S1). Thus, a
basis for an irrep is given by the functions { ψ m;m = 0,±1,±2, . . . }, where

ψ m(θ) = eimθ (16)

and

[TR(x)ψ m](θ) = R cos θ ψ m(θ) ,

[TR(y) ψ m](θ) = R sin θ ψ m(θ) , (17)

[T R(L)ψ m](θ) = −i
∂

∂θ
ψ m(θ) = m ψ m(θ) .
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The states of such an irrep can be interpreted as those of a particle moving on
a circle of radius R.

Now suppose that T is the representation of this same algebra on V =
L2(R2), the square integrable functions on the Euclidean plain, with action

[T (x)Ψ](r, θ) = r cos θ Ψ(r, θ) ,

[T (y)Ψ](r, θ) = r sin θ Ψ(r, θ) , (18)

[T (L)Ψ](r, θ) = −i
∂

∂θ
Ψ(r, θ) .

Suppose that E embeds the Hilbert space L2(S1) in V as the subspace of func-
tions spanned by the set {Ψm = E( ψ m);m = 0. ± 1,±2, . . .} where

Ψm(r, θ) = f(r) ψ m(θ) , (19)

with f a fixed radial function. Then, S = ΠTE acts on L2(S1) by

[S(x)ψ m](θ) = [ΠT (x)Ψm](θ) = R̄ cos θ ψ m(θ) ,

[S(y)ψ m](θ) = [ΠT (y)Ψm](θ) = R̄ sin θ ψ m(θ) , (20)

[S(L) ψ m](θ) = [ΠT (L) ψ m](θ) = m ψ m(θ) ,

where

R̄ =

∫
|f(r)|2 r2 dr . (21)

S is seen to be an irrep isomorphic to T R̄. However, it not a subrepresentation
of T ; it is an embedded representation.

These concepts have a clear physical interpretation. For example, a descrip-
tion of the rotational states of a diatomic molecule by a basis for an irrep of a
rotor model algebra would amount to making the assumption that the radial
wave function is a delta function, thereby implying a precise value for the dis-
tance separating the two atoms. This may be a reasonable assumption for some,
relatively rigid, molecules but it makes little sense for a softer rotor. Neverthe-
less, if the rotations of even a relatively soft rotor are slow enough the Coriolis
and centrifugal forces may effect only small couplings of the internal and ro-
tational degrees of freedom. It is seen that describing a rotor by the states of
an irreducible embedded representation corresponds to turning off the Coriolis
and centrifugal forces; i.e., treating the rotating frame as an inertial frame. The
effects of these neglected forces can subsequently be restored by mixing different
embedded repesentations. One then expects to see that the low angular momen-
tum states of a rotational band, for which the rotational motion is adiabatic,
are rather well described by the states of a single embedded irrep but that the
higher angular momentum states progressively exhibit more effects of Coriolis
and centrifugal coupling perturbations.

It is also clear that the expansion coefficients for the states of an embedded
irrep in terms of rigid rotor states have a physical interpretation in terms of
vibrational wave functions.

Systems whose states are described (maybe in some approximation) by em-
bedded representations are said to have a quasi–dynamical symmetry.
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5 A superconducting to rotational phase transi-

tion

I now give another example of a system that exhibits a quasi–dynamical sym-
metry. The example illustrates what can happen in a system with two funda-
mentally incompatible collective degrees of freedom.

Consider a many–fermion model with Hamiltonian

H(α) = H0 + (1 − α)VSU(2) + αVSU(3) , (22)

defined such that, when the parameter α=0, the system has an SU(2) dynamical
symmetry and a spectrum characteristic of a finite spherical superconductor and,
when α = 1, it has an SU(3) dynamical symmetry and an adiabatic rotational
spectrum. For intermediate values of α, it may not be possible to compute the
spectrum of H. The reason for this is that the two dynamical symmetry groups
SU(2) and SU(3) are realized in very different ways with the result that the
smallest group that contains both SU(2) and SU(3) as subgroups may be too
large, in general, to be useful; it could even be infinite. The two dynamical
symmetry groups SU(2) and SU(3) are then said to be incompatible [17, 18].

To investigate what happens when α lies between 0 and 1, we considered
the special case in which the smallest Lie group that contains both SU(2) and
SU(3) is the unitary symplectic group USp(3). Even then, for a large fermion
number (N = 48 in the case considered), the dimensions of the representation
are large and the diagonalization of H is far from trivial.

The energy levels that result are shown in Figure 6. The left hand side of
the figure shows the non-adiabatic spectrum characteristic of the α = 0 limit.
Note that only the lowest energy state of each angular momentum in the range
L = 0, . . . , 8 is shown. The spectrum resembles that of a vibrator; in fact the
ground state corresponds to all the fermions bound together in Cooper pairs;
the excited states correspond to one or more broken pairs. The right hand side
of the figure shows an adiabatic rotational spectrum characteristic of the SU(3)
model [19]. Now, if the Hamiltonian were simply

H1(α) = (0.75− α)[H0 + VSU(2)] , (23)

the energy levels would decrease linearly with α and follow the straight lines
tangential to the α = 0 energies shown in the figure. (Note that the factor 0.75
instead of 1.0 in this expression is an adjustment, needed to get the observed
slope; it allows for the fact that VSU(3) makes a non–zero contribution to the
SU(2) energy levels.) On the other hand, if the Hamiltonian were

H2(α) = α[H0 + VSU(3)] , (24)

the energy levels would increase linearly from the origin to the α = 1 energies
shown. The results of the computation show that, for the full Hamiltonian
H, the energies flip from one behavior to the other within a relatively narrow
transition region. In fact, if the number N is increased, the transition region

11



Figure 6: Energies of the lowest J = 0, . . . , 8 states as a function of α for H(α).

becomes progressively more narrow until, in the limit, there is a sharp phase
transition.

At first sight, it would appear that the model is well described by the Hamil-
tonian H1(α) for α well below its critical value and by H2(α) for α well above.
However, the wave functions reveal a more interesting situation. They are shown
as histograms of the coefficients of the energy eigenstates in an expansion on
the SU(3) basis in Figure 7. If the states were simply eigenstates of H2(α) for
α above the transition, the coefficients would all be equal to those of the α = 1
limit; i.e., only a single SU(3) irrep would have a non–zero coefficient. This
is far from the situation. For α below the critical value, the wave functions
are very complicated (in the SU(3) bases); they would be simpler in the SU(2)
bases. However, even though there is much mixing of SU(3) irreps for values of
α just above the critical value, the mixing is remarkably coherent. All the states
of angular momentum in the range L = 0, . . . , 8, for which the coefficients are
plotted, are seen to be essentially identical. This is an indication that SU(3)
is a remarkably good quasi–dynamical symmetry. Thus, in spite of the huge
mixing of SU(3) irreps, the energy levels and E2 transition rates could be fitted
very well by an SU(3) model with a single irrep. In the limit as the particle
number approaches infinity, it can be shown that the irreps of SU(3) contract
to those of a rigid rotor algebra, by an Inönü–Wigner contraction process [20],
and that the states of the rotational band that emerges belong to an embedded
representation.

There is a natural physical interpretation of what is going on. For α below
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Figure 7: Wave functions in an SU(3) basis for the angular-momentum L =
0, 2, . . . , 8 states of the Hamiltonian H(α) for four values of α.

the critical value, the model represents a spherical superconductor and its low–
energy collective modes are only center–of–mass translations (not shown). The
energy levels shown are the relatively high energy excitations characteristic of
the energies required to break Cooper pairs. However, as the strength of the
(short–range) pair–coupling interaction is increased and replaced by a long–
range interaction of the SU(3) type, there comes a point at which the spherical
symmetry is broken, the model assumes a deformed equilibrium shape, and a
low–energy (adiabatic) rotational collective mode emerges. However, the pair
correlations persist and are large above the critical value of α, implying that it is
appropriate to think of the ground state band as that of a rotor with superfluid
flows. This interpretation is supported by the full spectrum, which exhibits
excited rotational bands associated with broken pairs.

Details of the model are given in ref. [18].
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6 Conclusions

The identification of quasi–dynamical symmetry as a mechanism for organizing
the emergence of collective phenomena provides an intuitive understanding of
the phenomena in microscopic terms. In particular, it helps explain why simple
models work as well as they do even in the face of large residual interactions that
might be expected to destroy the validity of a model. It explains why collective
effects are as robust and as insensitive to the details of the interactions as they
appear to be. It also emphasizes that one should not take the dynamical sym-
metry of successful collective models too literally. The model may be working
in an average, effective, manner of a quasi–dynamical symmetry.

The success of quasi-dynamical symmetry to explain the emergence of ro-
tational bands in nuclear physics, is only an example of the many phenomena
and systems one could wish to investigate using the concept. It would appear
that much is to be gained, for example, by examining phase transitions and
the emergence of collective phenomena in large but finite systems, in which the
number of particles can be varied. For such systems, it becomes feasible to make
realistic or semi–realistic model investigations which can also be tested against
experiment so that one can understand in considerable detail the way correla-
tions and coherence properties develop. For such purposes nuclear physics is
invaluable; indeed, it is essentially unique in exhibiting many–body phenomena
that can only be observed elsewhere in infinite condensed matter systems.
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[20] E. İnönü and E.P. Wigner, Proc. Natl. Acad. Sci. (N.Y.), 39 (1953) 510.

15


