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VCS theory is perhaps the simplest and most effective way known for comput-
ing the matrix elements of a Lie algebra. It is a mathematical tool that noone
who is serious about using algebraic methods in physics should be without. It
encorporates the mathematical theories of induced representations and geometric
quantization in a physically intuitive manner that makes it easy to construct the
explicit representations of a desired Lie algebra in a chosen basis in a systematic
manner. Its practical utility has been confirmed in numerous applications.

1 Introduction

VCS theory was developed in nuclear physics to provide practical and efficient ways
to do calculations with non-trivial algebraic models. It was designed for use with
the symplectic model 1 on which the microscopic theory of nuclear collective motion
is founded 2. However, it subsequently proved capable of solving numerous other
problems in physics and the mathematics it employs 3.

VCS theory is a synthesis4,5of the powerful mathematical theories of induced
representations6 and geometric quantization7,8. It is accessible to physicists and
provides the explicit results they need. In addition to the standard (reducible)
representations of induced-representation theory , it gives the explicit matrices of
irreducible representations required for applications of symmetry in physics.

It is shown here how VCS theory is used to construct the representations of
su(3) in an su(2) basis 4, the representations of su(3) in an so(3) basis 9,10, and the
generic representations of so(5) in an so(3) basis 11,12. The theory has been applied
to many other Lie algebras and superalgebras (cf. ref. 4 for a list of early references)
and to the computation of SU(3) Clebsch-Gordan coefficients 13. As a theory of
quantization 5, VCS theory relates the classical and quantal representations of an
algebraic model and provides the maps between them. It resolves the problem with
Dirac’s canonical theory of quantization. It provides a physical perspective on the
methods of geometric quantization and simple ways to implement the prescriptions
of that theory. Moreover, the vector generalizations of coherent state theory provide
quantizations of systems with intrinsic gauge degrees of freedom 5. Unfortunately,
there is no space to discuss these many applications here.

2 Scalar coherent state representations

Definition (COHERENT STATES): If T is a representation of a Lie group G on a
Hilbert space and |0〉 is a fixed state in , then the states

{|g〉 = T †(g)|0〉 , g ∈ G} (1)

are called coherent states 14.
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If the representation T is irreducible, then the coherent states span the Hilbert
space for this irrep. Thus, any state |ψ 〉 ∈ is defined by its overlaps with a set
of coherent states in .

Definition (COHERENT STATE WAVE FUNCTIONS): If |0〉 is a fixed state in
the Hilbert space for a representation T of a group G, then any |ψ 〉 ∈ can be
represented by a coherent state wave function Ψ, i.e., a function over G with values

Ψ(g) = 〈g|ψ 〉 = 〈0|T (g)| ψ 〉 , g ∈ G . (2)

Suppose, for example, that R̂ is an irrep of SO(3)a of angular momentum L and
|0〉 ≡ |LK〉. Then a state |LM〉 has coherent state wave function ΨLM defined as
a function of Euler angles by

ΨLM (Ω) = 〈LK|R̂(Ω)|LM〉 = DL
KM(Ω) . (3)

Depending on the choice of the fixed state |0〉 it is generally sufficient to specify
a state |ψ 〉 by giving the values of its coherent state wave function at a subset of
elements of G. In the above example, if |0〉 ≡ |L0〉 then the state |LM〉 has coherent
state wave function ΨLM defined over an SO(2)\SO(3) coset (the sphere) by

ΨLM (θ, ϕ) = 〈L0|eiL̂yθeiϕL̂z |LM〉 =

√
2L + 1

4
YLM(θ, ϕ) . (4)

Definition (COHERENT STATE REPRESENTATION): With coherent state wave
functions defined by eq. (2), the coherent state representation Γ(X) of an infinites-
imal generator X of the group G is defined by

[Γ(X)Ψ](g) = 〈g|T (X)|ψ 〉 = 〈0|T (g)T (X)|ψ 〉 , g ∈ G . (5)

For example, the group SU(2) has coherent state wave functions

Ψjm(z) = 〈j, m=−j|ezĴ− |jm〉 , m = −j, . . . , +j , (6)

and the definition (5) gives

Γ(J−) =
d

dz
, Γ(J0) = z

d

dz
− j , Γ(J+) = 2jz − z2 d

dz
. (7)

This is the well-known Dyson representation of su(2).

3 Vector coherent state representations

The above shows that a good choice of the fixed state |0〉 can result in a simple
coherent state representation. We now show that by choosing a vector space of
intrinsic states rather than a single state, much more simplification is achieved and
the theory becomes much more powerful and versatile.

Definition (VCS WAVE FUNCTIONS): If B = {ξν ≡ |ν〉} is an orthonormal basis
for a fixed subspace U ⊂ of the Hilbert space for an irrep T of a group G and

aWe use upper case symols for the group and lower case for its Lie algebra.
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N ⊂ Gc is a subset of elements of the complex extension of G such that the coherent
states

{|ν(z)〉 = T †(z)|ν〉 , z ∈ N , |ν〉 ∈ B} (8)

span the Hilbert space , then any state | ψ 〉 ∈ can be represented by a VCS wave
function Ψ, with vector values in U given by

Ψ(z) =
∑

ν

ξν 〈ν(z)|ψ 〉 =
∑

ν

ξν 〈ν|T (z)|ψ 〉 , z ∈ N . (9)

Definition (VCS REPRESENTATION): With VCS wave functions defined by
eq. (9), the VCS representation Γ(X) of an infinitesimal generator X of the group
G is defined by

[Γ(X)Ψ](z) =
∑

ν

ξν 〈ν(z)|T (X)|ψ 〉 =
∑

ν

ξν 〈ν |T (z)T (X)|ψ 〉 , z ∈ N . (10)

4 VCS representations of su(3) in an su(2) basis

The su(3) algebra is a subalgebra of traceless Hermitian complex linear combina-
tions of a set of matrices {Cij} with entries

(Cij)kl = δikδjl (11)

and commutation relations

[Cij , Ckl] = δjkCil − δilCkj . (12)

The complex extension of su(3) is spanned by the matrices

e2 = C13 , e3 = C12 , (13)

H1 = C11 − 1
2 (C22 + C33) , H2 = C22 − C33 , e1 = C23, f1 = C32 , (14)

f2 = C31 , f3 = C21 . (15)

These matrices are associated with the root vectors of the root diagram for su(3)
shown in fig. 1. The horizontal root vectors define a u(2)⊂su(3) subalgebra.

Figure 1. The root diagram for su(3) showing a u(2) subalgebra and complementary sets of raising
and lowering operators. Also shown are outlines of the weight diagrams for irreps of highest weight
(λ, 0) and (λ,µ) and their highest grade states.
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For an irrep T of highest weight (λ, 0), it is best to choose the highest weight
state as the fixed state for a scalar coherent state representation. This choice results
in considerable simplification because the highest weight state is annihilated by the
raising operators ê2 = T (C12), ê3 = T (C13), and the su(2) operators Ĥ2, Ĉ23, Ĉ32;
it satisfies the equations

Ĥ1|0〉 = λ|0〉 , Ĥ2|0〉 = Ĉ23|0〉 = Ĉ32|0〉 = ê2|0〉 = ê3|0〉 = 0 . (16)

The Hilbert space for the representation T of highest weight (λ, 0) is then spanned

by the states {|z〉 = ez∗
2 f̂2+z∗

3 f̂3 |0〉} for a suitable range of a pair of complex variables
z2 and z3.

For a general irrep T of highest weight (λµ), the states that are annihilated by
the ê2 and ê3 raising operators

U =
{
|φ〉 ∈ | ê2|φ〉 = ê3|φ〉 = 0

}
(17)

are not also annihilated by elements of the u(2) ⊂ su(3) subalgebra. However,
they span a u(2)–invariant subspace U ⊂ of highest grade states. Moreover, if
{ξν ≡ |sν〉} is an orthornormal basis for U indexed by ν, then the Hilbert space for

the su(3) representation T is spanned by the states {ez∗
2 f̂2+z∗

3 f̂3 |sν〉} for a suitable
range of the complex variables z2 and z3. Thus, any state |ψ 〉 in the Hilbert space
is represented by the VCS wave function

Ψ(z) =
∑

ν

ξν〈sν|eẑ|ψ 〉 , ẑ = z2ê2 + z3ê3 . (18)

An element X of the su(3) algebra is then represented as a linear operator Γ(X)
on the VCS wave functions that is defined by

[Γ(X)Ψ](z) =
∑

ν

ξν〈sν|eẑX̂|ψ 〉 =
∑

ν

ξν〈sν|X̂(z)eẑ |ψ 〉 , (19)

where

X̂(z) = eẑX̂e−ẑ = X̂ + [ẑ, X] + 1
2 [ẑ, [ẑ, X̂ ]] . (20)

Explicit expressions for the Γ(X) operators are obtained by first observing that
X̂(z) is an element of su(3) and that

∑
ν ξν〈sν|f̂ie

ẑ |ψ 〉 = 0 ,
∑

ν ξν〈sν|êie
ẑ |ψ 〉 = ∂iΨ(z) , (21)

∑
ν ξν〈sν|Ĥ1e

ẑ|ψ 〉 = (λ + s)Ψ(z) ,
∑

ν ξν〈sν|Ĥ2e
ẑ|ψ 〉 = 2ŝ0Ψ(z) , (22)

∑
ν ξν〈sν |Ĉ23e

ẑ |ψ 〉 = ŝ+Ψ(z) ,
∑

ν ξν〈sν |Ĉ32e
ẑ|ψ 〉 = ŝ−Ψ(z) , (23)

where ŝ0 and ŝ± are intrinsic spin operators defined such that

ŝ0ξν = ν ξν , ŝ± ξν =
√

(s ∓ ν)(s ± ν + 1) ξν±1 , (24)

with s = µ/2. It follows that

Γ(H1) = λ + s − 3
2 n̂ , Γ(H2) = 2(ŝ0 + ĵ0) , (25)

Γ(C23) = ŝ+ + ĵ+ , Γ(C32) = ŝ− + ĵ− , Γ(ei) = ∂i , (26)

Γ(f2) = [λ − ŝ0]z2 − ŝ+z3 − z2

∑
i zi∂i , (27)

Γ(f3) = [λ + ŝ0]z3 − ŝ−z2 − z3

∑
i zi∂i , (28)
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where

n̂ =
∑

i

zi∂i , ĵ0 = 1
2 (z2∂2 − z3∂3) , ĵ+ = z2∂3 , ĵ− = z3∂2 . (29)

It is seen that all the operators are simply expressed in terms of the elements ŝi and
ĵi of two su(2) algebras, one of which of which is regarded as an intrinsic spin. The
most complicated operators in the set are Γ(f1) and Γ(f2). However, their matrix
elements are easily determined by expressing them in the form

Γ(fi) = [Λ̂, zi] , (30)

where

Λ̂ = (λ + s)n̂ − 1
2 n̂(n̂ − 1) − 2ŝ · ĵ . (31)

The expressions suggest defining orthonormal basis states for the su(3) irrep in
the su(2)–coupled form

ψ jJM (z) = KjJ [ξ ⊗ ϕj(z)]JM , (32)

where

ϕjm(z) =
(z2)

j+m(z3)
j−m

√
(j + m)!(j − m)!

, m = −j, . . . , +j , (33)

and the norm factors {KjJ} remain to be determined. It is seen that Γ(H1), Γ(H2)

and Λ̂ are diagonal in this basis with eigenvalues given by

Γ(H1) ψ jJM = (λ + s − 3j) ψ jJM , Γ(H2) ψ jJM = 2M ψ jJM , (34)

Λ̂ ψ jJM = Ω(sjJ) ψ jJM , (35)

and

Ω(sjJ) = 2(λ + s)j + s(s + 1) − j(j − 2) − J(J + 1) . (36)

The operators Γ(C23) and Γ(C32) are simply the su(2) raising and lowering opera-
tors

Γ(C23) = Ĵ+ = ŝ+ + ĵ+ , Γ(C32) = Ĵ− = ŝ− + ĵ− , (37)

with the usual su(2) actions

Ĵ± ψ jJM =
√

J ∓ M)(J ± M + 1) ψ jJ,M±1 . (38)

The matrix elements of ∂i and zi can be evaluated explicity for the given basis
wave functions. Since the zi are components of an su(2) spin–1/2 tensor, the result
is conveniently expressed in terms of reduced matrix elements. With some Racah
recoupling, we obtain

〈sjJ‖ê‖s, j + 1
2 , J ′〉 = −

√
(2j + 1)(2j + 2)(2J + 1)(2J ′ + 1) W (1

2 jJ ′s : j + 1
2J)

×
Kj+1/2,J ′

KjJ
, (39)

〈s, j + 1
2 , J ′‖f̂‖sjJ〉 = (−1)J′−J+ 1

2 〈sjJ‖ê‖s, j + 1
2 , J ′〉 (40)

×
(

KjJ

Kj+1/2,J ′

)2

[ 12(2λ + µ) + J(J + 1) − J ′(J ′ + 1) − j + 3
4 ] ,
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Thus, by setting

(
Kj+1/2,J ′

KjJ

)2

= 1
2 (2λ + µ) + J(J + 1) − J ′(J ′ + 1) − j + 3

4 , (41)

we obtain the reduced matrix elements of a unitary representation with j and J
running over all integer and half-odd integer values for which the KjJ coefficients
are non-zero.

5 Representation of su(3) in an so(3) basis

For applications in nuclear physics, one needs the su(3) representations in an an-
gular momentum basis. They are easily constructed in coherent state theory as a
result of the well-known observation ?:

If |0〉 is a highest weight state for an su(3) irrep, then the rotated states

{R̂(Ω)|λµ〉; Ω ∈ SO(3)} (42)

span the Hilbert space of this irrep.

Suppose the Hilbert space has an orthonormal basis of angular-momentum
coupled states {|αLM〉}. Then, these states are represented by coherent state wave
functions of the form

ΨαLM(Ω) = 〈λµ|R̂(Ω)|αLM〉 =
∑

K

〈λµ|αLK〉DL
KM(Ω) . (43)

An element X of the su(3) Lie algebra then has coherent state representation as a
linear operator Γ(X) on the coherent state wavefunctions, defined by

[Γ(X)Ψ](Ω) = 〈λµ|R̂(Ω)X̂|ψ 〉 = 〈λµ|X̂(Ω)R̂(Ω)|ψ 〉 , (44)

where (with Ω̃ denoting the transpose of Ω)

X̂(Ω) = R̂(Ω)X̂R̂(Ω̃) . (45)

In an angular-momentum basis, the su(3) algebra is spanned by the angular
momentum and quadrupole operators with components given in terms of the root
vectors shown in fig. 1 by

L0 = −i(C23 − C32) , L± = i(e3 − f3) ± (e2 − f2) , (46)

Q0 = 2H1 , Q±1 = ∓
√

3
2 [e2 + f2 ± i(e3 + f3)] ,

Q±2 =
√

3
2 [H2 ± i(C23 + C32)] . (47)

From the definition (44), the coherent state representation of a quadrupole
operator is given by

[Γ(Qm)ΨκLM ](Ω) = 〈λµ|R̂(Ω)Qm|κLM〉

=
∑

ν

〈λµ|Q̂ν |κLK〉D2
νm(Ω)DL

KM(Ω) . (48)
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The matrix elements 〈λµ|Q̂ν |κLK〉 are inferred from the expansions (46) and (47)
and the identities

〈λµ|L̂0|αLK〉 = K 〈λµ|L̂0|αLK〉 , (49)

〈λµ|L̂±|αLK〉 =
√

(L ∓ K)(L ± K + 1) 〈λµ|αL, K ± 1〉 , (50)

〈λµ|Ĥ1|αLK〉 = 1
2 (2λ + µ)〈λµ|αLK〉 , 〈λµ|Ĥ2|αLK〉 = µ〈λµ|αLK〉 , (51)

〈λµ|Ĉ32|αLK〉 = 〈λµ|f̂i|αLK〉 = 0 . (52)

One finds 10 that, if

ΨαLM =
∑

K

aK(αL)DL
KM , (53)

then

[Γ(Q) ⊗ ΨαL]L′M =
∑

κκ′

M
(L′L)
κ′κ aκ(αL)DL′

κ′M (54)

with

M
(L′L)
κ′κ = δκ′,κ

[
(2λ + µ + 3) + δK1σL′L − 1

2L′(L′ + 1) + 1
2L(L + 1)

]
(Lκ, 20|L′κ)

+δκ′,κ+2

√
3
2 (µ − κ)(Lκ, 22|L′κ + 2)

+δκ′,κ−2

√
3
2 (µ + κ)(Lκ, 2 − 2|L′κ − 2) , (55)

and

σL′L = 1
2 (µ + 1)(−1)λ+L ×





− 3L(L+1)
3−L(L+1) for L′ = L

L + 1 for L′ = L + 1
−L for L′ = L − 1
−1 for L′ = L ± 2 .

(56)

Thus, one needs only a table of Clebsch-Gordan coefficients to obtain explicit
matrix elements of the su(3) quadrupole operators in any given basis of a(αL)
vectors. However, to obtain the matrix elements of a unitary representation, one
needs an orthonormal basis. An orthonormal basis is constructed as follows.

A set of vectors {a(αL)} whose components are the expansion coefficients
{aK(αL)} of an orthonormal basis {|αLM〉} is now constructred by use of the
following three theorems:

Theorem 1 (Elliott): An SU(3) irrep of highest weight (λµ) contains a sequence
of SO(3) states of angular momenta

L =

{
λ + K, λ + K − 1, . . . , K for K 6= 0
λ, λ − 2, . . . ,0 or 1 for K = 0

(57)

with K running over the range

K = µ, µ − 2, . . .0 or 1 . (58)
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Theorem 2: If Ψ1 is a wave function from an irrep (λ1µ1) and Ψ2 is a wave
function from an irrep (λ2µ2), then Ψ defined by Ψ(Ω) = Ψ1(Ω)Ψ2(Ω) is a wave
function belonging to the irrep (λ1 + λ2, µ1 + µ2).

Thus, we can easily build up a non-orthonormal basis starting from the wave
functions for the (1, 0) and (0, 1) irreps:

Ψ
(1,0)
01M (Ω) ∝ D1

0M(Ω) , Ψ
(0,1)
11M (Ω) ∝ D1

1M(Ω) + D1
−1,M (Ω) . (59)

Theorem 3: A state |αLM〉 which is an eigenfunction of the scalar operator
[L ⊗Q ⊗ L]0 is characterized by an eigenvector of the matrix M (LL), i.e., a vector
aK(αL) satisfying the equation

∑

K′

M
(LL)
KK′ aK′(αL) = aK(αL) . (60)

Moreover, a set of vectors {a(αL)} which are all eigenvectors of the correspond-
ing {M (LL)} matrices define a set of orthogonal states with coherent state wave
functions given by eqn. (53).

Proof: The theorem follows from the observation that

[L ⊗Q ⊗ L]0|αLM 〉 ∝ [Γ(Q) ×ΨαL]LM (61)

and the observation that, for an SU(3) irrep, there are no multiplicities of L = 0
states for which [Γ(Q) × ΨαL]LM vanishes. Orthogonality of states of different L
and/or different M follows automatically from the transformation properties of the
states under SO(3) rotations. ¤

Thus, for each of the L values in eq. (57), one can diagonalize the corresponding
{M (LL)} matrix to obtain the {a(αL)} eigenvectors for a set of orthogonal states. It
then remains only to normalize these vectors such that the reduced matrix elements,
defined by the Wigner-Eckart theorem in an orthonormal basis by

[Γ(Q) × ψ αL]L′M =
1√

2L′ + 1

∑

β

ψ βL′M 〈βL′‖Q‖αL〉 , (62)

satisfy the hermiticity relationship of a unitary representation

〈βL′‖Q‖αL〉 = (−1)L−L′
〈αL‖Q‖βL′〉∗ . (63)

For a multiplicity-free representation, i.e., one for which the α label is redundant,
everything can be done analytically as shown explicitly in ref. 10. For example, for
the multiplicity free (λ, 0) irreps the reduced matrix elements are given by

〈L‖Q‖L〉 =
√

2L + 1 (L0, 20|L0) (2λ + 3) , (64)

〈L + 2‖Q‖L〉 =
√

2L + 1(L0, 20|L + 2, 0)
[
4(λ − L)(λ + L + 3)

] 1
2 . (65)

It is seen that the sequence of angular momentum states with L = 0, 2,4, . . . or
L = 1, 3, 5, . . . terminates with L = λ in accordance with the branching rule (57).
More details of the procedure are given in refs. 9,10,3.

VCS theory gives analytical asymptotic expressions for matrix elements of su(3)
in an so(3) basis that become accurate as the dimension of the representation
becomes large. This is because the su(3) algebra has the rotor model algebra as a
contraction limit.
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6 Representations of so(5) in an so(3) basis

I conclude by indicating that construction of the generic representations of so(5) in
an so(3) basis, is also straightforward by VCS methods. A computer code for im-
plimenting the construction, written by Peter Turner 12, and will soon be generally
available.

Constructions have been given for the so-called one-rowed representations by
several authors (reviewed in ref. 11). These are the representations that appear in
the space of a single particle in a five-dimensional harmonic oscillator and in the
IBM1 version of the Interacting Boson Model 15. The generic two-rowed represen-
tations occur for two or more particles in a five-dimensional oscillator and in the
neutron-proton IBM2 version of the Interacting Boson Model.

It was shown a while ago by Hecht and myself 11 that the one-rowed so(5)
representations are constructed simply and systematically by the methods outlined
in section V for su(3). For the solution of this problem, we did not need the
full power of VCS theory; the coherent state wave functions were simple scalar
functions. However, for the generic representations, vector-valued coherent state
wave functions are needed.

Parallels with the su(3) representation theory can be seen by comparison of the
root diagrams for the two algebras, shown respectively in figs. 1 and 2. Both Lie
algebras are of rank two and their irreps can be labelled by highest weights (λµ). In
both cases the corresponding highest weight state |λµ〉 for an irrep is an eigenstate
of two mutually orthogonal Cartan operators Ĥ1 and Ĥ2 with eigenvalues

Ĥ1|λµ〉 = 1
2(2λ + µ) |λµ〉 , Ĥ2|λµ〉 = µ |λµ〉 . (66)

Moreover, for both Lie algebras, there are subspaces of highest grade states that
are annihilated by a subset of raising operators and carry irreps of the ‘horizontal’
u(2) algebras shown in figs. 1 and 2. Thus, for so(5), as for su(3) we can define an
orthonormal basis {ξν ≡ |sν〉; ν = −s, . . . , +s} of highest grade states for a u(2)
irrep of spin s = µ/2. Constructing an so(5) irrep in an so(3) basis by inducing from
this u(2) irrep using VCS theory is now made possible by the following observation.

Figure 2. The root diagram for so5 showing a u(2) subalgebra and complementary sets of raising
and lowering operators. Also shown are outlines of the weight diagrams for irreps of highest weight
(λ, 0) and (λ,µ) and their highest grade states.

RoweErice: submitted to World Scientific on April 8, 2003 9



Observation: Provided the Cartan subalgebra for so(5) is chosen such that it con-
tains no component of the angular momentum, then the set of states {R̂(Ω)|sν〉;Ω ∈
SO(3)} spans the Hilbert space for the so(5) irrep of highest weight (λµ).

It follows that, if the highest grade states {|sν〉} are assigned wave functions
{ξν} then a state |ψ 〉 of the so(5) irrep of highest weight (λµ) is defined by the set
of overlaps

Ψ(Ω) =
∑

ν

ξν〈sν|R̂(Ω)|ψ 〉 . (67)

Thus, the vector- valued function Ψ over the group SO(3) is a VCS a wave function
for the state |ψ 〉. The rest of the construction follows the general prescription for
such VCS representations.

7 Discussion

The above fairly detailed outline of the su(3) irreps in both su(2) and so(3) basis
give the essential principles underlying VCS theory. The application to so(5) is
an indication of how the theory can be applied systematically to the construction
of representations by straighforward systematic methods that have traditionally
proved challenging. The limitations of the theory have yet to be discovered.
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