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This talk focuses on three topics: the development of a program to determine
SO(5) spherical harmonics and SO(5) Clebsch-Gordan coefficients; efficient ways
to do collective model calculations in an SU(1, 1) × SO(5) ⊃ U (1) × SO(3) basis;
and quasi-dynamical symmetry in an IBM second-order phase transition.

1. Introduction

Attempts to understand phase transitions have profited considerably from

the study of models with symmetry. Landau stated that two phases of

matter with different symmetries (which cannot change continuously from

one to the other) must be separated by a line of transition. Consider a

system with control parameter α which is in a phase with a symmetry

group G1 when α = 0 and in a phase with symmetry group G2 when

α = 1. The question then is what happens when α is varied continuously

from 0 to 1? It often transpires that the model exhibits a second-order

phase transition from a phase characterized by one symmetry to a phase

characterized by the other. However, closer examination reveals that, in

the phase characterized by the G1 symmetry, the symmetry of the system

is increasingly distorted by the forces that favour the competing phase, as

α is increased, until a point comes at which it can be distorted no further

and a rapid change occurs to a phase dominated by the G2 symmetry.

A complementary behaviour may be observed when the critical point is

approached from the other side. The distorted symmetries, called quasi-
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dynamical symmetries, have an elegant expression in the language of group

theory and lead to new concepts in representation theory of considerable

significance for understanding why models with symmetries are often more

successful in practice than they apparently have any right to be. Such

phase transitions have been examined in a variety of models.1 A review of

quasi-dynamical symmetry has been given in Ref.2

2. Bases for the hydrodynamic collective model

Standard basis functions are given by eigenfunctions of the harmonic vi-

brator Hamiltonian

Ĥ =
1

2B
∇2 +

1

2
Bω2β2 , (1)

where β2 = q · q is the squared length of the quadrupole tensor. This

Hamiltonian is U(5), SO(5), and SO(3) invariant and an element of an

SU(1, 1) × SO(5) spectrum generating algebra. These basis functions

ΨnvαLM(β, γ, Ω) = Rnv(β)YvαLM(γ,Ω) , (2)

reduce the subgroup chain

SU(1,1) × SO(5) ⊃ U(1) × SO(3) ⊃ SO(2)

v α v L M
(3)

The SU(1,1) ⊃ U(1) beta wave functions are well known in terms of gen-

eralized Laguerre polynomials. A basis of SO(5) ⊃ SO(3) ⊃ SO(2) wave

functions can be written down immediately (cf. Ref. 3) in the form

ΦtKLM(γ,Ω) = ftKL(γ)
[
DL

KM (Ω) + (−1)LDL
−K,M(Ω)

]
, (4)

where the functions {ftKL} are simple polynomials in cos γ and sin γ and

K is an even integer. This basis is then orthonormalized sequentially to

give SO(5) spherical harmonics that satisfy the familiar inner product
∫

Y∗
vαLM(γ, Ω)Yv′α′L′M′(γ, Ω) sin 3γ dγ dΩ = δvv′δαα′δLL′δMM′ . (5)

The integrals needed for this procedure are evaluated analytically although

a computer is used to keep track of the results. The methods we use3 make

build on many of the results of Chacón et al.4

Having determined a set of SO(5) spherical harmonics, it is straightfor-

ward to compute the SO(5) CG coefficients of relevance to the collective
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model and the IBM1 by evaluating the integrals
∫

Y∗
v3α3L3M3

(γ, Ω)Yv2α2L2M2(γ, Ω)Yv1α1L1M1(γ, Ω) sin 3γ dγ dΩ

∝ (v1α1L1M1, v2α2L2M2|v3α3L3M3) . (6)

CG coefficients for the couplings v ⊗ 1 → v′ are tabulated in Ref.3

3. A more efficient basis for deformed nuclei

With a basis of SO(5)-coupled wave functions, it is possible to diagonalize a

general collective model Hamiltonians. However, for well-deformed nuclei,

a large number of spherical vibrator basis states are needed for accurate

results.

As shown by Elliott et al.5, beta wave functions that are much closer to

those of a deformed nucleus are given by eigenfunctions of the Hamiltonian

Ĥ(β0) = − 1

2B
∇2 +

1

2
Bω2

(
β2 +

β4
0

β2

)
, (7)

where β0 is a suitably chosen parameter. The potential for this Hamiltonian

has a minimum value when β = β0. As shown in Refs.6,7, this Hamiltonian

also defines a basis for the collective model that reduces the subgroup chain

SU(1, 1)× SO(5) ⊃ U(1)×SO(3), where the SU(1,1) algebra is spanned by

operators (with β now expressed in harmonic oscillator units)

X̂1 = 1
4

(
−∇2 − β2 +

β4
0

β2

)
, (8)

X̂2 = 1
4 (q · ∇ + ∇ · q) , (9)

X̂3 = 1
4

(
−∇2 + β2 +

β4
0

β2

)
, (10)

that satisfy the commutation relations

[X̂1, X̂2] = −iX̂3 , [X̂2, X̂3] = iX̂1 , [X̂3, X̂1] = iX̂2 . (11)

The energy-level spectrum for the Hamiltonian (7) is given by5,6

Eνv = (2ν + λv)~ω, λv = 1 +

√(
v + 3

2

)2
+ β4

0 (12)

and the corresponding wave functions are again known in terms of gener-

alized Laguerre polynomials.

As an example of the kind of calculation that can be done with the

above-defined basis wave functions, Fig. 1 shows the energy-level spectrum

and E2 transition rates obtained by diagonalizing the Hamiltonian

Ĥ(β0) = − 1

2B
∇2 +

1

2
Bω2

(
β2 +

β4
0

β2

)
− χ cos 3γ (13)
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with a single beta wave function. Results obtained to a similar accuracy in

a spherical vibrator basis require of the order of 100 basis wave functions.

Details of the calculation are given in Ref.7

Figure 1. The low-energy spectrum and B(E2) transition rates calculated for the Hamil-
tonian (7) in Ref.7

4. The U(5) to O(5) phase transition in the IBM

I now come to the main subject of this talk which is to review the evolution

of the states of a system as it progresses from a phase with one dynami-

cal symmetry to another with variation of a control parameter. We have

studied several such systems and the results are remarkably similar.1 Here

I focus on a system of N interacting bosons having two states: a lower-

energy s-boson state of angular momentum L = 0 and a higher-energy

d-boson state of angular momentum L = 2. This model was developed for

use in nuclear physics8 but is of much wider interest.
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Consider the Hamiltonian

Ĥ(α) = (1 − α)n̂ +
α

N
Ŝ+Ŝ− , (14)

where n̂ is the d-boson number operator and

Ŝ+ = 1
2(d† · d† − s†s†), Ŝ− = 1

2(d · d − ss) . (15)

are the raising and lowering operators of an SU(1,1) Lie algebra. The

Hamiltonian Ĥ(α = 0) has eigenstates that reduce the subgroup chain

U(6) ⊃ U(5) ⊃ O(5) ⊃ SO(3) ⊃ SO(2) (16)

whereas eigenstates of Ĥ(α = 1) reduce the chain

U(6) ⊃ O(6) ⊃ O(5) ⊃ SO(3) ⊃ SO(2) . (17)

Moreover, Ĥ(α) is easy to diagonalize for arbitrary values of α, because it is

an element of an SU(1,1)+SU(1,1) Lie algebra. Thus, it is possible to follow

the progression of its eigenstates as a function of the control parameter α.

The low energy-level spectra for N = 20 and N = 40 are shown in Fig.

2. It is seen that the system appears to hold onto its U(5) symmetry as α

Figure 2. Spectrum of energy levels for N = 20 and 40 shown as a function of α for
the Hamiltonian Ĥ(α). Precise numerically computed energies are shown as continuous
lines. The dotted lines are the results of an RPA calculation, for α < 0.5, and the shifted
harmonic approximation, for α > 0.5.

increases until it approaches a transition region from below and similarly to

holds onto its O(6) symmetry as it approaches the transition region from

above. It is also seen that the transition region shrinks as N increases
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and, as evidenced by other calculations not shown, it approaches a singular

critical point αc = 0.5 as N → ∞.

However, a detailed inspection of the wave function shows the U(5)

⊂ U(6) symmetry to be badly broken, well before α enters the transition

region; thus, the persistent symmetries are really quasi-symmetries. For

α < 0.5, the quasi-U(5) symmetry can be understood in terms of the Ran-

dom Phase Approximation. The ground state is an s-boson condensate at

α = 0. In the RPA, the ground state becomes a quasi-s-boson condensate

when α 6= 0 in which pairs of s bosons are replaced by zero-coupled d bo-

son pairs. The RPA predictions for excitation energies and E2 transition

rates are shown in Figs. 2 and 3 which, respectively, show that the RPA

Figure 3. B(E2) transition rates for decay of the first excited v = 1 state to the ground
state for various values of N . The continuous lines for α < 0.5 are for the RPA and
those for α > 0.5 are for the shifted harmonic approximation (SHA).

excitation energies collapse and the E2 transition rate from the first excited

state to the ground state diverges as α → αc. However, for the values of N

shown, the RPA is a very good approximation in the region 0 ≤ α . 0.35.

Moreover, it becomes increasing accurate for all α < 0.5 as N increases.

The important observation for present purposes is that the RPA shows
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the existence of an effective Hamiltonian and effective quadrupole moment

operators

Ĥeff
1 (α) =

√
(1 − α)(1 − 2α) n̂, q̂eff

m = eeff(α)q̂m , (18)

which are idential to those of the α = 0 limit to within α-dependent nor-

malization factors. Thus, the results of the RPA are indistinguishable from

those of an effective IBM with U(5) dynamical symmetry.

Similar results hold for α > 0.5. The coefficients in the expansion

Ψνv=0 =
∑

n

Cνnϕnv=0 (19)

of the ground and first excited states of SO(5) seniority v = 0 are shown

in the U(5) basis for N = 60 in Fig. 4 for two α values. The remarkable

Figure 4. Coefficients of the lowest and first excited states of seniority v = 0 of the
Hamiltonian (7) for N = 60 and α = 1.0 and 0.75. It is seen that the wave functions
just reach the lower n = 0 boundary when α = 0.75.

fact is that the coefficients are given very precisely for large N by harmonic

oscillator wave functions for α = 1.0. Morever, the added term (1 − α)n̂

in the Hamiltonian behaves as a Lagrange multiplier and simply shifts the

centroid of each wave function to a smaller mean value of n but other-

wise leaves it unchanged until the shifted wave function reaches the n = 0

boundary (n cannot take negative values). This is the point at which a

shifted (coherent state) harmonic oscillator approximation starts to break

down. It can be shown that the centroid of a wave functions is shifted to

n = 0 at α = 0.5 but because of its width, the wings of a wave function

reach the n = 0 boundary for higher values of α for finite values of N ;
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the width of a harmonic oscillator wave function goes to zero as N → ∞.

It can be shown that, when the SHA (shifted harmonic approximation) is

valid, the properties of the N -boson system described by the Hamiltonian

Ĥ(α) are reproduced accurately by an effective Hamiltonian and effective

quadrupole moment operators

Ĥeff
2 (α) =

α

N
Ŝ+Ŝ−, q̂eff

m =

[
1 −

(
1 − α

α

)]1
2

q̂m (20)

which are indistinguishable from those of an effective IBM with O(6) dy-

namical symmetry. However, O(6) is only a quasi-dynamical symmetry of

the original N -boson model.

5. Concluding remarks

The above model analysis of a phase transition shows many properties that

have been observed in several similar systems that are of wide physical

significance. One is an explanation of why models with symmetry are of-

ten much more successful, than could reasonably be expected, even when

there are known to be relatively strong symmetry-breaking interactions.

The apparent persistence of symmetry is a wide spread phenomenon with a

physically natural interpretation in terms of quasi-dynamical symmetry and

the corresponding mathematical concept of embedded representations2. An

understanding of quasi-symmetry and why and when it occurs, is of partic-

ular importance for understanding what successful models can really teach

us about the systems they represent.
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