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Imaging as a Quantum State Discrimination problem
• Using coherence in the image plane to evade

“Rayleigh’s curse”  (theory: Mankei Tsang et al.)

Improving thermometry by making use of coherence
• (theory: Terry Rudolph et al.)

Using atomic coherence to study tunneling times, and play 
other fun games

• The Larmor clock
• Weak measurements
• Experimental progress (Fabry-Perot for atoms?)

Menu: a few small snacks on a theme 
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Toy problem: imaging a binary star
As we all know, if objects separated by less  
than ~width σ of the PSR (diffraction limit),  
we can’t “resolve” them 

… of course, that’s not to say that with  
enough data, we can’t tell there are two  
objects there, and where they are…

σ

s



Toy problem: imaging a binary star

How well can we estimate the separation 
s of two objects, for s < width σ of PSR, 
given N photons? 

σ / sqrt{N}  for N photons would seem 
reasonable?



No such luck!

σ / sqrt{N} is indeed how well you 
can find the centre of one object. 

But two closely separated gaussians just 
look like a slightly broader gaussian – 
the problem is to estimate the width, 
which proves much harder.



How well can you estimate a width?

Full variance V = V0 + s
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How well can you estimate a separation?

Full variance V = V0 + s
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The uncertainty in s does not merely remain  
large (σ/sqrt{N}) as s -> 0 ; 

it actually diverges as 1/s!

σ
s
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M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016). 

Information about  
centroid

Fisher Information  
about separation  
(vanishes at small sep.)

The Fisher information drops to 0 —   
the error of any unbiased estimator of s goes to infinity.

Quantum Fisher  
Information  
about separation 

—- constant!!

Classical



Where is the missing information? 
The classical F.I. considers only intensity…

Our problem is to distinguish various possible states of N photons 
– e.g., them in two spots separated by s or two spots separated by s+δ.

Single spots are easy:

≈ e-δ2 

(almost identical)

≈ e-Nδ2 

(nearly orthogonal,
if delta > 1/sqrt{N})

δ0

δ0

δ0
N

For two incoherent sources, the 2-spot distinguishability is essentially 
the same as the 1-spot distinguishability… how to optimally distinguish?

N

ss

ss
N

s+δs

s+δs



For two incoherent sources, the 2-spot distinguishability is essentially 
the same as the 1-spot distinguishability… how to optimally 

distinguish?

This becomes a quantum state discrimination problem

Project onto this TEM01  
mode to determine δ  
(for small δ, all the info)

δ 0= + δ – + + …



For two incoherent sources, the 2-spot distinguishability is essentially 
the same as the 1-spot distinguishability… how to optimally 

distinguish?

This becomes a quantum state discrimination problem

δ 0= + δ – +

SPLICE: 
Project onto any odd-parity mode,  
not necessarily TEM01 in particular — 
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INDEPENDENT OF s –  
for TEM01, retrieve σ/sqrt{N}

NOTE: For two incoherent spots displaced symmetrically 
from the origin, the overlap with the odd mode is exactly 

the same as for one spot or the other.



Projecting a double-spot onto an  
odd-parity mode

Source of symmetric variable- 
separation pair of spots

π

heralded single photons



Fisher Information of various schemes to 
estimate separation of point sources

M. Tsang, R. Nair, and X.-M. Lu, Phys. Rev. X 6, 031033 (2016).

“IPC” (image-plane counting)
Tsang et al.’s “SPADE,”  
simplified for optimized  
behaviour at small separation

Our Superresolved Position 
Localisation by Inversion of 
Coherence about an Edge

In an experimentally simple setup, 
obtain about 64% of the full Fisher 
Information for small separations – crucially, independent of s.

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



Observed vs. actual separation

SPLICE IPC
Approx 1500 photons / image Approx 3000 photons / image

rms width of PSF ~ 400µmrms width of PSF ~ 400µm

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



SD in inferred separation, vs. sactual

“divergence” for IPC

near-quantum-limited for SPLICE

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



This is not an unbiased estimator!
Approx 1500 photons / image

Approx 3000 photons / image

rms width of PSF ~ 400µm

But this “calibration curve”s  
slope goes to 0 as s gets small; 
any attempt to invert it will 
cause the errors to diverge.



Total RMS error, including bias 

For IPC, become dominated by bias, 1/N1/4

For SPLICE, remain near σ/N1/2

CONCLUSION: We have shown that a simple phase-mask technique removes the 1/s catastrophe, 
and permits us to achieve near-quantum-limited resolution, providing an unbiased estimator with 
σ/N1/2 resolution, yielding a quadratic-in-N advantage over even the best biased estimator possible 
with image-plane counting.  

With about 1500 photons, SPLICE determined the separation 3 times more accurately  
                                                            than IPC could with about 3000 photons

See also: T. Z. Sheng, K. Durak, and A. Ling, arXiv preprint arXiv:1605.07297 (2016); M. Paur et al. arXiv:
1606.08332 (2016); F. Yang, A. I. Lvovsky et al arXiv:1606.02662 [physics.optics].

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)



Mini-Pão 2: 
Thermometry  

as an optimal quantum discrimination problem
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Typical thermometry

Let energy of thermometer (small test object – 
in the extreme case, a single spin) equilibrate with  
that of sample…  
consider trying to distinguish two possible temperatures

At least for bosonic baths, a higher temperature means 
both a higher equilibrium state and a faster collision  
(equilibration) rate!

For high enough temperatures (w.r.t. the fundamental 
energy scale of the thermometer), it may be more 

effective to probe the rate than the steady state: 
as in this curve, maximum distinguishability achieved at finite times. 

viz. Jevtic, Newman, Rudolph, & Stace,  
PRA 91, 012331 (2015) 



But (for energy relaxation), T2 = 2T1
A thermometer which is initialized with coherence takes longer to reach this optimum time…

W.K. Tham, H. Ferretti, A.V. Sadashivan, 
& AMS, 1609.01589



Experimental results

initialize  
in excited 
state

initialize  
in ground 
state

initialize  
in coherent 
state

NB: minimum error is always achieved at finite t, not asymptotically; 
at most times, minimum error is achieved by using a coherent input.

W.K. Tham, H. Ferretti,  
A.V. Sadashivan, & AMS, 1609.01589



One example where global optimum requires coherence

Thermometry (that’s just the beginning)
For more details, see W.K. Tham, H. Ferretti, A.V. Sadashivan, and A.M. Steinberg, 1609.01589; 
for a simultaneous work,  

Luca Mancino, Marco Sbroscia, Ilaria Gianani, Emanuele Roccia, and Marco Barbieri, 1609.01590. 

Single-spin thermometer theory:  
Jevtic, S., Newman, D., Rudolph, T. & Stace, T. Single-qubit thermometry. PRA 91, 012331 (2015) 

Proposal for universal quantum-channel simulator: 
Wang, D., Berry, D., de Oliveira, M. & Sanders, B., PRL 111, 130504 (2013). 

See Marco Barbieri’s paper above for interesting thoughts about free energy; 
see ours for extensions to adaptive protocols for thermometry with a few qubits; 
see Higgins, B., Doherty, A., Bartlett, S., Pryde, G. & Wiseman, H. PRA 83, 052314 (2011) for the  

relevant theory behind the latter. 



Mini-Pão 3: 
Towards weak measurements of 

atomic tunneling times
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Towards weak measurements of 

atomic tunneling times



Watching a particle in a region it’s “forbidden” to be in

How long has the transmitted particle spent in the region?
Need a clock...



“Larmor Clock” 
(Baz’; Rybachenko; Büttiker 1983)

35

Two components mystified Büttiker; 
Feynman approach led to complex times, which mystified every one; 
It turns out these are weak values, whose Real and Imaginary parts are 
easily interpreted – but which hadn’t been invented yet.



Local “Larmor Clock” – how much time 
spent in any given region? 

!  

36



Where does a particle spend time inside the 
barrier?

37

Very little time in the 
center of the barrier!

Phys. Rev. A, 52(1), 32–42. AMS, Phys. Rev. Lett., 74(13), 2405–2409,

But – unlike the reflected 
particles – the 
transmitted ones “see” 
the region near the exit!



38

Conditional-probability “movie” of tunneling



One possible experimental sequence

! BEC in magnetic trap



! BEC in magnetic trap 
! Turn off trap, free 

expansion of 
condensate for 5 ms

One possible experimental sequence



! BEC in magnetic trap 
! Turn off trap, free 

expansion of 
condensate for 5 ms 

! Interaction with barrier

One possible experimental sequence



One possible experimental sequence



Atoms spilling around an  
optical “ReST” trap

43



Localized (fictitious) magnetic field 
(Raman coupling of two ground states)

44

Raman beams



Experimental sequence: current plan

45

 

Barrier

Raman beamsCrossed dipole trap



Our first observation of  
single-barrier tunneling

Background decay rate

Time-dep tunneling rate due to 
mean-field interaction (nonlinearity)

S. Potnis, R. Ramos, K. Maeda, L.D. Carr,  
AMS, 1604.06388; 

see also earlier work, e.g., 
R. Chang, et al., PRL 112, 170404 (2014)



Preliminary evidence of tunneling through a 
double barrier 

(Fabry-Perot cavity for atoms)

47

time

BEC wavepacket 
incident from the right

A narrow frequency component 
of the BEC remains trapped in the 
FP cavity – 
– we don’t yet know for how long!



Stern-Gerlach measurement

48

N

S



Calibration of Larmor clock for free 
propagation

49

 

(A [very low-precision] confirmation that : t = L / v !)



• Even in the image plane, much (even most) of the information may 
be in the optical phase and not the intensity – a new route to super-
resolution, requiring no structured illumination! 

  
• To build optimal thermometers at the mesoscopic scale, one should 

use coherence relaxation as well as energy relaxation. 
Such thermalization processes can be simulated using a universal 
optical quantum simulator. 

Adaptive techniques will be useful for building finite many-spin 
thermometers. 

• After talking about it for 20 years, we are getting close to being able 
to probe atoms while they tunnel through an optical barrier, using  
weak measurement to ask “where they were” before being 
transmitted! 

We have preliminary evidence that our Fabry-Perot cavity for 
ultracold Rubidium atoms is working. 

Summary

W.K. Tham, H. Ferretti, AMS arXiv:1606.02666 (2016)

W.K. Tham, H. Ferretti, A.V. Sadashivan, AMS, 1609.01589

In progress – for previous work, see e.g. S. Potnis, R. Ramos, K. Maeda, L.D. Carr, AMS, 1604.06388; 
R. Chang, S. Potnis, R. Ramos, C. Zhuang, M. Hallaji, A. Hayat, F. Duque-Gomez, J. Sipe, AMS, PRL 
112, 170404 (2014)


