Chapter 4
Oscillations

In this chapter we will discuss oscillatory motion. The si:}1)1p1‘asf exn.m.;;)l;astr;f ;:;t;
i ingi spring, but it is possible
otion are a swinging pendulum and a mass on & Sprl
l:xlsystam more complicated by introducing a damping force and/or an external
iving force. We will study all of these cases. ) )
dm'(?\legnre interested in oscillatory motion for two tea:sons, F'lrst, we study it
because we can study it. This is one of the few systems mlphysms wharle we c:;\:
solve the motion exactly. There's nothing Wrong with looégng :mdef th;ﬂ::p o
i tion is ubiqujfous 1n X
. now and then. Second, oscillatory mo |
::srgns that will become clear in Section 5.2. If there was ever atype of physical

system worthy of study, this is it. We'll start off by doing some }:\ecess‘arg m;t]h
ix)ll Section 4.1. And then in Section 4.2 we'll show how the math is applied to the

physies.

4.1 Linear differential equations

i i ioni in which x and its ti
linear differential equation 15 0né inwhichx i
?hr?ugh ﬂ;Z;: first powers. All example is 3% + Tx+x= (;h A;l a)((iar%ple fo; :
i i t . soaz 0 732 4 x = 0, If the right-hand slde ©
nlinear differential equation 15 3%+ i : i
1t-:;uﬂtion is zero, then we use the term homogeneous differential equazmm5 Ifﬂzte
: . .- [ — n
right-hand side is some function of ¢, as in the case of 3% — 4k = 9tthi l;a o
we use the term inflomogeneous differential equation. The gohal of this ¢ in :
i i i tial equations, both homogeneous
to learn how to solve linear different afic .
lixsahonmgeueous. These come Up Again and again in physics, so we had betier
tematic method of solving them. )
ﬁni‘i:};:cir;iques that we will use are best learned through axmp’;e;; 50 lllat st
) . . “
i i i tarting with some simple ones. Througl .o
solve a few differential equations, S \
this chapter, x is understood to be 8 function of ¢. Hence, & dot denotes time

differentiation.

e derivatives enter only

Example 1 (£ = ax): This is a very simple differential equation. There are two

weys (at least) to solve it.
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First method: Separate varisbles to obtain dx/x = adt, and then integrate to
obtain Inx = at + ¢, where ¢ is a constant of integration. Then exponentiate to obtain

x=de™, 4.1)
where A = £°. A is determined by the value of x at, say, £ = 0.

Second method: Guess an exponential solution, that is, one of the form x =
Ae®, Substitution into % = ax immediately gives @ = a. Therefore, the solution is
x = Ae™. Note that we can’t solve for 4, due to the fact that our differential equation
is homogeneous and linear in x (translation: 4 cancels out). 4 is determined by the
initial condition,

This method may seem a bit silly, and somewhat cheap. But as we will see below,
guessing these exponential functions (or sums of them) is acturlly the most general
thing we can try, so the method is indeed quite general.

Remark: Using this methad, you might be concerned that although we have found one
solution, we might have missed another one, But the general theory of differentinl equations
says that a first-order linear equation has only one independent solution (we'll just accept
this fact here). So if we find one solution, then we know that we've found the whole
thing. &

Example 2 (X = ax): Ifa is nepative, then we'Il see that this equation describes
the oscillatory motion of, say, a spring. If a is positive, then it describes exponentially
prowing or decaying motion. There are two ways (at least) to solve this equation.

First method: We can use the separation-of-variables method from Section 3.3
here, because our system is one in which the force depends only on the position x. But
this method is rather cumbersorme, a5 you found if you did Problem 3.10 or Exercise
3.38. Tt will certainly“worl, but in the case where our equation is /inear in x, there is
a much simpler method:

Second method: As in the first example above, we can guess a solution of the
form x(f) = Ae® and then find out what e must be. Again, we can’t solve for 4,
because it cancels out, Plugging 4e* into ¥ = ax gives ¢ = =./a. We have therefore

found two solutions. The most general solution is an arbitrary linear combination of
these,

x(1) = e/t 4 Be=VA!, (4.2)

which you can quickly check does indeed work. 4 and B are determined by the initial
conditions. As in the first example above, you might be concerned that although
we have found two solutions to the equation, we might have missed others, But the
general theory of differential equations says that our second-order linear equation has
only two independent solutions. Therefore, having found two independent solutions,
we know that we've found them all.

Very IMporTANT REMARK:  The fact that the sum of two different solutions isagain a solu-
tion to our equation is  monumentally important property of linear differential equations.




4.1 Linear differential equations

This property does not hold for nontinear differential equations, for example ¥ = bx,
because the act of squaring after adding the two solutions produces a cross term which
destroys the equality, as you should check (see Problem 4.1). This property is called the
principle of superposition. That is, superposing two solutions yields another solution. In
other words, linearity leads to superposition. This fact makes theories that are governed by
linear equations much easier to deal with than those that are governed by nonlinear ones.
General Relativity, for example, is based on nonlinear equations, and solutions to most
Genemal Relativity systems are extremely difficult to come by,

For equations with one main condition
{Those linear), you have permission
To take your solutions,

‘With firm resolutions,

And add them in superposition. &

Let’s say a liitle more about the solution in Eq. (4.2). If a is negative, then it is
helpful to define a = —w?, where o is a Teal number. The solution then becomes
x(t) = Ae’! + Be~'t Using e = cos 6 + isin#, this can be written in terms of
trig functions, if desired. Various ways of writing the solution are:

x(t) = dgimt +Bz""‘”, w

x(t) = Ccoswt + D sin wt,
(4.3)
x(t) = E cos{wt + ¢1),

x(t) = Fsin(wt + ¢7).

Depending on the specifics of a given system, one of the above forms will work better
than the others. The various constants in these expressions are related to each other.
For example, C = E cos¢) and D = —E sin ¢b), which follow from the cosine sum
formula. Note that there are two free parameters in each of the above expressions for
x(#). These parameters are determined by the initial conditions (say, the position and
velocity at f = 0). In contrast with these free parameters, the quantity e is determined
by the particular physical system we’re dealing with. For example, we'll see that for
& spring, o = \/k/_m, where k is the spring constant. w is independent of the initial
conditions.

If a is positive, then let’s define @ = 2, where « is a real number. The solution in
Eq. (4.2) then becomes x(r) = de®’ 4 Be~!., Using ? = cosh 8 + sinh 8, this can
be written in terms of hyperbolic trig functions, if desired. Various ways of writing
the solution are:

x(t) = 4™ + Be™™,

x(t) = Ccosheat -+ Dsinhat,
x(t) = Ecosh(eet + o),

x(t) = F sinh(at + ¢2).

(4.4)

Again, the various constants are related to each other. If you are unfamiliar with the
hyperbolic trig functions, a few facts are listed in Appendix A.
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Although the solution in Eq. (4.2) is completely correct for both signs of a, it’s
penerally more illuminating to write the negative-a solutions in either the trig forms
or the et exponential form where the i's are explicit. .

The usefulness of our method of guessing exponential solutions cannot be overem-
phasized. It may seem somewhat restrictive, but it works. The examples in the
remainder of this chapter should convince you of this.

This is our method, essential,

For equations we solve, differential.
It gets the job done,

And it's even quite fun.

We just try a routine exponential.

Example 3 (% +2y% +ax = 0); This will be our last mathematical example, and
then we’ll start doing some physics. As we’ll see later, this example pertains to a
damped harmonic oscillator. We’ve put a factor of 2 in the coefficient of x here to
make some later formulas Iook nicer. The force in this example (if we switch from
math to physics for o moment) is —2y% — ax (times m), which depends on both v
and x. Our methods of Section 3.3 therefore don't apply; we're not going to be able

to use separation of variables here, This leaves us with only our method of guessing
ot 3

an exponential solution, Ae™. So let’s see what it gives us. Plugging x(r) = Ae™ into
the given equation, and canceling the nonzero factor of Ae™, gives
o? + 2y +a=0. (4.5)

The solutions for & are —y == 4/y2 —a. Call these o) and e, Then the general
solution to our equiition is

(1) = Ae®V 4 B

= e"”’(Ae'V i pe=ivyi-a ) (4.6)

If y2 — a < 0, then we can write this in terms of sines and cosines, so we have
oscillatory motion that decreases in time due to the e~ ¥! factor (or it increases, if
y < 0, but this is rarely physical). If ¥2 — a > 0, then we have exponential motion.
We'li talk more about these different possibilities in Section 4.3.

In the first two examples above, the solutions were fairly clear. But in the present
case, you're not apt to lock at the abave solution and say, “Ob, of course, It's obvious!™
So our method of trying solutions of the form Ae®! isn’t looking so silly anymore.

In general, if we have an nth order homogeneous linear differential equation,

d"x damlx dx
— 4. — = 4.7
< Tl g +eotag o o, [CN)]




4.2 Simple harmonic motion

then our strategy is to guess an exponential solution, x(¢) = Ae®, and to then (in
theory) solve the resulting nth order equation, a” + cp1@™ Vo dog =
0, for @, to obtain the solutions @i, . . . , &. The general solution for x(¢) is then
the superposition,

2(t) = Are™! + Ape™ oo 4 Ape™, B CE)

where the 4; are determined by the initial conditions. In practice, however, we
will rarely encounter differential equations of degree higher than 2. (Note: if
some of the ¢; happen to be equal, then Eq. (4.8) is not valid, soa modification
is needed. We will encounter such a situation in Section 4.3.)

4,2 Simple harmonic motion

Let's now do some real live physical problems. We'll start with simple harmonic
motion. This is the motion undergone by a particle subject to a force F (x) = —/ox.
The classic system that undergoes simple harmonic motion is a mass attached
to a massless spring, on « frictionless table (see Fig. 4.1)¥A typical spring has
a force of the form F'(x) = —lx, where x is the displacement from equilibrium
(see Section 5.2 for the reason behind this). This is *Hooke’s law,” and it holds as
long as the spring isnt stretched or compressed too far. Eventually this expression
breaks down for any real spring. But if we assume a —/o force, then F' = ma
gives —lx = m, or

[k
¥4+ olx=0, where w= d . (4.9)
m

This is simply the equation we studied in Example 2 in the previous section.
From Eq. (4.3), the solution may be written as

x(t) = Acos(wt + @). (4.10)

This trig solution shows that the system oscillates back and forth forever in time.
w is the angular frequency. If t increases by 2 /w, then the argument of the
cosine increases by 27, so the position and velocity are back to what they were.
The period (the time for one complete cycle) is therefore I' = 2m/w = 27/m /k.
The frequency in cycles per second (hertz) is v = 1/T = @/2m. The constant
A (or rather the absolute value of 4, if 4 is negative) is the amplitude, that is,
the maximum distance the mass gets from the origin. Note that the velocity as a
function of time is v(t) = x(t) = —Awsin(wt + ¢).

The constants 4 and ¢ are determined by the initial conditions. If, for example,
x(0) = 0 and #(0) = v, then we must have dcos¢ = 0 and —Awsing = .
Hence, ¢ = 7/2, sndso 4 = —vjw (or ¢ = —w/2 and 4 = v/w, but this
leads to the same solution). Therefore, we have x() = —(v/w) cos(wt + 7/2).
This looks a little nicer if we write it as x(¥) = (v/w) sin(w?). It turns out that
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if the facts you’re given are the initial position and velocity, xp and vy, then the
x(f) = Ccoswt + Dsinwt expression in Eq. (4.3) usnally works best, because
(as you can verify) it yields the nice clean results, C = xp and D = w/ow.
Problem 4.3 gives another setup that involves initial conditions. ’

Example (Simple pendulum):  Another classic system that undergoes (approx-
imately) simple harmonic motion is the simple pendulum, that is, = mass that hangs
on a massless string and swings in a vertical plane, Let £ be the length of the string,
and let (f) be the angle the string makes with the vertical (see Fig. 4.2). Then the
gravitational force on the mass in the tangential direction is ~mgsinf. So F = ma
in the tangential direction gives

—mg sin @ = m(£8). 4.11)

The tension in the string combines with the radial component of gravity to produce the
radial acceleration, so the radial F = ma equation serves only to tell us the tension,
which we won't need here.

We will now enter the realm of approximations and assume that the amplitude of
the oscillations is small, Without this approximation, the problem cannot be solved
in closed form. Assuming 6 is small, we can use sin§ &2 6 in Eq. (4.11} to obtain

b4+ =0, where w== \/% {4.12)
Therefore,
8(t) = A cos{wt + ¢), (4.13)

where 4 and ¢ aregletermined by the initial conditions. So the pendulum undergoes
simple harmonic motion with a frequency of /2/2. The period is therefore T =
21/ = 2v/E]g. The true motion is arbitrarily close to this, for sufficiently small
amplitudes. Exercise 4.23 deals with the higher-order corrections to the motion in the
case where the amplitude is not small.

There will be many occasions thronghout your physics education where you
will plow through a calculation and then end up with a simple equation of the
form ¥ + w?z = 0, where w? is a positive quantity that depends on various
parameters in the problem. When you encounter such an equation, you should
jump for joy, because without any more effort you can simply write down the
answer: the solution for z must be of the form z(f) = 4 cos(w? + ¢). No matter
how complicated the system looks at first glance, if you end up with an equation
that looks like % 4 w?z = 0, then you lmow that the system undergoes simple
harmonic motion with a frequency equal to the square root of the coefficient of z,
no matter what that coefficient is. If you end up with % + (zucchini)z = 0, then
the frequency is w = ~/zucchimi (well, as long as the zucchini is positive and has
the dimensions of inverse time squared).




4.3 Damped harmonic motion

4.3 Damped harmonic motion

Consider a mass m attached to the end of a spring with spring constant k. Let
the mass be subject to a drag force proportional to its velocity, Fr = —bu (the
subscript f here stands for “friction”; we’ll save the letter d for “driving” in the
next section); see Fig. 4.3. Why do we study this Fr = —bv damping force? Two
reasons: First, it is linear in x, which will allow us to solve for the motion. And
second, it is a perfectly realistic force; an object moving at a slow speed through
a fluid generally experiences a drag force proportional to its velocity. Note that
this Fr = —bv force is not the force that a mass would feel if it were placed on
a table with friction. In that case the drag force would be (roughly) constant.

Our goal in this section is to solve for the position as a function of time. The
total force on the mass is F' = —b% — J. So F = mi gives

F+2yitetx=0, . (@.14)

where 2y = b/m, and w* = k/m. This is conveniently the same equation we
already solved in Example 3 in Section 4.1 (with @ — ©?). Now, however, we
have the physical restrictions that ¥ > 0 and ? > 0. Lettifig ©2 = y? — o? for
simplicity, we may wiite the solution in Eq. (4.6) as

() =" (Aem +Be_m) ,. where Q= ./y% -0l 4.15)

There are three cases to consider.
Case 1: Underdamping (22 < 0)

If 2 < 0, then y < w. Since §2 is imaginary, let us define the real number
o = fw? — y?, so that Q = i@, Equation (4.15) then gives

) =e? (Aemz +Be—i£)t)
=e"7'C cos(dt + ¢). (4.16)

These two forms are equivalent, Using e = cosf + isin g, the constants in

Eq. (4.16) are related by 4 + B = Ccos¢p and 4 — B = iCsin¢. Note thatina

physical problem, x(z) is real, so we must have 4* = B, where the star denotes

complex conjugation. The two constants 4 and B, or the two constants C and ¢,
" are determined by the initial conditions.

Depending on the given problem, one of the expressions in Eq. (4.16) will
inevitably work better than the other. Or perhaps one of the other forms in Eq. (4.3}
(times e~**) will be the most useful one. The cosine form makes it apparent that
the motion is harmonic motion whose amplitude decreases in time, due to the

. e~! factor. A plot of such motion is shown in Fig, 4.4.! The frequency of the

! To be precise, the smplitude doesn’t decresse exactly like Ce=¥¢, ns Eq. (4.16) suggests, because
Ce~ V¢ describes the envelope of the motion, and not the curve that passes through the extremes of
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motion, & = /w? — 2, is smaller than the natural frequency o of the undamped
oscillator.

Remaris:  If y is very small (more precisely, if ¥ « ), then & ~ w, which males sense
because we almost have an undamped oscillator. If ¥ is very close to w, then & = 0. So the
oscillations are very slow {more precisely, @& <« w). Of course, for very small & it's hard to even
tell that the oscillations exist, because they will damp out on a time scale of order 1/y =~ 1/,
which is short compared with the long time scale of the oscillations, 1/@. &

Case 2: Overdamping (22 > 0)
Q2 > 0, then y > w. Q is real (and taken to be positive), so Eq. (4.15) gives

2() = A=y gl @1

There is no oscillatory motion in this case; see Fig. 4.5, Since ¥ > £ =
' ¥% — @?, both of the exponents are negative, so the motion goes to zero for
large ¢. This had better be the case, because a real spring is certainly not going
to have the motion fly off to infinity, If we had obtained a positive exponent
somehow, we’d know we had made a mistake.

Remasucs: I y is just slightly larger than , then £2 ~ 0, so the two terms in (4.17) are
roughly equal, and we essentially have exponential decay, according to e If ¥ » @
(that is, strong damping), thea Q = y, so the first term in (4.17) dominates (it has the less
negative exponent), and we essentially have exponential decay according to &~ =%, We can
be somewhat quantitative about this by approximating Q as

Q=¥ ~a? =y 1 - w?jy? =yl - 2% (4.18)

Hence, the exponential behavior goes like e~%"//27 Because y 3> w, this is slow decay (that
s, slow compared with £ ~ 1 /w), which makes sense if the damping is very strong. The mass
slowly creeps back to the origin, 15 in the cose of 2 weak spring immersed in molasses. &

Case 3: Critical damping (22 = 0)

IfQ? = 0, then y = w. Equation (4.14) therefore becomes ¥ + 2y + y2x = 0.
In this special case, we have to be careful in solving our differential equation. The
solution in Eq. (4.15) is not valid, because in the procedure leading to Eq. (4.6),
the roots @ and oy are equal (o —y), so we have really found only one solution,
e~*!, We'll just invole here the result from the theory of differential equations
that says that in this special case, the other solution is of the form re~?*.

Remare:  You should check explicitly that fe~*! solves the equation ¥+ 2y % +-p2x = 0. Orif
you want to, you can derive it in the spirit of Problem 4.2. In the more general case where there
are n identical roots in the procedure leading to Eq. (4.8) (call them all ), the # independent
solutions to the differential equation are fe™, for 0 < k < (n — 1). But more often than not,
there are no repeated roots, 5o you don’t have to worry about this. &

the mation. You can show that the amplitude in fact decreases like Ce~?* cos(tan™! {y/@)). This
is the expression for the curve that passes through the extremes; see Castro (1986). But for small
damping (y <« ), this is essentially equal to Ce~*/. And in any eveat, it is proportional to e—¥*,




4.4 Driven (and damped) harmonic motion

Qur solution is therefore of the form,

x(t) = "Y' (44 Br). (4.19)
The exponential factor eventually wins out over the B term, so the motion goes
to zero for large ¢ (see Fig. 4.6).

If we are given a spring with a fixed w, and if we look at the system for
different values of y, then critical damping (when y = w) is the case where
the motion converges to zero in the quickest way (which is like e~%*). This is
true because in the underdamped case (¥ < @), the envelope of the oscillatory
motion goes like e~?*, which goes to zero slower than e/, because y < w.
And in the overdamped case {y > ), the dominant piece is the ("~ term.
And as you can verify, if y > wtheny — Q2 =y — /¥ —0? < w, so this
motion also goes to zero slower than e~ Critical damping is very important in
many real systems, such as screen doors and shock absorbers, where the goal is
to have the system head to zero (without overshooting and bouncing around) as

fast as possible.
"

4.4 Driven (and damped) harmonie motion

Refore we examine driven harmonic motion, we must learn how to solve a new
type of differential equation. How can we solve something of the form

£+ 2y% + ax = Coe, (4.20)

where y, a, wg, and Cp are given quantities? This is an inhomogeneous differential
equation, due to the term on the right-hand side. It's not very physical, because
the right-hand side is complex, but let’s not worry about that for now. Equations
of this sort come up again and again, and fortunately there’s a straightforward
(although sometimes messy) method for solving them. As usnal, the method
involves making & reasonable guess, plugging it in, and seeing what condition
comes out. Since we have the ¢ sitting on the right-hand side of Eq. (4.20),
let’s guess a solution of the form x(#) = Ae! 4 will depend on wp, among
other things, as we will see. Plogging this guess into Eq. (4.20) and canceling the
nonzero factor of &%, we obtain

(—wR)d + 2y (lwp)d +ad = Cp. 4.21)

Solving for 4, we find that our solution for x is

Co

— e 4.22)
—wé +2iywp4-a

x(t) =

Note the differences between this technique and the one in Example 3 in
Section 4.1. In that example, the goal was to determine the o in x(£) = de®’.

x(1) = eV (d+B1)

Fig. 4.6
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And there was no way to solve for 4; the initial conditions determined 4. But in
the present technique, the wp in x(t) = 4e™* is a given quantity, and the goal
is to solve for A in terms of the given constants. Therefore, in the solution in
Egq. (4.22), there are no free constanis to be determined by the initial conditions.
‘We've found one particular solution, and we’re stuck with it. The term particular
solution is used for Eq. (4.22).

‘With no freedom to adjust the solution in Eq. (4.22), how can we satisfy an
arbitrary set of initial conditions? Fortunately, Eq. (4.22) does not represent the
most general sohtion to Eq. (4.20). The most general solution is the sum of
our particular solution in Eq. (4.22), plus the “homogeneous™ solution we found
in Eq. (4.6). This sum is certainly a solution, because the solution in Eq. (4.6)
was explicitly constructed to yield zero when plugged into the left-hand side of
Eq. (4.20). Therefore, tacking it on to our particular solution doesn’t change the
equality in Eq. (4.20), because the lefi side is linear. The principle of superposition
has saved the day. The complete solution to Eq. (4.20) is therefore

x()y=e?* (Ae’\‘ 7i=a | pemiv VL“) + & gl
—a)g + 2iywp +a ’
(4.23)

where 4 and B are determined by the initial conditions.
‘With superposition in mind, it’s clear what the strategy should be if we have
a slightly more general equation to solve, for example,

4 2p% + ax = C 1 4 G, (4.24)

Simply solve the (_e&luatiou with only the first term on the right, Then solve the
equation with only the second term on the right. Then add the two solutions, And
then add on the homogeneous solution from Eq. (4.6). We are able to apply the
principle of superposition because the left-hand side of Eq. (4.24) is linear.

Finally, let’s look at the case where we have many such terms on the right-hand
side, for example,

N 3
B 2pktax =y G, ; @4.25)

=1
‘We need to solve NV different equations, each with only one of the N terms on
the right-hand side. Then we add up all the solutions, and then we add on the
homogeneous solution from Eq. (4.6). If ¥V is infinite, that’s fine; we just have
to add up an infinite number of solutions, This is the principle of superposition
at its best.

Remarc:  The previous paragraph, combined with & basic result from Fourier analysis, allows
us to solve (in principle) any equation of the form

ikt ac=10). (4.26)




4.4 Driven {and damped) harmonic motion

Fourier analysis says that any (nice enough) function ' (#) can be decomposed into its Fourier
components,

Fo= f ” @ dw, @27
—ca

In this continuons sum, the functions g(w) (times de) take the place of the coefficients C, in
Eq, (4.25). So if Su,(¢) is the solution for x(f) when there is only the term &' on the right-hand
side of Eq. (4.26) (that is, S,,(¢) is the solution given in Eq. (4.22), without the Cy factor), then
the principle of superposition tells us that the complete particular selution to Eq. (4.26) is

x(@) = / * £(w)Su () dan ’ (4.28)

Finding the coefficients g(w) is the hard part (or rather, the messy parf), but we won't get into
that here. We won't do anything with Fourier analysis in this book, but it's nevertheless good
to know that it is possible to solve (4.26) for any function f(¢). Most of the functions we'll
consider will be nice functions like cos wpt, which has o very simple Fourier decomposition,
namely cos wgl = %(5’“’“’ JoeTionty

Let’s now do a physical example.

Example (Damped and driven spring): Consider a spring with spring constant
k. A mass m at the end of the spring is subject to a drag force proportional to its
velocity, Fy = —bv. The mass is also subject to a driving force, Fg () = Fyeoswgt
(see Fig. 4.7). What is its position as a function of time?

Solution: The force on the mass is F(x, X, () = —bx—loc+-Fg coswyt. So F = ma
pives

X4+2yx+ wlx= Fcosagt
_F (wat gt
=z (efout 4 emiar). (4.29)

where 2y = b/m, w? = k/m, and F = Fg/m. Note that there are two different
frequencies here, w and wq, which need not have anything to do with each other.
Equation (4.22), along with the principle of superposition, tells us that our particular
solution is

P R S— S S—
i —w} + 2iywy +o? —wﬁ — Ziywy + w?

) el (430)
The complete solution is the sum of this particular solution and the homogeneous
solution from Eq. (4.15).

Let's now eliminate the i’s in Eq. (4.30) (which we had beiter be able to do,
beceuse x must be real), and write x in terms of sines and cosines. Getting the 's
out of the denominators (by multiplying both the numerator and the denominator by
the complex conjugate of the denominator), and using & = cos +isind, we find,

Fig. 4.7
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after a Hitle work,
F (wz - wg) Fyuy :
xp(t) = 5 coswgt + 5 S sin wyt.
(wz - wg) +4y2e} (w1 - a%) + 4y}
431)

Remarks:  If you want, you can solve Eq, (4.29) by talding the real part of the solution to
Eq. (4.20) (with Cg — F), that is, the x(1) in Eq. (4.22). This is true because if we take
the real part of Eq. (4.20), we obtain

2
() + 29 2 () ) = RlCod)
= Cycos(uwgf). (432)

In other words, if x satisfies Eq. (4.20) with a Cge'®! on the right-hand side, then Re(x)
satisfies it with a Cp cos(wpt) on the right. At any rate, it's clear that the real part of the
solution in Bq. (4.22) (with Cy — F) does indeed give the result in Eq, (4.31), because
in Eq. (4.30) we simply took half of a quantity plus its complex conjugate, which is the
real part.

Ifr;'ou don'tlike using complex numbers, another way of solving Eq. (4.29) isto kecpitin
the form with the cos @yt on theright, and guessa solution of the form.A cos wqt-+B sin wgt,
and then solve for 4 and B (this is the task of Problem 4.8). The result is Eq. (4.31). &

We can now write Eq. (4.31) in a very simple form. If we define

R= (o mg)z + @rwg), (433)

then we can rewrit‘r?Eq. (431) as

2 2
F (o —w 2yeq .
xp(f) = 7 <-————R 4 cos wgl + VR 4 sin wdt>

= £ cos(wyt — @), (4.34)
R
where ¢ (the phase) is defined by

2
wy R 2ywg ywg
— = —_— {80 @ = ——s. 435
, Eng i = [ 5 wg (435

The triengle describing the angle ¢ is shown in Fig, 4.8. Note that 0 < ¢ < 7,
because the sin ¢ in Eq. (4.35) is greater than or equal to zero. See the end of this
section for more discussion of ¢.

Recalling the homogeneous solution in Eq. (4.15), we can write the complete
solution to Eq. (4.29) as

=) = % cos(wgt — ) -+ e (Ae“’ +Be"m) . (4.36)




4.4 Driven {(and damped) harmonic motion

The constants 4 and B are determined by the initial conditions. If there is any damping
at all in the system (that is, if ¥ > 0), then the homogeneous part of the solution
goes to zero for large ¢, and we are loft with only the particular solution. In other
words, the system approaches a definite x(#), namely xp (¢}, independent of the initial
conditions.

Resonance
The amplitude of the motion given in Eq. (4.34) is proportional to

L S — @37

\ - .

Y ?+ @yos?
Given wg and y, this is maximum when o = wy. Given w and y, it is maximum
when wg = /w?* — 2y2, as you can show in Exercise 4.29. But for weak damping
(that is, y < w, which is usually the case we are concerned with), this reduces
10 wy ~ w also. The term resonance is used to describe the situation where the
amplitude of the oscillations is as large as possible. It ifquite reasonable that
this is achieved when the driving frequency equals the frequency of the spring.
But what is the value of the phase ¢ at resonance? Using Eq. (4.35), we see that
¢ satisfies tan ¢ ~ 00 when wy ~ w. Therefore, ¢ = /2 (it is indeed /2,
and not — /2, because the sin ¢ in Eq. (4.35) is positive), and the motion of the
particle lags the driving force by a quarter of a cycle at resonance. For example,
when the particle moves rightward past the origin (which means it has a quarter
of a cycle to go before it hits the maximum value of x), the force is already at its
maximum. And when the particle makes it out to the maximum value of x, the
force is already back to zero.

The fact that the force is maximum when the particle is moving fastest makes
sense from an energy point of view.? If you want the amplitude to become large,
then'you need to give the system as much energy as you can. That is, you must
do as much work as possible on the system. And in order to do as much work
a5 possible, you should have your force act over as large a distance as possible,
which means that you should apply your force when the particle is moving fastest,
that is, as it speeds past the origin. And similarly, you don’t want to waste your
force when the particle is barely moving near the endpoints of its motion. In short,
 is the derivative of x and therefore a quarter cycle ahead of x (which is a general
property of a sinusoidal finction, as you can show). Since we want the force to
be in phase with v at resonance (by the above energy argument), we see that the
force is also a quarter cycle ahead of x.

Resonance has a large number of extremely important applications (both
wanted and unwanted) in the real world. On the desirable side, resonance malkes

2 Brergy is one of the topics of the next chapter, so you may want to come back and read this
paragraph after reading that.
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it possible to have a relaxing day at the beach at the Bay of Fundy, talking to
a friend over your cell phone while pushing a child on a swing at low tide. On
the undesirable side, your ride home on that newly discovered “washboard” dirt
road will be annoyingly bumpy at a certain speed, and any attempt to take your
mind off the discomfort by turning up the radio will result only in certain parts
of your car rattling in perfect sync (well, actuaily 90° out of phase) with the bass
line of your formerly favorite song.’

The phase ¢
Equation (4.35) gives the phase of the motion as
2
tng = — oo (438)
w? — of

where 0 < ¢ < . Let’s look at a few cases for wy (not necessérily at resonance)
and see what the resulting phase ¢ is. Using Eq. (4.38), we have:

o If wy = 0 (or more precisely, if yay < w? — “’:Zi)' then ¢ = 0. This means that the
motion is in phase with the force. The mathematical reason for this is that if ey ~ 0,
then both X and x are small, because they are proportional to wg and wy, respectively.
‘Therefore, the first two terms in Eq. (4.29) are negligible, so we end up withx o¢ cos agt.
In other words, the phase is zero.

The physical reason is that since there is essentially no acceleration, the net force is
always essentially zero. This means that the driving force always essentially balances
the spring force (that is, the two forces are 180° out of phase), because the damping
force is negligible (since & oc wy ~ 0). But the spring force is 180° out of phase with
the motion (becsuse of the minus sign in F = —x). Therefore, the driving force is in
phase with the motion.

o Ifwy = w, then ¢ =~ /2. This is the case of resonance, discussed above.

If wq = oo {or more precisely, if vy <« wg — w?), then ¢ = mr, The mathematical

reason for this is that if wg = 0o, then the ¥ term in Eq. (4.29) dominates, so we have

¥ o cos wgt. Therefore, ¥ is in phase with the force. But x is 180° out of phase with
¥ (this is a general property of & sinusoidal function), so x i3 180° out of phase with
the force.

The physical reason is that if wg = oo, then the mass hardly moves, because from
Eq. (4.37) we see that the amplitude is proportional to l/wi. ‘This amplitude then implies
that the velocity is proportional to 1/wg. Therefore, both x and v are always small. But
if x and v are always small, then the spring and damping forces can be ignored. So
we basically have a mass that feels only one force, the driving force. But we already
understand very well a situation where a mass is subject to only one oscillating force:
a mass on a spring. The mass in our setup can’t tell if it's being driven by an oscillating

Some other examples of resonance that are often cited are in fact not actually examples of resonance,
but rather of “negative damping” (also known as positive feedback). Musical instruments fall into
this category, os does the well-known Tecoma Narrows bridge fuilure. For a detailed discussion of
this issue, see Billoh and Scanlan (1991) and alsoe Green and Unruh (2006).
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driving force, or being pushed and pulled by an oscillating spring force. They both fesl
the same. Therefore, both phases must be the same. But in the spring case, the minus
sign in F = —kx tells us that the force is 180° out of phase with the motion. Hence, the
same result holds in the wg = oo case.

Another special case for the phase occurs when ¥ = 0 (no demping), for
which we have tan ¢ = =0, depending on the sign of w? — mﬁ. So ¢ is either
0 or 7. The motion is therefore either exactly in phase or out of phase with the
driving force, depending on which of @ or ey is larger.

4.5 Coupled oscillators

In the previous sections, we dealt with only one function of time, x(¢). What if
we have two functions of time, say x(#) and p(2), that are related by a pair of
“coupled” differential equations? For example, we might have

2% + 0 (5x — 3y) =0,

. 439
2%+ 0?5y - 3x) =0. " @39

For now, let’s not worry about how these equations might arise. Let’s just try
to solve them (we’ll do a physical example later in this section). We’ll assume
w? > 0 here, although this isn't necessary. We'll also assume there aren’t any
damping or driving forces, although a few of the problems and exercises for this
chapter deal with these additions, We call the above equations “coupled” because
there are x's and y's in both of them, and it isn’t immediately obvious how to
separate them to solve for x and y. There are two methods (at least) for solving
these equations.

First method: Sometimes it is easy, as in this case, to find certain linear combi~
nations of the given equations for which nice things happen. If we take the sum,
we find

E45) +o?lx+y) =0 (4.40)

This equation invalves x and y only in the combination of their sum, x -+ . With
z =x+y, Eq. (4.40) is just our old friend, ¥ + w?z = 0. The solution is

x+y =4, cos(wt +¢1), 441

w'here A; and ¢; are determined by the initial conditions. We may also take the
difference of Eqs. (4.36), which results in

%~ +4o’(x—-y) = 0. (4.42)

This equation involves x and y only in the combination of their difference, x —y.
The solution is

x =y = dj cos(Rwt -+ ¢). (4.43)

115

116

Oscillations

Taking the sum and difference of Eqs. (4.41) and (4.43), we find that x(£) and
y(t) are given by
x(f) = By cos(wi + ¢1) + Bj cos(2wt + ¢2),
(1) = B cos(wt + $1) — Bz cos(Zwt + ¢2),

(4.49)

where the B;'s are half of the 4;’s. The strategy of this sclution was simply
to fiddle around znd try to form differential equations that involved only one
combination of the variables. This allowed us to write down the familiar solution
for these combinations, as we did in Eqs. (4.41) and (4.43).

We've managed to solve our equations for x and y. However, it tums out that
the more interesting thing we've done is produce the equations (4.41) and (4.43).
The combinations (x 4+ y) and (x — y) are called the normal coordinates of the
system. These are the combinations that oscillate with one pure frequency. The
motion of x and y will in general look compticated, and it may be difficult to tell
that the motion is really made up of just the two frequencies in Eq. (4.44). But
if you plot the values of (x -- ) and (x — ) as time goes by, for any motion of
the system, then you will find nice sinusoidal graphs, even if x and y are each
behaving in a rather unpleasant manner. '

Second method: Inthe above method, it was fairly easy to guess which combi-
nations of Egs. (4.39) would produce equations involving only one combination
of x and y. But surely there are problems in physics where the guessing isn’t s0
easy. What do we do then? Fortunately, there is a fafl-safe method for solving for
x and y. It proceeds as follows.

In the spirit of+Bection 4.1, let’s try 2 solution of the form x = Ae™' and
y = Be'™!, which we will write, for convenience, as

(-6

Tt jsn’t obvious that there should exist solutions for x and y that have the same ¢
dependence, but let’s try it and see what happens. We've explicitly put the £ in
the exponent, but there’s no loss of geneality here. If @ happens to be imaginary,
then the exponent is real. It's personal preference whether or not you put the 7 in.
Plugging our guess into Egs. (4.39), and dividing through by !, we find

24(—0?) + Sdw? — 3Bw* =0,

(4.46)
2B(—a?) + 5B’ — 340’ =0,
or equivalently, in matrix form,
—20? 4 5w? —3w? A\ (0
( —~30? 20?4502/ \B] T \0/)" “47
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This homogeneous equation for 4 and B has a nontrivial solution (that is, one
where A4 and B aren’t both 0) only if the matrix is not invertible. This is true
because if it were invertible, then we could multiply through by the inverse to
obtain (4,B) = (0,0). When is a matrix invertible? There is a straightforward
(although tedious) method for finding the inverse. It involves taking cofactors,
taldng a transpose, and dividing by the determinant. The step that concems
us here is the division by the determinant, since this implies that the inverse
exists if and only if the determinant is not zero. So we see that Eq. (4.47) has
a nontrivial solution only if the determinant equals zero. Because we seek a

nontrivial solution, we must therefore have
\

0= —202 4 5w —30?
- —3? —2¢? + 507
= 4o — 2000? + 160% (4.48)

This is a quadratic equation in o, and the roots are ¢ = % and ¢ = +20.
‘We have therefore found four types of solutions. If & = i“%{ then we can plug
this back into Eq. (4.47) to obtain 4 = B. (Both equations give this same result.
This was essentially the point of setting the determinant-equal to zero.) And if
o = 20, then Eq, (4.47) gives 4 = —B. (Again, the equations are redundant.)
Note that we cannot solve speciﬁcally\ for A and B, but onty for their ratio. Adding
up our four solutions according to the principle of superposition, we see that x
and y take the general form (written in vector form for the sake of simplicity and

bookkeeping),
x\ _ g 1Y et 1N -t
()’) =4 (l) e - da (1 [4

+ 43 (_11) &4 4 Ay ( 11) e, (4.49)

The four A; are determined by the initial conditions. We can rewrite Eq. (4.49)
in a somewhat cleaner form. If the coordinates x and y describe the positions of
particles, they must be real. Therefore, 4 and 43 must be complex conjugates,
and likewise for A3 end 4q. If we then define some ¢’s and B's via 47 = 4 =
(B1/2)e™®! and Ay =A3=(B /2)e'%2, we may rewrite our solution in the form,
as you can verify,

C) =B G) cos(wt + ¢1) + B (_11) cos(eot + ¢a), (4.50)

where the B; and ¢; are real (and are determined by the initial conditions). We
have therefore reproduced the result in Eq. (4.44).

1t is clear from Eq. (4.50) that the combinations x -y and x — y (the normal
coordinates) oscillate with the pure frequencies, w and 2w, respectively, because
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the combination x + y makes the By terms disappear, and the combinationx — y
makes the By terms disappear.

It is also clear that if By = 0, then x = y at all times, and they both oscillate
with frequency w. And if By = 0, then x = —y at all times, and they both
oscillate with frequency 2. These two pure-frequency motions are called the
normal modes. They are labeled by the vectors (1, 1) and (1, —1), respectively.
In describing & normal mode, both the vector and the frequency should be stated.
The significance of normal modes will become clear in the following example.

Example (Two masses, three springs): Consider two masses m, connected to
each other and to two walls by three springs, as shown in Fig. 4.9. The three springs
have the same spring constant %. Find the most general solution for the positions
of the masses as functions of time. What are the normal coordinates? What are the
normal modes?

Solution: Letx; () and x3 () be the positions of the left and right masses, respec-
tively, relative to their equilibrium positions. Then the middle spring is stretched
a distance xp — x) compared with the stretch at equilibrium. Therefore, the net
force on the left mass is —Jfx; + k(xp — x1), and the net force on the right mass
is —loxg — k(x3 — x1). It's easy to make a mistake in the sign of the second term
in these expressions, but you can check it by, say, looking at the force when xg is
very big. At any rate, the second term must have the opposite sign in the two expres-
sions, by Newton's third law. With these forces, F' = ma on each mass gives, with

o =k/m,

%1 + 2wy — whxg =0,

- ®#51)

X7+ Zmzxz - wle =0.

These are rather friendly looldng coupled equations, and we can see that the sum and
difference are the useful combinations to take. The sum gives

(1 +32) + 0P +32) =0, 4.52)
and the difference gives

(31 ~ X2) + 3w (x; ~x2) =0. (4.53)
The solutions to these equations are the normel coordinates,

x1 +x7 = A cos(wt + ¢y,

(4.54)
x)—xp=4A_ cos(v/3et + $-).
Taldng the sum and difference of these normal coordinates, we have
%1{t) = By cos(et + ¢.) + B cos(v/3ot + ¢-),
(4.55)

x3(f) = By cos(wt + ¢y ) — B_ cos(~/3uwt + ¢_),
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where the B’s are half of the A4’s. Along with the ¢, they are determined by the initial
conditions.

Remark: For practice, let's also derive Eq. (4.55) by using the determinant method,
Letting x; = A&’ and x; = Be'®! in Eq, (4.51), we see that for there to be & nontrivial
solution for 4 and B, we must have

o= | —ot 2 —aw?
- —w? —a? 4 20?
= ot — da?? + 304, (4.56)

This is a quadratic equation in o2, and the roots are @ = Hw and @ = £+/3w. Ife = ko,
then Eq. (4.51) gives 4 = B. If @ = £+/30, then Eq. (4.51) gives 4 = —B. The solutions
for x; and xz therefore take the genersl form

(2) =4 (i) et gy (i) ot
+ 43 (_11) g3t s (_11) o3t
Y 1 g
=By () eostwr + i) +B-{ ) cos(+/3wt + ), @57

where the lest line follows from the same substitutions that led to Eq. (4.50). This expression
is equivalent to Bq. (4.55). &

The normal modes are obtained by setting either B or B equal to zero in Eg. (4.55)
orEq, (4.57). Therefore, the normal modes are (1, 1) and (1, —1). How do we visualize
these? The mode (1, 1) oscillates with frequency w. In this case (where B_ = 0), we
have x1(f) = x2(#) = B cos{wt + ¢..) at all times, So the masses simply oscillate
back and forth in the same manner, as shown in Fig, 4.10. It is clear that such motion
has frequency w, because as far as the masses are concerned, the middle spring is
effectively not there, 80 each mass moves under the influence of only one spring, and
therefore has frequency w.

‘The mode (1, 1) oscillates with frequency +/3w. In this case (where By =10),
we have x) (f) = —x3(t) = B~ cos(v/3wt + ¢) at all times. So the masses oscillate
back and forth with opposite displacements, as shown in Fig. 4.11. It is clear that this
mode should have a frequency larger than that for the other mode, because the middle
spring is stretched (or compressed), so the masses feel a larger force. But it talees a
little thought to show that the frequency is v/3w. 4

Thenormal mode (1, 1) above is associated with the normal coordinate x; +x3.
They both involve the frequency w. However, this association is not due to the
fact that the coefficients of both x; and x; in this normal coordinate are equalto 1.

4 If you want to obtain this 3w result without poing through =il of the above worlk, just note that
the eenter of the middle spring doesn’t move. Therefore, it acts lile two “half springs,” each with
spring constant 2k (as you can verify). Hence, each mass is effectively attached to a “%" spring and
8“2k spring, yielding 8 total effective spring constant of 3. Thus the +/3.

Fig. 4.11
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Rather, it is due to the fact that the other normal mode, namely (x,x3) o (1, 1),

3 gives no contribution to the sum x| + x2. There are a few too many 1's floating
around in the above example, so it’s hard to see which results are meaningful and
which results are coincidence. But the following example should clear things up.
Let’s say we solved a problem using the determinant method, and we found the
solution to be

i (;) =B (Z) cos(wi? + ¢1) + Ba (__15) cos(wat + ¢2). (4.58)

£ Then 5x + y is the normal coordinate associated with the normal mode (3, 2),
which has frequency w. (This is true because there is no cos{aa? -+ ¢n) depen-
dence in the combination 5x +y.) And similarly, 2x — 3y is the normal coordinate
associated with the normal mode (1, —5), which has frequency w3 (because there
is 1o cos{w)? + ¢;) dependence in the combination 2x — 3y).

Note the difference between the types of differential equations we solved in

5 the previous chapter in Section 3.3, and the types we solved throughout this
chapter. The former dealt with forces that did not have to be linear in x or %, but

g that had to depend on only x, or only %, or only ¢, The latter dealt with forces
that could depend on all three of these quantities, but that had to be linear in
x and x.

4.6 Problems

Section 4.1: Linear differential equations

@
4.1, Superposition
Let x; () and x3 (1) be solutions to ¥ = bx. Show that x;(£) +x2(2) is
not a solution to this equation.
4.2. Alimiting case =

i . Consider the equation ¥ = ax. If 4 = 0, then the solution to X = 0 is

H simply x(¢) = C + Dt. Show that in the limit a — 0, Eq. (4.2) reduces
to this form. Note: @ — 0 is a sloppy way of saying what we mean.
‘What is the proper way to write this limit?

Section 4.2: Simple harmonic motion

4.3. Increasing the mass #+

A mass m oscillates on a spring with spring constant k. The ampli-
b tude is d. At the moment (let this be ¢ = 0} when the mass is at
! position x = d/2 (and moving to the right), it collides and sticks to
¢ another mass m. The speed of the resulting mass 2m right after the col-
lision is half the speed of the moving mass m right before the collision
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larger than the spring constant, x, of the middle spring, Let x) and x; be
the positions of the left and right masses, respectively, relative to their
equilibrium positions. If the initial positions are given by x; (0) = a and
x2(0) = 0, and if both masses are released from rest, show thatx; and
4.8 Problems 121 x7 can be written as (assuming « < k)
x1 () = acos ((w + €)t) cos(e), ”
. . : . .59
(from momentum conservation, discussed in Chapter 5). What is the Bl x2(¢) ~ asin ((w + €)t) sinfer), (4.39)
resulting x(£)? What is the amplitde of the new oscillation?
44, Average tension : o whe.re w = w/‘Ic/rn and € = («/2k)w. Explain qualitatively what the
K . motion looks like.
Is the average (over time) tension in the string of a pendulum larger . .
or smaller than mg? By how much? As usnal, assume that the angular 4.11. Driven mass on a circle wx
amplitude 4 is small. Two identical masses m are constrained to move on a horizontal hoop.
4.5, Walking east on 1 furntable ++ Two identical springs w1‘th spring constantk (?onne(ftthe masse's fmdwrap
. around the hoop (see Fig. 4.14). One mass is subject to a driving force
A person walks at constzmt.spead v eastward with respec’t to a turntable ; Fy cos wat. Find the particular solution for the motion of the masses,
that rotates counterclockwise at constant frequency w. Find the general ; . i
expression for the person’s coordinates with respect to the ground (with ey 4.12. Springs on a circle wxss
the x direction taken to be eastward). : (8) Two identical masses m are constrained to move on a horizontal
I Fig. 415 jdenti i ; i
Section 4.3: Damped harmonic mofion : ig hoop. Two identical springs with sprmg constant & connect the
i masses and wrap around the hoop (see Fig. 4.15). Find the normal
4.6. Maximum speed »x B ’}-frdes:d ical
K i i
A mass on the end of a spring (with natural frequegey o) is released i ® - aree Icentioa” masses are constrained to move on & hoop. Three
- ! ; ! : 3 identical springs commect the masses and wrap around the hoop
from rest at position xg. The experiment is repeated, but now with the i . )
) A N . (sge Fig. 4.16). Find the normal modes.
system immersed in a fluid that causes the motion to be overdamped © Now do the peneral case with N identical d NV identical
(with damping coefficient y). Find the ratio of the maximum speed in springs & masses and NV identica
the former case to that in the Iatter, What is the ratio in the limit of strong &5
damping (¥ 3> )? In the limit of critical damping? A
. & .
Section 4.4: Driven (and damped) harmonic motion . %‘1 4.7 Exercises
) o Section 4.1: Linear differential equations !
4.7. Exponential force &
A particle of mass m is subject to a force F() = mage™". The initial : 4.13. Ix force *
position and speed are both zero. Find x(¢). (This problem was already :% A particle of mass m is subject to a force F(x) = Jx, with k > 0, What
glven. as .Problem‘ 3."9, but s‘rolve it Here by guessing an exponential : I is the most general form of x(£)? If the particle starts out at xp, what is
function, in the spirit of Section 4.4.) R . the one special value of the initial velocity for which the particle doesn’t
4.8. Driven oscillator * eventually pet far away from the origin?
Derive Eq. (4.31) by guessing a solution of the form x(t) = 4 cos wat + Pli 4.14. Rope on a pulley =«
Bsinwgt in Eq. (4.29). % A rope with length L and mass density o kg/m hangs over a massless
Section 4.5: Coupled oscillators 4 pu]}ey, Initially, the ends of the ro.pe l?re a dlSt'ﬂl.lf:‘E xp above and below
their average position. The rope is given an initial speed. If you want
4.9. Unequal masses #x g
Three identical springs and two masses, m and 2m, lie between two walls
as shown in Fig. 4.12. Find the normal modes.
|
4.10. Weakly coupled »+

Thres springs and two equal masses lie between two walls, as shown
in Fig. 4.13. The spring constant, k, of the two outside springs is much  Fig. 4.13
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the rape to not eventually fall off the pulley, what should this initial
speed be? (Don't worry about the issue discussed in Calkin (1989).)

Section 4.2: Simple harmonic motion

4.15.

4.17.

4.1

oo

4.1%.

4.20.

Amplitude »
Find the amplitude of the motion given by x(#) = C cos wt + D sin wt.

. Angled rails »

Two particles of mass m are constrained to move along two horizontal
frictionless rails that make an angle 26 with respect to each other. They
are connected by a spring with spring constant &, whose relaxed length
is at the position shown in Fig. 4.17. What is the frequency of oseilla-
tions for the motion where the spring remains parallel to the position
shown?

Effective spring constant +

() Two springs with spring constants &; and k) are connected in par-
allel, as shown in Fig. 4.18. What is the effective spring constant,
kez? In other words, if the mass is displaced by x, find the ke
for which the force equals F = —Jegx.

(b) Two springs with spring constants k; and /; are cormected in .

series, as shown in Fig. 4.19. What is the effective spring
constant, keg?

Changing & #=

Two springs each have spring constant & and equilibrium length £, They
are both stretched a distance £ and attached to 2 mass m and two walls,
as shown in Fig. 4.20. At a given instant, the right spring constant is
somehow magically changed to 3k (the relaxed length remains £). What
is the resulting x(z)? Take the initial position to be x = 0.

Removing a spring s«

The springs in Fig. 4.21 are at their equilibrium length. The mass oscil-
lates along the line of the springs with amplitude d. At the moment (et
this be ¢ = 0) when the mass is at position x = d/2 (and moving to the
right), the right spring is removed. What is the resulting x(¢)? What is
the amplitude of the new oscillation?

Springs all over =

(a) A mass m is attached to two springs that have relaxed lengths of
zero. The other ends of the springs are fixed at two points (see
Fig. 4.22). The two spring constants are equal. The mass sits at
its equilibrium position and is then given a kick in an arbitrary

Fig. 4.17

Fig. 4.21

I k
#1022 9EH0 QR0 2
Fig. 4.22

i
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direction, Deseribe the resulting motion. (Ignore gravity, althongh
you actually don't need to.)

(b) A mass m is attached to n springs that have relaxed lengths of
zero. The other ends of the springs are fixed at various points in
space (see Fig, 4.23), The spring constants are &y, k2, . . . , k. The
mass sits at its equilibrium position and is then given a kick in an
arbitrary direction, Describe the resulting motion. (Again, ignore

Fig. 4.23 gravity, although you actually don’t need to.)

4.21. Rising up ##=

In Fig. 4.24, a mass hangs from a ceiling. A piece of paper is held
up to obscure three strings and two springs; all you see is two other
strings protruding from behind the paper, as shown. How should the
three strings and two springs be attached to each other and to the two
visible strings (different items can be attached only at their endpoints)
so that if you start with the system at its equilibrium position and then
cut a certain one of the hidden strings, the mass will rise up?3

4,22, Projectile on a spring «x+
A projectile of mass m is fired from the origin at speed vp and angle 8. It
Fig. 4.24 is attached to the origin by a spring with spring constant & and relaxed
length zero.

(a) Find x(¢) and y().

(b) Show that for small @ = /ft/m, the trajectory rednces to nor-
mal projectile motion. And show that for large e, the trajectory
redices to simple harmonic motion, that is, oscillatory motion
along a line (at least before the projectile smashes back into the
ground). What are the more meaningful statements that should
replace “small &” and “large w”?

(c) What value should w take so that the projectile hits the ground
when it is moving straight downward?

4.23. Corrections to the pendulum ##»

(8) For small oscillations, the period of a pendulum is approximately
T = 2m./E]g, independent of the amplitude, fy. For finite
oscillations, use dt = dx/uv to show that the exact expression
for T'is

c 46
r= ¥ f L (4.60)
g Jo +fcos@ —cosbp

5 Thanks to Paul Horowilz for this extremely cool problen, For more epplications of the idea behind
it, see Cohen and Horowitz (1991).




4.7 Exercises

(b) Find an approximation to this T, up to second order in 0&, in the
following way. Make use of the identity cos ¢ = 1 — 2sin?(¢/2)
to write T" in terms of sines (because it’s more convenient to work
with quantities that goto zero as# — 0). Then make the change of
varigbles, sinx = sin(f/2)/ sin(fy/2) (you'll see why). Finally,
expand your integrand in powers of fg, and perform the integrals
to show thatS

rrom (S (148 461
p - (4.61)

Section 4.3: Damped harmonic motion

4.24. Crossing the origin

Show that an overdamped or critically damped oscillator can cross the
origin at most once.

4.25. Strong damping * ®
In the strong damping (¥ > ) case discussed in the remark in the
overdamping subsection, we saw that x(¢) oc &2 for large ¢. Using
the definitions of » and y, this can be written as x(#) o e~*/%, where b
is the coefficient of the damping force. By looking at the forces on the
mass, explain why this makes sense.

4.26. Maximum speed =
A critically damped oscillator with natural frequency w starts out at
position xp > 0. What is the maximum initial speed (directed toward
the origin) it can have and not cross the origin?

4.27. Another maximum speed =«

An overdamped oscillator with natural frequency o and damping coeffi-
cient y starts out at position xp > 0. What is the maximum initial speed
(directed toward the origin) it can have and not cross the origin?

4,28, Ratio of maxima s«

A mass on the end of a spring is released from rest at position xg. The
experiment is repeated, but now with the system immersed in a fluid
that causes the motion to be critically damped. Show that the maximum
speed of the mass in the first case is ¢ times the maximum speed in the
second case.”

LB you like this sort of thing, you can show that the next term in the parentheses is (11 /3072)03.
But be carefil, this fourth-order correction comes from two terms.

7 The fact that the maximum speeds differ by a fixed numerical factor follows from dimensional
analysis, which tells us that the maximum speed in the first case must be proportional to wxg, And
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Section 4.4: Driven (and demped) harmonic motion

4.29. Resonance
Given w and y, show that the R in Eq. (4.33) is minimum when wq =
/% — 27 (unless this is imaginary, in which case the minimum oceurs
at wg = 0).
4.30. No damping force =
A particle of mass m is subject to a spring force, —/cx, and also a driving
force, Fy coswat. But there is no damping force. Find the particular
solution for x(f) by guessing x(¢) = 4 cos wat + Bsinwqt. If you write
i this in the form C cos(wat — ¢), where C > 0, what are C and ¢7 Be
careful about the phase (there are two cases to consider).

Section 4.5: Coupled oscillators

4.31. Springs and one wall =

Two identical springs and two identical masses are attached to a wall as
shownin Fig, 4.25. Find the normal modes, and show thatthe frequencies
can be written as \/7\:/_771(«/5 = 1)/2. This numerical factor is the golden
ratio (and its inverse).

4.32. Springs between walls #»

Four identical springs and three identical masses lie between two walls
(see Fig. 4.26). Find the normal modes.

4.33. Beads on gng[ed rails =«
Two horizontal frictionless rails make an angle 8 with each other, as
shown in Fig. 4.27. Each rail has a bead of mass m on it, and the beads
* are connected by a spring with spring constant k and relaxed length zero.
Assume that one of the rails is positioned a tiny distance above the other,
so that the beads can pass freely through the crossing, Find the normal
modes.

4.34. Coupled and damped ==
The systemn in the example in Section 4.5 is modified by immersing it in

Fig. 4.27 a fluid so that both masses feel a damping force, Fr = —~buv. Solve for
x1(t) and x, (£). Assume underdamping.

i 4.35. Coupled and driven #«

SR

""if' The system in the example in Section 4.5 is modified by subjecting the
&%; ! left mass to a driving force Fy cos(2wt), and the right mass to a driving
il

since ¥ = w in the critical-damping case, the damping doesn't introduce p new parameter, so the
o ' meximum speed has no choice but to again be proportional to exxg, But showing that ths maximum
speeds differ by the nice factor of e requires a caleulstion.

R S —




4.8 Solutions

force 2F cos(2wt), where @ = +/k/m. Find the particular solution for
x1 (#) and x; (2), and explain why your answer makes sense.

4.8 Solutions

4.1, Superposition

The sum x1 + x7 is a solution to ¥2 = &x if

2
(FEF2Y bt
= B = b %)
= BB+ = b+ 3. (4.62)
But i = bx) and i3 = bx;, by assumption. So we are left with the 2¥,5; term on the
left-hand side, which destroys the equslity. (Note that 2%)% can’t be zero, because if

either ) or ¥; is identically zero, then either x; or x3 is also, 50 we didn’t really have
a solution to begin with.) :

4.2, Alimiting case

The expression “a — 0" is sloppy because a has units of inverseftime squared, and the
number 0 has no units. The proper statement is that Bq. (4.2) reduces tox(t) = C+ Dt
when /at « 1, or equivalently when ¢ < 1/+/d, which is now a comparison of
quantities with the same units. The smaller @ is, the larger ¢ can be. Therefore, if
“q — 0,* then ¢ can basically be anything. Assuming -/at < 1, we can write
&5Vt 2 1 & /G, and Eq, (4.2) becomes
x(t) = A1 + a) + B ~ Jat)

=(4+B)+/ald—B)t

=C+ Dt (4.63)
C is the initial position, and D is the speed of the particle. If these quantities are of
arder 1 in the units chosen, then if we solve for 4 and B, we see that they must be
roughly negatives of each other, and both of order 1/./a. So if the speed and initial
position are of arder 1, then 4 and B actually diverge in the “2 — 0" limit. If a is small

but nonzero, then ¢ will eventually become large enough so that /at < 1 won't hold,”
in which case the linear form in Eq. (4.63) won't be valid.

4.3. Increasing the mass .

The first thing we must do is find the velocity of the mass right before the collision. The
motion before the collision looks like x(t) = d cos(wf + ¢), where @ = /k/m. The
collision happens at ¢ = 0 (although it actually doesn’t matter what time we plug in
here), s0 we have d/2 = x{0) = d cos ¢, which gives ¢ = &/3. The velocity right
before the collision is therefore

(0) =K0) = —wd sing = —wdsin(En/3) = F/3/2ed. (4.64)

‘We want the plus sign, because we are told that the mass is moving to the right. Finding
the motion after the collision is now reduced to an initial conditions problem. We have
1 mass 2m on a spring with spring constant k, with initial position d/2 and initial
velocity (+/3/#)wd (half of the result sbove). In situations where we know the initial
position and velocity, it turns out that the best form to use for x{¢) from the expressions
inEq. (4.3)is

x(#) = Ccosw't + Dinw't, (4.65)
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because the initial position at ¢ = 0 is simply C, and the initial velority att = 0
is w'D. The initial conditions are therefore easy to apply. We hnvrf put 2 prime on
the frequency in Eq. (4.65) to remnind us that it is different from the x'n{l{al freunPcy,
because the mass is now 2m. So we have o = Jkf2m= w/~/Z. The nitial conditions

therefore give

WO =d2 = C=d/2,

w0 = A/Med = oD=Ihed = D= E/4)d. (4.66)
Qur solution for x(f) is therefore

(4.67)

d .
x(f) = EIZ— cosw't + 1;6— sinw't, where o’ =
To find the amplitude, we must calculate the maximum value of x(1). '['hlis is the.: ms:k
of Exercise 4.15, and the result is that the smplitude of the x(f) = Croosw't+Dsine'?
motion is 4 = +/CZ +DZ. So we have
2 2
i 4+ & = E d. {4.68)

“This is smaller than the original amplitude d, because energy is lost to heat during the
collision (but energy is one of the topics of the next chapter).

4.4, Average fension

Let the length of the pendulum be £. We know that the angle & depends on time
according to

6(f) = A cos(wt), (4.69)

where w = /g/Z 1£ T is the tension in the string, then the radial F = ma equation is
T — mgcosd = med. Using Eq. (4.69), this becomes

. 2
" T = mg cos {4 cos{wn)) + me(— wd sin(e))” (4.70)
Sinee 4 is small, we can use the small-angle approximation cos & & 1 —a?/2, which
gives

T ~mg (l - -;—Az cos” (mt)) - e A% sin?(wf)
1
= mg + mgd® (siu1 @) -3 cos’—(m:)) R 4.71)

where we have made use of @? = g/£. The average value of both sin®0 and cos?f
over one period is 1/2 (you can show this by doing the integrals, or you can, just note
that the averages are equal and they add up to 1), so the average value of T is
2
mgA

Tovg = mg -+ -5 4.72)
which is larger than mg, by mgA® /4. 1t makes sense that Tayg > g, because the
avernge value of the vertical component of T' equals mg (becanse the pendulum l‘ms
no net rise or full aver o long period of time), and there is some nonzero confribution
to the magnitude of T from the horizontal component.

4.5. Walling east on a turntable

i i d is the sum of v% and v, where
The velocity of the person with respect 1o the groun .
u is the velocity (at the person’s position) of the turntable with respect to the ground.




4.6,

4.8 Solutions

I terms of the angle £ in Fig. 4.28, the velocity components with respect to the ground
are

x

—usinf, and 3 =uwucosh. (4.73)
But & = rew. 5o we have, using rsinf =y and rcosf =x,
*=v—awy, 8od j=or 4.79)

Taking the derivative of the first equation, and then plugging in y from the second,
gives ¥ = —w?x. Therefore, x(f) = 4 cos{wt + $). The first equation then quickly
gives y(t), and the result is that the general expression for the person’s position is

(x,3) = (dcos(t +¢), Asin(t +¢) +v/a). T @T5)

This describes a circle centered at the point (0,v/w). The constants 4 and ¢ are
determined by the initial x and y values. You can show that

A= [xf+ oo —v/w)?, ood tang= J'i_;o——"/f’- R (4.76)

Remanks: It tums out that in the frame of the turntable, the person’s path is also o
circle. This can be seen in the following way. Imagine & distant object (say, a star)
located in the enstward direction. In the frame of the turntable, this star rotates clock-
wise with ftequency w. And in the frame of the turntable, the person’s velocity always
points toward the star. Therefore, the person’s velocity rotates clackwise with fre-
quency . And since the magnitude of the velocity is constant, this means that the
person travels clockwise in a circle in the frame of the turntable. From the usual
expression v = ro, we see that this circle has a radius v/w.

This result leads to another way of showing that the person’s path is a circle as
viewed in the ground frame. In short, when the person’s clockwise circular motion at
speed v with respect to the tumtable is combined with the lockwise motion of
the turntable with respect to the ground (with the same frequency w, but in the opposite
direction), the resulting motion of the person with respect to the ground is a circle with
its center at the point (0, v/w).

The situation is summarized in Fig. 4.29. From the above result (that the path
is a circle in the turntable frame), we may characterize the person’s motion in the
turntable frame by imsgining her riding on & merry-go-round that rotates clockwise
with frequency w with respect to the turntable. This merry-go-round is shown at five
different times in the figure. The effect of the memy-go-round’s clockwise rotational
motion is to cancel the countercloclkwise rotation of the turntable, so thet the merry-
go-round ends up not rotating at all with respect to the ground. Therefore, if the person
(the dot in the figure) starts at the top of the merry-go-round (which she in fict does,
because this corresponds to walldng d with respect to the turntable), then she
always remains at the top. She therefore travels in a circle that is simply shifted upward
by the vertica! radius of the merry-go-round (the dotted lines shown, which have length
vjw), relative to the center of the turntable. This agrees with the original result. You
can also see from the figure how the values of 4 and ¢ in Eq, (4.76) arise. For example,
A is the Iength of the solid lines shown. &

Maximum speed
For the undamped case, the general form of x is x(#) = Ccos(wt -+ ¢). The initial
condition w(0) = 0 tells us that ¢ = 0, and then the initial condition x(0) = xp tells
us that C = xq. Therefore, x(#) = xg cos(ewt), and 50 v(t} = —wxg sin{we). This has &
maximum magnitude of wxp.

Now consider the overdamped case. Equation (4.17) gives the position as

x(t) = Ag™ P~ g gty @17

Fig. 4.28

Fig. 4.29
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The initial conditions are
x0)=xp == A+B=2x0 (478)
w =0 = —~(y-Dd—-y+NE=0.

Solving these equations for 4 and B, and then plugging the resulis into Eq. (4.77),
gives -

20 = 52 (i + @V~ — e ). 479

Taking the derivative to find u(¢), and using y? — % = w?, gives
2
I T O TR 2 0T 4,80
o(f) = ) (e € ) . (4.80)

Taking the derivative again, we find that the maeximum speed occurs at

1 y+Q
== —_— 1. 4.81
= 0 (222) aan

Plupging this into Eq. (4.80), and taking advantage of the logs in the exponentials,
gives .

(- (222) (25 [=2)

_a\rie
= —wxp (%IE) . (4.82)
The desired ratio, &, of the maximum speeds in the two scenarios is therefore
v/
R= (_._7’ +a ) . (@.83)
£ y-2

In the imit of strong damping (¢ > @), we have 2 = /yZ—o? my — w?/2y.
So the ratio becomes

12
R= ﬂ_) =2, (4.84)
w? /2y @
In the limit of critical damping (y = w, 2 = 0), we have, with 2/y
12
R (%) m 420 e, (4.85)

in pgreement with the result of Exercise 4.28 (the solution to which is much quicker
than the one above, since you don't need to deal with all the ©s). You can also show
that in these two limits, fmx cquels In(2y /w)/y sad 1/y = 1 Jw, respectively.

4.7. Exponentisl force
F = ina gives & = ape . Let's guess a particular solution of the form x{r) = Ce~bt.
Plupging this in gives C = ap/ 2. And since the solution to the homogeneous equation
# = 0is x(t) = At + B, the complete solution for x is

—bt
e At+B. (436)

x(t)y=

b




4.8.

4.9,

4.8 Solutions

The .initinl condition x(0) = 0 gives B = —ag /bz.And the initial condition v(0) = 0
applied to u(t) = —age™/b +- A gives A = ag/b. Therefore, .

et ¢ 1
x(1) = ag (T + 5TE) (4.87)
in apreement with Problem 3.9.

Driven oscillator
Plugging x(¢f) = 4 cos wyt + B sinwg! into Eq. (4.29) gives

- n)gA cos gt — ng sinwgt
— 2ywyd sinwgt + 2ywgB coswgt
+ ot coswyt + wBsinwgt = Feoswgt, (4.88)

If this is true for all 4, the coefficients of coswq? on both sides must be equal. And
likewise for sin wqt. Therefore,

~wid+2ywgB + oA =F,

4.89
—w}B — 2ywyd + wB = 0. 5
Solving this system of equations for 4 and B gives N
¥
Fw? ~ o} 2F,
4= (21 ")z ~, B= )
(@? - )" + 470} (@~ )" + 4y}

in agreement with Eq. (4.31).

Unequal masses
Let' Xt anz%xz be the positions of the left and right masses, respectively, relative to
their equilibrium positions. The forces on the two masses are —ix) -+ k{xz — x;) and
—Jxg — k(xp —xy), respectively, so the F = ma equations are
% + 203 — Wy =0,
4.91
25 + 205z — oPxy =0. @9

The appropriate linear combinations of these equations aren’t obvious, so we'll use
the determinant methad. Letting x; = 412/ and x) = A»e™, we see that for there to
be a nontrivial solution for A4 and B, we must have

0= —a? + 207 —w?
—wt —202 4 20
=2 ~ 6o*w® + 30t 4.92)

The roots of this quadratic equation in o? are

= :l:m" 3 +2ﬁ

Ife? = af, then the normal mode is proportional to (v/3 -+ 1,—1). And if o? = o2,
then the normal mode is proportional to (+/3 — 1, 1). So the normal modes are

(x‘) = (ﬁ+ 1) cos(yf +¢p), and

Fop, md o=t oy, {4.93)

2

X2 -1

(4.94)
(x;) = (ﬁl_ 1) cos{aa? + 7).

X2,
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Note that these two vectors are not orthogonal (there is no need for them to be). The
normal coordinates associsted with these normal modes are x1 — («/.’: — 1)xz and
x1 + (/3 + 1)xy, respectively, because these are the combinations that make the aa
and o) frequencies disappear; respectively.
Wealdy coupled
The magnitude of the force in the middle spring is « (x2 —x1), 50 the ' = ma equations
are

miy = —hx) + K0z -3,

{4.95)
i = —kx — 1{x2 — x1)-
Adding and subtracting these equations gives
mE + %) = —klxj+x) = x+x = A cos{wt + $),
{4.96)

iy — 82 = —(k+2)(x —xz) == 3 —x2 = Beos(@ +4),

o ‘/_ Jer @am
m

The initial conditions are x1 (0) = a, 1 (0) = 0,x2(0) =0, and 3 (0) = 0. The easiest
wey to apply these is to plug them into the normal coordinates in Eq. (4.96), before
solving for x; (2) and xa(r). The velocity conditions quickly give ¢ = ¢ = 0, und then
the position conditions give 4 = B = a. Solving for x) () and x, () yields

where

and @

xH= % cos{wt) + -; cos(@1),

2 2 (4.98)
x(0) = 3 cas(w) — 3 cos(@t)-
Writing  and & as
d+w BO—w _ O+tw  O-w

@= =5 snd o= 0 + 5 (4.99)

and using the iﬁ%nﬁty cos(z + f) = cosaxcos f — sin e sin B, gives

x1{t) =acos (m+m i) cus(w_m t> ’
2 2

(4.100)

x2(2) = asin (m;m t) sin (m;wi)

If we now approximate & as

_ k2 k 2 Ky _
m:,l—.—m _‘/—;—1,14-?:1(9(1-}--’;):m+26, (a.101)

where e = (i/2k)w = (x/2m)y/m/k, we cun write X} and xy a5
x1(r) = acos ((w+ €)t) coset),
x2(2) ~ asin (& + €)4) sin(e?),

as desired. To get an idea of what this motion looks like, let’s examinex). Since € « ©,
the cos(ef) oscillation is much slower thaa the cas{{w + €)1) oscillation. Therefore,
cos(ef) is essentially constant on the time scale of the cos({w + €)?) ostillations. This
means that for the time span of a fow of these oscillations, x) essentinily oscillates with
frequency w + € = w and amplitude a cos(et). This a cos(e#) term is the “envelope”
of the oscillation, as shown in Fig. 4.30, for ¢/ = 1/10. Initially, the amptitude of
x; is @, but it decreases to zero when ef = /2. By this time, the amplitude of the x;

(4.102)




4.11.

4.8 Solutions

oscillation, which is asin{et), has grown to a, So at t = m/2¢, the right mass has all
the motiox, and the left mass is at rest. This process keeps repeating. After each time
period of /2e, the motion of one mass gets transferred to the other. The weaker the
coupling (that is, the spring constant «} between the masses, the smaller the ¢, and so
the longer the time period,

Remarks; The above reasoning also holds for two pendulums connected by & weak
spring. All the sbove steps carry through, with the only change being that & is replaced
by mg/¥, because the spring force, —ix, is replaced by the tangentinl gravitationsl
force, —mg sin @ ~ —ng(x/£). So after a time

_n _nmf2m [k Tm (g
t—ZE—Z(K m)_* eVe' (.103)

the pendulum that was initially oscillating is now momentarily ot rest, and the other
pendulum hes all the motion. Since the time scale, T, of 1 single mass on the end of
the weak spring is proportional to +/m/k, and since the time scale, T, of a simple
pendulum is proportional to ./Z/g, we see that the nbove ¢ is proportional to T2/ Tp.
The existence of the “beats” in Fig, 4.30 can be traced to the fact that the expressions
in Eq. (4.98) are linear hinati of sinusoidal ions with two very close
frequencies. The physics here is the same ss the physics that produces the beats you
hear when listening to two musical notes of nearly the samg.pitch, as when tuning
a guitar.® The time between the zeros of, say, x; in Fig. 430 is 7/, so the angnlar
frequency of the beats is 2m/(ir/€) = 2¢. &
Driven mass on a circle
Label two dismetrically opposite points as the equilibrium positions. Let the positions
of the masses relative to these points be x and x;, measured countercloclowise. If the
driving force acts on mass “1,” then the F = ma equations are

m¥) + 2k(x) — xz) = Fy cos wat,

4.104;
ntia 4 2k(xy —x1) = 0. ¢ )

To solve these equations, we can treat the driving force as the real part of Fyelvat
and try Solutions of the form x; (£) = A)&/¢! and x3 () = A42™¥/, and then solve for
Ay and A, Or we can try some trig functions. If we take the latter route, we quickly
find that the solutions can't involve any sine terms (this is due to the fact that there
are no first derivatives of the x’s in Eq. (4.104)). Therefore, the trig functions must
look like x; {¢) = A1 cos wat and xa(t) = 42 coswyt. Using either of the two methods,
Eqg. (4.104) becomes

—widy + 204 ~ A) =F,

. ) (4.105)
—olds + 207 (dy — A1) =0,

where o = Jk/m and F = Fy/m. Solving for 41 and 43, we find that the desired
particular solution is

~F (20 - —2Fw?
-——2-(—2———:—) coswgt, X2{f) =
24 (4w

A7V 1Y 5 4.1
%) T —ag e @19

)=

B If the two frequencies involved aren't too close to each other, then you can actually hear a faint
note with a frequency equal to the difference of the originel frequencies (and possibly some other
notes too, involving various inations of the ies). But this is a different phenomenon
from the above beats; it is due to the nonlinesr way in which the ear works. See Hall (1981) for
more details.
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The most general solution is the sum of this particular solution and the homogeneous
solution found in Eq. (4.111) in the solution to Problem 4.12 below.

REMARKS:

1. fwg = 2w, the smplitudes of the motions go to infinity. This makes sense,
considering that there is no damping, and that the natural frequency of the system
(calculnted in Problem 4.12) is 2.

Tf wg = +2w, then the mass that is being driven doesn’t move, The reason for
this is thet the driving force balances the force that the mass feels from the two
springs due to the other mass’s motion. And indeed, you can show that 2w is
the frequency thet one mass moves at if the other mass is at rest (and thereby
gets essentially like a brick wall). Note that &g = /20 is the cutoff between the
masses moving in the same direction or in opposite directions.

. If wg — ©0q, then both motions go to zero. Butxy ig fourth-order small, whereas
x1 is only second-order small.

1wy — 0, then 4; = Ap = —F /2w}, which is very large. The slowly changing
driving force hasically spins the masses eround in one direction for a while, and
then reverses and spins them around in the other direction. We essentially have the
driving force acting on a mass 2m, and two integrations of Fy 605 wgt = (2m)%
show that the amplitude of the motion is F/Zmé, s above. Equivalently, you can
calenlate the Ay — Az difference in the wg — 0 Bmit to show that the springs
stretch just the right amount to cause there to be anet force of (Fa/2) coswst on
each mass. This leads to the same /203 amplitude. &
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4.12. Springs on a circle

(a) Label two diametrically opposite points as the equilibrium positions. Let
the positions of the masses relative to these points be x; and xp, measured
counterclockwise, Then the F = ma equations are

mEy 4 2k(x —x2) = 0,
miz 4 2k(xz —x1) =0.

The detegminant method works here, but let's just do it the easy way. Adding
the equations gives

(4.107)

4% =0, (4.108)
and subtracting them gives
(& = 52) + 4t (x —x2) = 0. (4.109)
The normal coordinates are therefore
x] 4x7 = At + B,
' : {4.110)

x1 —xz = Ccos(2wt + ¢).

Solving these two equations forx) andxz, and writing the results in vector form,

gives
(") = (1) (t+B)+C ( ! ) cos(Zot + &), @i
X2 1 —1

where the constants 4, B, and C are defined to be half of what they were in
Eg. (4.110). The normal modes are therefore

=y _ (1
(xz) = (1) (At+B), und
(2) =C (_11> cos(uwt + ¢).
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4.8 Solutions

The first mode has frequency zero. It corresponds to the masses sliding around
the circle, equally spaced, at constant speed. The second mode has both masses
moving to the left, then both to the right, back and forth, Each mass feels a force
of dloc (because there are two springs, and each one stretches by 2x), hence the
+/4 =2 in the frequency.

(b) Label three equally spaced points as the equilibrium positions. Let the posi-
tions of the masses relative to these points be xy, ¥z, and x3, measured
countercloclkwise. Then the F = ma equations are, as you can show,

miy -+ k(xy —x2) + k() —x) =0,
miy +k(xz —x3) + k(2 —x) =0, (4.113)
iy + k(e —x1) + k(3 —x2) = 0.

The sum of all three of these equations definitely gives something nice. Also,
differences between sny two of the equations give something useful. But let’s
use the determinant method to get some practice, Trying solutions of the form
x) =A1e™, x3 = Aei™, and x3 = 43", we obtnin the matrix equation,

—u? + 20* —w? —a? Ay ()
—a? —o? 4 20? —w? d)=10]. (4114
—u? —w? —a? +20?) \A3

Setting the determinant equal to zero yields a cubic e&’uﬂﬁon ine? Butitsn
nice cubic equation, with 22 = 0 ns o solution. The other solution is the double
oot a2 = 3w?.

The & = 0 root correspands to 4; = A3 = A3, That is, it corresponds to the
vector (1, 1, 1), This o = 0 case is the one case where our exponential solution
isn't really an exponential. But o equalling zero in Eq. (4.114) basically tells
us that we're dealing with a function whose second derivative is zero, that is, a
linear function A¢ + B. Therefore, the normal mode is

X1 1
x3|=|1](dt+B). (4.115)
X3 1

This mode has frequency zero. It corresponds to the masses sliding around the
circle, equally spaced, at constant speed.

The two a? = 3w? roots correspond to a two-dimensional subspace of normal
modes. You can show that eny vector of the form (a,b,¢) witha +b+c =0
is a normal mode with frequency +/3w, We will erbitrarily pick the vectors
(0,1,—1) and (1,0, ~1) as basis vectors for this space. We can then write the
normal modes as linear combinations of the vectors

X1 0
xn|=C| 1 |cos(v3ut+dn),
X3 —1
(4.116)
Xy 1
nl=CG|0 cos(+/3wt + #2).
X3 -

Remares: The a? = 3w? case is very similar to the example in Section 4.5
with two masses and three springs oscillating between two walls, The way we’ve
+written the two modes in Eq. (4.116), the first one has the first mass stationary
(s0 there could be a wall there, for all the other two masses know). Similarly for
the second mode. Hence the +/3w result here, as in the example.
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The normal coordinates in this problem arex; -+xz -+-x3 (obtained by adding the:
three equations in (4.113)), and also any combination of the form ax) 4-bxa +ex3,
where a4 b ¢ = 0 (obtained by taking o times the first equationin Eq. (4.113),
plus b times the second, plus ¢ times the third). The three normal coordinates
that eorrespend to the mode in Eq. (4.115) and the two modes we chose in Eq.
{4.116) sre, respectively, x| -+x2 + x3, X — 2x3 + x3, and —2x; -+ x2 + 13,
because each of these combinations gets no contribution from the other two
modes (demanding this is how you can derive the coefficients of the x;'s, up to
an overall constant), &

Tnpart (), when we set the determinant of the matrix inEq. (4.114) equal to zera,
we were ially finding the eig and eigenvalues® of the matrix,
2 -1 -1 1 11
-1 2 —lj=31-|1 1 1}, (4.117)
-1 -1 2 1 1 1

where I is the identity matrix. We haven't bothered writing the common factor
w? here, becanse it doesn’t affect the eigenvectors. As en exercise, you can show
that for the general case of N springs and N masses ona circle, the above matrix
becomes the N x N matrix,

110 0 1
1110 0
0011 1 0
3—-f 0 0 11 o [=u-M (4.118)
1000 -« 1

Tn the matrix M, the three consecutive 1's keep shifting to the right, snd they
wrap around cyclicly. We must now find the eigenvectors of M, which will
require being 4 little clever.

We can guess the eigenvectors and eigenvalues of M if we take a hint from
its cyclignature. A particular set of things that are rather cyclic are the N'th roots
of 1. If A is an Nth root of 1, you can verify that (1,8, 8%.... 8 D ism

g of M with eigenvalue =" + 1+ 8. (This general methed works for
any matrix where the entries keep shifting to the right. The entries don’t have
to be equal.) The eigenvalues of the entire matrix in Bg. (4.118) are therefore
3~ (B~ +1+p) =2— ! — . There are N different Nth roots of 1, namely
B =2V for0 <n <N~ 1. Sothe N eigenvalues are

A =2 (2N . PN = 2 — 2 cos(amn/N)
= 4sin*(n/N). (4.119)
The corresponding eigenvectors are
Vy= (1,)3,,,5},...,5,, "). (4.120)
Since the mumbers 7 and N — n yield the same value for A, in Eq. (4.119),

the eigenvalues come in puirs (except for n = 0, and n = N/2if N is even).
This is fortunate, because we can then form real linear combinations of the

9 An eigenvector v of a matrix M is n vector that gets tuken into a multiple of itself when ncted

upon by M.

. That is, Mv = Av, where A is some number (the eigenvalue). This can be rewritten as

(M — A)v = 0, where [ is the identity matrix. By our usuel rensoning shout invertible matrices,

a nonzero vector v exists only if A satisfies det |M — AI| =0.




4.8 Solutions

two cor di iplex eig given in Eq. (4.120). We see that the
vectors
1
1 cos(2rn/N)
Vi = 5t Vi) = cos(émn/N) @.121)

cos (2(N Z 1)1rn/N)
and

0
sin(2rn/N)

sin{4rrn/N)

V Vo =Eg(a—Pa-)= @.122)

1
2i :
sin (2(V Z 1zn/N)

both have eigenvalue Ay = An-p (as does any linear combination of these

vectors). For the special case of n = 0, the eigenvectoris Vo = (1,1, L,..., 1)
with eigenvalue Ag = 0. And for the special case of n = N/2 if N is even, the
eigenvectoris Pz = (1L, —1,1,...,—1) with eigenvalue Ay = 4.

Referring back to the N = 3 case in Eq. (4.114), we see that we must take the
square root of the eigeavalues and then multiply by oo obtain the frequencies
(because it was an o? that appeared in the matrix, and because we dropped the
factor of w?). The frequency comesponding to the above two normal modes is
therefore, using Eq. (4.119),

wy = o/ by = 2w sin(mn/N), (4.123)

For even N, the largest value of the frequency is 2w, with the masses moving
in altemnating equal positive and negative displacements. But for odd N, it is
slightly less than 2.

To sum everything up, the N normal modes are the vectors in Eqs. (4.121)
and (4.122), where 1 runs from 1 up to the greatest integer less than N/2. And
then we have to add on the Py vector, and also the Py vector if ¥ is even.!®
The frequencies are given in Bq. (4.123). Each frequency is associated with two
modes, except the ¥p mode and the V2 mode if N is even.

Remark:  Let's check our resulis for ¥ = 2 and ¥ = 3. For N = 2: The values
of n are the two “special” cases of 1 = 0 and n = N/2 = 1. If n = 0, we have
wo = 0and ¥ = (1,1). Ifn = 1, we have @ = 2w and P} = (1,—1). These
results agree with the two modes in Eq, (4.112).

ForN = 3: If n = 0, we bave wy = 0 and ¥y = (1,1,1), in agreement
with Eq. (4.115). If n = 1, we have oy = /3w, and Vr =(1,-1/2,-1/2)
and Py = (0,1/2,—1/2). These two vectors span the same space we found in
Eq. (4.116). And they have the same frequency as in Eq. (4.116). You can also
find the vectors for N = 4. These are fairly intuitive, 50 try to write them down
first without using the above results. &

1o If you want, you can treat the n = 0 and n = N/2 cases the snme as 2ll the others. But in both of
these cases, the '~ vector is the zero vector, 5o you can ignore it. So no matter what route you
tale, you will end up with exactly N nontrivial eigenvectors.
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