Current Transducer LTS 15-NP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Ele	ectrical data		
I _{PN}	Primary nominal r.m.s. current	15	At
I _P	Primary current, measuring range	0 ± 45	At
ν _{ουτ}	Analog output voltage @ I _P	2.5 ± (0.62	5 · I _P /I _{PN}) V
	$I_{\rm p} = 0$	2.5 ¹⁾	V
Ns	Number of secondary turns (± 0.1 %)	2000	
R	Load resistance	≥2	kΩ
R _M	Internal measuring resistance (± 0.5 %)	83.33	Ω
	Thermal drift of R _{IM}	< 50	ppm/K
V _c	Supply voltage (± 5 %)	5	V
	Current consumption @ $V_c = 5 V$ Typ	23+I _s ² +(V _o	/ R _) m A
I _c V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	3	kV
V	R.m.s. voltage for partial discharge extinction @ 10 pC	> 1.5	kV
V Ŷ _w	Impulse withstand voltage 1.2/50 µs	> 8	kV

Ac	curacy - Dynamic performance data			
Х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	±0.2 ±0.7		%
	Accuracy with $\mathbf{R}_{IM} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ} \mathrm{C}$			%
$\epsilon_{\scriptscriptstyle L}$	Linearity	< 0.1		%
		Тур	Max	
TCV	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$ - 10°C + 85°C	100	150	ppm/K
	Thermal drift of the gain - 10°C + 85°C		50 ³⁾	ppm/K
V _{om}	Residual voltage $@I_p = 0$, after an overload of $3 \times I_{pN}$		±0.5	mV
OM	5 x I _{PN}		±2.0	mV
	10 x I _{PN}		±2.0	mV
t _{ra}	Reaction time @ 10 % of I _{PN}	< 50)	ns
t,	Response time @ 90 % of I		< 400	
di/dt	di/dt accurately followed	> 35	5	A/μs
f	Frequency bandwidth (0 0.5 dB)	DC	. 100	kHz
	(- 0.5 1 dB)	DC	200	kHz
Ge	neral data			
T _A	Ambient operating temperature	- 10	+ 85	°C
T _s	Ambientstoragetemperature	- 25	+ 100	°C
0	Insulatingmaterialgroup	lla		
m	Mass	10		g
	Standards	EN 50178		•
		EN	60950	

<u>Notes</u> : ¹⁾ Absolute value @ $T_A = 25^{\circ}C$, 2.475 < $V_{OUT} < 2.525$

²⁾ Please see the operation principle on the other side

³⁾ Only due to **TCR**

Copyright protected.

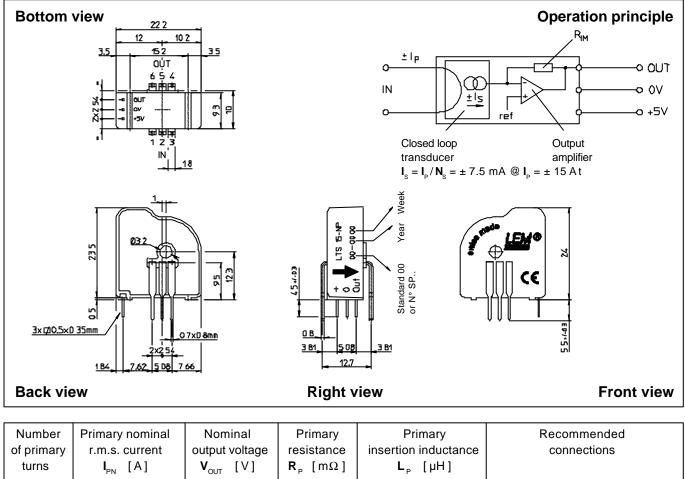
|--|

 $I_{PN} = 5 - 7.5 - 15 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mountingInsulated plastic case recognized
- according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

Advantages


- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

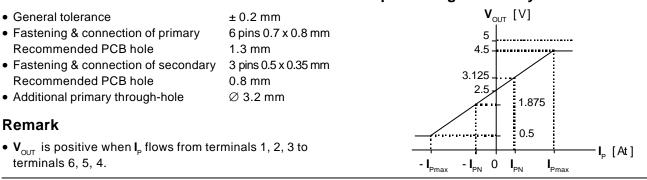
- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies(SMPS)
- Power supplies for welding applications.

001208/4

Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

turns	I _{PN} [A]	V _{OUT} [V]	\mathbf{R}_{P} [m Ω]	L _P [μH]	
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT 0 0 0 0 IN 1 2 3
2	±7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT 0 0 0 IN 1 2 3
3	±5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 0 IN 1 2 3

Mechanical characteristics


• General tolerance

terminals 6, 5, 4.

Remark

- ± 0.2 mm • Fastening & connection of primary 6 pins 0.7 x 0.8 mm Recommended PCB hole 1.3 mm
- Fastening & connection of secondary 3 pins 0.5 x 0.35 mm Recommended PCB hole 0.8 mm
- Additional primary through-hole Ø 3.2 mm

Output Voltage - Primary Current

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.