7-Stage Ripple Counter

The MC14024B is a 7-stage ripple counter with short propagation delays and high maximum clock rates. The Reset input has standard noise immunity, however the Clock input has increased noise immunity due to Hysteresis. The output of each counter stage is buffered.

Features

- Diode Protection on All Inputs
- Output Transitions Occur on the Falling Edge of the Clock Pulse
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4024B
- These Devices are Pb-Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	–0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	–55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS PDIP-14 MC14024BCP P SUFFIX OAWLYYWWG **CASE 646** $\nabla \nabla \nabla \nabla \nabla \nabla$ SOIC-14 14024BG **D SUFFIX** AWLYWW CASE 751A H H H Assembly Location

= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Clock	Reset	State		
0	0	No Change		
0	1	All Outputs Low		
1	0	No Change		
1	1	All Outputs Low		
7	0	No Change		
7	1	All Outputs Low		
~	0	Advance One Count		
~	1	All Outputs Low		

ORDERING INFORMATION

Device	Package	Shipping [†]		
MC14024BCPG	PDIP-14 (Pb-Free)	500 Units / Rail		
MC14024BDG	SOIC-14			
NLV14024BDG*	(Pb-Free)	55 Units / Rail		
MC14024BDR2G	SOIC-14			
NLV14024BDR2G*	(Pb–Free)	2500 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS	(Voltages Referenced to V _{SS})
----------------------------	---

Characteristic				– 55°C			25°C			125°C	
		Symbol	V _{DD} Vdc		Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0 \text{ or } V_{DD}$	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level)	V _{IL}	5.0 10 15		1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level)	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
$\begin{array}{l} \text{Output Drive Current} \\ (\text{V}_{\text{OH}} = 2.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 4.6 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 9.5 \ \text{Vdc}) \\ (\text{V}_{\text{OH}} = 13.5 \ \text{Vdc}) \end{array}$	Source	I _{OH}	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	- - -	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8		- 1.7 - 0.36 - 0.9 - 2.4	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	-	-	5.0	7.5	_	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		Ι _Τ	5.0 10 15			I _T = (0	.31 μΑ/kHz) 1 .60 μΑ/kHz) 1 .89 μΑ/kHz) 1	f + I _{DD}			μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
The formulas given are for the typical characteristics only at 25°C.
To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD} - V_{SS}) in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS	(Note 5) (C _L = 50 pF, T _A = 25°C)
---------------------------	--

Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Мах	Unit
Output Rise and Fall Time	t _{TLH} ,					ns
t _{TLH} , t _{THL} = (1.5 ns/pF) C _L + 25 ns	t _{THL}	5.0	-	100	200	
t _{TLH} , t _{THL} = (0.75 ns/pF) C _L + 12.5 ns		10	-	50	100	
t_{TLH} , t_{THL} = (0.55 ns/pF) C _L + 9.5 ns		15	-	40	80	
Propagation Delay Time	t _{PLH} ,					ns
Clock to Q1	t _{PHL}	FO		200	600	
t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_{L} + 295 \text{ ns}$		5.0 10	_	380 150	600 230	
t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 117 \text{ ns}$		10	-	150	230 175	
t _{PLH} , t _{PHL} = (0.5 ns/pF) C _L + 85 ns Clock to Q7		15	_	110	175	
t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 915 ns		5.0	-	1000	2000	
t _{PLH} , t _{PHL} = (0.66 ns/pF) C _L + 367 ns		10	-	400	750	
t_{PLH} , t_{PHL} = (0.5 ns/pF) C _L + 275 ns Reset to Q _n		15	-	300	565	
t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 415 ns		5.0	-	500	800	
t _{PLH} , t _{PHL} = (0.66 ns/pF) C _L + 217 ns		10	-	250	400	
t _{PLH} , t _{PHL} = (0.5 ns/pF) C _L + 155 ns		15	-	180	300	
Clock Pulse Width	t _{WH}	5.0	500	200	-	ns
		10	165	60	-	
		15	125	40	-	
Reset Pulse Width	t _{WH}	5.0	600	375	-	ns
		10	350	200	-	
		15	260	150	-	
Reset Removal Time	t _{rem}	5.0	625	250	-	ns
		10	190	75	-	
		15	145	50	-	
Clock Input Rise and Fall Time	t _{TLH} , t _{THL}	5.0	-	-	1.0	s
		10	-	-	8.0	ms
		15	-	-	200	μs
Input Pulse Frequency	f _{cl}	5.0	-	2.5	1.0	MHz
		10	-	8.0	3.0	
		15	-	12	4.0	

The formulas given are for the typical characteristics only at 25°C.
Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Typical Output Source Characteristics Test Circuit

Figure 3. Power Dissipation Test Circuit

Input t_{TLH} and $t_{THL} = 20$ ns

Figure 4. Functional Waveforms

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

PDIP-14 CASE 646-06 ISSUE P

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

- Y14.5M. 1982 CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. З.
- Δ
- DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL. 5.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MIN MAX		MAX	
Α	0.715	0.770	18.16	19.56	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54 BSC		
н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
ĸ	0.115	0.135	2.92	3.43	
L	0.290	0.310	7.37	7.87	
м		10 °		10 °	
Ν	0.015	0.039	0.38	1.01	

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, UN semiconductor and up are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC works the rights to a number of patents, trademarks, trademarks, trade secrets, and other intellectual property. Al listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different application and advary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights on the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for suprise application by customer's technical experts. ScilLC products are not designed, intended, or authorized for use as components in systems intended for suprise application is which the application spice as a situation where application by customer application applicating the application application application applicati surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

For additional information, please contact your local

Sales Representative