FEATURES

Latch-up immune under all circumstances Human body model (HBM) ESD rating: $\mathbf{8 k V}$
Low on resistance: 13.5Ω
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V
$V_{D D}$ to $V_{s s}$ analog signal range

APPLICATIONS

High voltage signal routing
Automatic test equipment
Analog front-end circuits
Precision data acquisition
Industrial instrumentation
Amplifier gain select
Relay replacement

GENERAL DESCRIPTION

The ADG5419 is a monolithic industrial, complementary metal oxide semiconductor (CMOS) analog switch containing a latchup immune single-pole/double-throw (SPDT) switch.

Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked. The ADG5419 exhibits break-before-make switching action for use in multiplexer applications.
The ultralow on resistance and on-resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. The latch-up immune construction and high ESD rating make these switches more robust in harsh environments.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 0 INPUT. 俞
Figure 1.

PRODUCT HIGHLIGHTS

1. Trench isolation guards against latch-up. A dielectric trench separates the P channel and N channel transistors, thereby preventing latch-up even under severe overvoltage conditions.
2. Low R ${ }_{\text {on }}$ of 13.5Ω.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5419 can be operated from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5419 can be operated from a single-rail power supply up to 40 V .
5. 3 V logic compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.
7. Available in 8-lead MSOP package.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
Continuous Current per Channel, Sx or D7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 10
Test Circuits 13
Terminology 15
Applications Information 16
Trench Isolation 16
Outline Dimensions 17
Ordering Guide 17

REVISION HISTORY

9/13-Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$V_{D D}$ to $V_{S S}$	V	
On Resistance, Ron	13.5			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$; see Figure 22
	15	19	23	Ω max	$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	0.1			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
On-Resistance Flatness, Relat (on)	0.8	1.3	1.4	Ω max	
	1.8			Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	2.2	2.7	3.1	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.1			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$; see Figure 21
Channel On Leakage, Io (On), II (On)	± 0.25	± 1	± 10	nA max	
	± 0.1			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$; see Figure 21
	± 0.4	± 4	± 10	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$			2.0	V min	
Input Low Voltage, $\mathrm{V}_{\mathbf{I N L}}$			0.8	\checkmark max	
Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	0.002			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	6			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, trranstion	217			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	260	310	336	ns max	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$; see Figure 27
Break-Before-Make Time Delay, to	86			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			45	ns min	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 28
Charge Injection, Qins	130			pC typ	$\mathrm{V}_{s}=0 \mathrm{~V}, \mathrm{R}_{s}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 29
Off Isolation	-60			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 24
Channel-to-Channel Crosstalk	-80			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 23
Total Harmonic Distortion + Noise	0.01			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 15 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 25 \end{aligned}$
-3 dB Bandwidth	190			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 26
Insertion Loss	-0.8			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 26
C_{s} (Off)	12			pF typ	$\mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	55			pF typ	$\mathrm{V}_{5}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$
IDD	45			μA typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$
	55		70	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\text {DD }} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	\checkmark min $/ V$ max	$\mathrm{GND}=0 \mathrm{~V}$

[^0]
± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 12.5 \\ & 14 \\ & 0.1 \\ & 0.8 \\ & 2.3 \\ & 2.7 \end{aligned}$	18 1.3 3.3	$V_{D D}$ to $V_{S S}$ 22 1.4 3.7	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Channel On Leakage, $I_{0}(O n)$, Is (On)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.1 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {; see Figure } 21 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbb{N H}}$ Input Low Voltage, VinL Input Current, linL or linh Digital Input Capacitance, C_{I}	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {dD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, t transition Break-Before-Make Time Delay, to Charge Injection, Qinj Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{s} (Off) $C_{D}(O n), C_{S}(O n)$	$\begin{aligned} & 200 \\ & 235 \\ & 77 \\ & 160 \\ & -60 \\ & -80 \\ & 0.01 \\ & \\ & 190 \\ & -0.7 \\ & 11 \\ & 55 \\ & \hline \end{aligned}$	279	$\begin{aligned} & 294 \\ & 46 \end{aligned}$	ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 23 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 20 \mathrm{~V}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 25 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { see Figure } 26 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{mHz} \end{aligned}$
POWER REQUIREMENTS ID Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		$\begin{aligned} & 110 \\ & 1 \\ & \pm 9 / \pm 22 \end{aligned}$	μA typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min $/ V$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{GND}=0 \mathrm{~V} \end{aligned}$

[^1]
12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range On Resistance, Ron			OV to V_{DD}	V	
	26			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 22
	30	38	44	Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	0.1			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	1	1.5	1.6	Ω max	
On-Resistance Flatness, Rflat (on)	5.5			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	6.8	8.3	12.3	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					$\mathrm{V}_{\mathrm{DD}}=+13.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
	± 0.1			nA typ	$\begin{aligned} & V_{S}=1 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} \text { to } 1 \mathrm{~V} \text {; } \\ & \text { see Figure } 21 \end{aligned}$
	± 0.25	± 1	± 10	nA max	
Channel On Leakage, $\mathrm{ID}_{\text {(}}(\mathrm{On})$, Is (On)	± 0.1			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V}$ to 10 V ; see Figure 21
	± 0.4	± 4	± 10	nA max	
DIGITAL INPUTS					
Input High Voltage, V $\mathrm{V}_{\text {INH }}$			2.0	V min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	\checkmark max	
Input Current, linl or linh	0.002			$\mu A \operatorname{typ}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	6			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	333			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	414	508	567	ns max	$\mathrm{V}_{5}=8 \mathrm{~V}$; see Figure 27
Break-Before-Make Time Delay, t_{D}	176			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			97	ns min	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 28
Charge Injection, Qins	55			pC typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 29
Off Isolation	-60			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 24
Channel-to-Channel Crosstalk	-80			dB typ	$R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$; see Figure 23
Total Harmonic Distortion + Noise	0.03			\% typ	$\mathrm{RL}=1 \mathrm{k} \Omega, 6 \mathrm{~V} p-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ 20 kHz ; see Figure 25
-3 dB Bandwidth	170			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 26
Insertion Loss	-1.7			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 26
C_{5} (Off)	15			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{Cd}_{\mathrm{d}}(\mathrm{On}), \mathrm{Cs}_{\text {(}}(\mathrm{On})$	50			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
	40			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	50		65	$\mu \mathrm{A}$ max	
$V_{D D}$			9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

[^2]
36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 14.5 \\ & 16 \\ & 0.1 \\ & 0.8 \\ & 3.5 \\ & 4.3 \end{aligned}$	20 1.3 5.5	0 V to V_{DD} 24 1.4 6.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 22 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Channel On Leakage, $I_{D}(O n), I_{s}(O n)$	$\begin{aligned} & \pm 0.1 \\ & \\ & \pm 0.25 \\ & \pm 0.1 \\ & \\ & \pm 0.4 \end{aligned}$	± 1 ± 4	± 10 ± 10	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} \text { to } 1 \mathrm{~V} \end{aligned}$ see Figure 21 $V_{S}=V_{D}=1 \mathrm{~V} \text { to } 30 \mathrm{~V}$ see Figure 21
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $\mathrm{I}_{\mathrm{ILL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{1 \mathrm{~N}}$	$\begin{aligned} & 0.002 \\ & 6 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition Break-Before-Make Time Delay, t_{D} Charge Injection, Qinנ Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss C_{s} (Off) $\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	$\begin{aligned} & 216 \\ & 250 \\ & 80 \\ & 135 \\ & -60 \\ & -80 \\ & 0.01 \\ & 170 \\ & -1 \\ & 14 \\ & 50 \end{aligned}$	286	$\begin{aligned} & 310 \\ & 47 \end{aligned}$	ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} ; \text { see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} ; \text { see Figure } 28 \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} \text {; see } \end{aligned}$ Figure 29 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 24 $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 23 $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 18 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to }$ $20 \text { kHz; see Figure } 25$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 26 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 26 $\begin{aligned} & V_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS IDD VDD	$\begin{aligned} & 80 \\ & 100 \end{aligned}$		$\begin{aligned} & 130 \\ & 9 / 40 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/V max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { GND }=0 \mathrm{~V}, \mathrm{~V} \text { SS }=0 \mathrm{~V} \end{aligned}$

[^3]
Data Sheet
 ADG5419

CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5.

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR D					MSOP $\left(\theta_{\mathrm{JA}}=133.1^{\circ} \mathrm{C} / \mathrm{W}\right)$
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	113	73	46	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	118	76	47	mA maximum	
$\mathrm{V}_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	90	60	41	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	116	74	46	mA maximum	

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$V_{\text {DD }}$ to V $\mathrm{V}_{\text {S }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30$ mA , whichever occurs first
Digital Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, Sx or D Pins	410 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or D ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA} 8-Lead MSOP (4-Layer Board)	$133.1{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020
Human Body Model (HBM) ESD	8 kV

[^4]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	D	Drain Terminal. This pin can be an input or output.
2	SA	Source Terminal. This pin can be an input or output.
3	GND	Ground (OV) Reference.
4	VDD	Most Positive Power Supply Potential.
5	NC	No Connect. Not internally connected.
6	IN	Logic Control Input.
7	VSS	Most Negative Power Supply Potential.
8	SB	Source Terminal. This pin can be an input or output.

Table 8. Truth Table

IN	Switch A	Switch B
0	On	Off
1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of V_{S}, V_{D} Dual Supply)

Figure 4. On Resistance as a Function of V_{S}, V_{D} Dual Supply)

Figure 5. On Resistance as a Function of V_{S}, V_{D} (Single Supply)

Figure 6. On Resistance as a Function of V_{S}, V_{D} (Single Supply)

Figure 7. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 8. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 20 V Dual Supply

Figure 9. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply

Figure 10. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 36 V Single Supply

Figure 11. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 12. Leakage Currents as a Function of Temperature, ± 20 V Dual Supply

Figure 13. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 14. Leakage Currents as a Function of Temperature, 36 V Single Supply

Figure 15. Off Isolation vs. Frequency

Figure 16. Crosstalk vs. Frequency

Figure 17. Charge Injection vs. Source Voltage

Figure 18. $T H D+N$ vs. Frequency

Figure 19. Bandwidth

Figure 20. ttanasition $^{\text {Times vs. Temperature }}$

TEST CIRCUITS

Figure 21. On and OffLeakage

Figure 22. On Resistance

Figure 23. Channel-to-Channel Crosstalk

Figure 24. Off Isolation

Figure 25. THD + Noise

Figure 26. Bandwidth

Figure 27. Switching Timing

Figure 28. Break-Before-Make Delay, t_{D}

Figure 29. Charge Injection

TERMINOLOGY

IdD

IDD represents the positive supply current.
Iss
Iss represents the negative supply current.

V_{D}, V_{s}

V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.

Ron

Ron is the ohmic resistance between Terminal D and Terminal S .
Δ Ron $^{\prime}$
$\Delta \mathrm{R}_{\mathrm{ON}}$ represents the difference between the R_{ON} of any two channels.
$\mathrm{R}_{\text {flat (} \mathrm{ON} \text {) }}$
The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $\mathrm{R}_{\mathrm{FLAT} \text { (ON) }}$.
I_{s} (Off)
Is (Off) is the source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$V_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {inh }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
$\mathrm{I}_{\mathrm{INL}}$ and $\mathrm{I}_{\mathrm{INH}}$ represent the low and high input currents of the digital inputs.
C_{s} (Off)
C_{s} (Off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
C_{IN} represents digital input capacitance.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
t_{D}
t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB , from its dc level.

Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD +N .

APPLICATIONS INFORMATION

The ADG54xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5419 high voltage switch allows single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5419 (as well as other select devices within this family) achieves an 8 kV human body model ESD rating, which provides a robust solution, eliminating the need for separate protection circuitry designs in some applications.

TRENCH ISOLATION

In the ADG5419, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction-isolated switches, are eliminated, and the result is a completely latch-up immune switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. The two transistors form a silicon-controlled rectifier (SCR) type circuit, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up immune switch.

Figure 30. Trench Isolation

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 31. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG5419BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package $[$ MSOP $]$	RM-8	S48
ADG5419BRMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Mini Small Outline Package $[M S O P]$	RM-8	S48

[^5]NOTES

NOTES

NOTES

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at the IN, Sx, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^5]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

