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Signaling networks: connecting cells with the outside world
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Signaling networks: connecting cells with the outside world
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Signaling networks are made of multiple proteins and genes
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Lab Interests: Signaling Networks

Evolution

Disease Engineering




How does this complexity evolve?
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Modularity in Transcriptional Circuits Is Believed to Play an

Important Role in Evolution
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Modularity in Transcriptional Circuits Is Believed to Play an

Important Role in Evolution
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However, evolution mediated by shuffling of genetic elements
controlling gene expression is limited to processes that do not need
fast responses



How do processes that require faster responses evolve?




How do processes that require faster responses evolve?
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Proteins are organized in distinct domains with modular functions
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Modularity in protein function regulation could play an important

role in the evolution of fast cellular processes
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Modular allosteric regulation controls signaling protein functions
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One of our research goals:

Exploring the role of protein domain shuffling in the
evolution of signaling networks



The Yeast Mating Pathway
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Synthetic Biology/Laboratory Evolution Approach

Yeast Mating Pathway
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Quantitative Analysis of Large Collections of Strains
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Quantitative Analysis of Large Collections of Strains
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Domain Recombination Leads to Rapid Diversification of Mating

Pathway Response Dynamics

Whole Gene Duplication (11)
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Does Domain Recombination Affect Mating Efficiency as Well?
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Domain Recombination Leads to Strains that Mate More

Efficiently than Wild Type
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Why are there variants that mate better than WT (in the lab)?

The fitness cost of pleiotropic effects could be balanced by gains in mating efficiency
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Why are there variants that mate better than WT (in the lab)?

The fitness cost of pleiotropic effects could be balanced by gains in mating efficiency
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Understanding the Mechanisms that Result in Response Changes
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Fluorescence Microscopy Experiments Suggest Possible

Mechanisms Leading to Changes in Response Dynamics
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Understanding the Mechanisms that Result in Response Changes

Mating Pheromone
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Understanding the Mechanisms that Result in Response Changes

Mating Pheromone
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Understanding the Mechanisms that Result in Response Changes

Mating Pheromone
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Understanding the Mechanisms that Result in Response Changes

Mating Pheromone
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Would domain recombination still lead to adaptive evolutionary

change when at least one wild type gene is deleted?

Mating Pheromone
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Would domain recombination still lead to adaptive evolutionary
change when at least one wild type gene is deleted?




Network re-wiring in the absence of the Ste11 kinase
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Network re-wiring in the absence of the Stes scaffold

Pathway activation (GFP)
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Network re-wiring in the absence of the Ste2o kinase

Pathway activation (GFP)
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Network re-wiring in the absence of the Ste7 kinase

Mating Pheromone
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Conclusions

e Recombination of modular protein domains leads to the rapid
diversification of signaling pathways.

e While domain duplication could lead to dominant negative
effects, recombination is needed to create novel pathway responses.

e Most significant changes result from recombination events that alter the
localization and/or regulation of catalytic domains.

eMating network is very plastic, tolerating recombination events that
involve deletions of WT genes.

Science 328, 368 (2010);
DOI: 10.1126/science.1182376
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