The Quest for the Higgs Boson

Salar Andrews

What Does It All Mean?

- This is an astounding accomplishment!
- It is important to see it in proper perspective
 - Represents the end of a 50 year quest
 - Just a part of a century-long and still continuing saga
- The meaning and implications of the discovery aren't known yet
- But they will be big in the long term
 - we just don't know precisely in what way

Nature as We Currently Know It

- A Quantum Mechanical World
- Quantum Fields in Presumably Quantum Spacetime
 - Electromagnetic Field, Electron Field,...
- Waves in Fields are made from Quanta ("Particles")
 Photons, Electrons,...
- The Universe
 - Expanding at an accelerating rate [Dark "Energy"]
 - Most of the matter is of one or more unknown types [Dark Matter]

Four Known Forces ("Interactions") of Nature

All known processes in nature can be classified as one of four types

• Electromagnetic interaction (atomic structure)

• Strong nuclear interaction (nuclear structure, protons/neutrons)

• Weak nuclear interaction (radioactivity, supernovas)

• Gravitational interaction (galaxies, stars, planetary systems,...)

NEW #5! Higgs Interaction...

The "Scales" of the Forces of Nature

Some important distance scales in nature

Convert distance d to energy E

 $d = \frac{\hbar c}{E}$

• Atomic scale

(atom radius 10⁻¹⁰ m, electron mass 10⁻¹² m)

- Energy eV MeV [1900-1940]
- Strong nuclear interaction scale (proton size 10⁻¹⁵ m)
 - Energy GeV [1930-1980]
- Weak nuclear interaction scale (Higgs mechanism 10⁻¹⁸ m)
 - Energy TeV [1930-present]

LHC: first time in 40 years we reach a new physical scale

- Gravitational interaction scale (quantum space-time 10⁻³³ m)
 - Energy $10^{27} \text{ eV} = 10^{15} \text{ TeV}$ [2210?!?]

Understanding the Electro-Weak Interaction

Understanding the Electro-Weak Interaction

Standard Model

SM-minus-Higgs not consistent.

Scattering of W bosons violates unitarity; new forces or particles needed.

	IA		P	er	ioc	lic	Ta	abl	e c	of t	he	E	len	ner	nts			VIIA
1	1.008 1H	IIA											IIIA	IVA	VA	VIA	VIIA	4003 ₂He
2	6.941 ₃ Li	9.012 ₄Be												12.011 °C	14.007 7 N	15.999 "O	18.998 "F	20.179 19 Ne
3	22.990 11 Na	24.305 12 ^{Mg}	IIIB	IVB	VB	VIB	VIIB		VIIB	_	IB	IIB	26.58 ₁₃ Al	28.09 14Si	30.974 15P	32.05 16	35.463 17CI	39.948 ₁₈ Аг
4	39.098 19 K	40.08 29 Ca	44.98 21 5C	47.88 ₂₂ 11	50.94 29	5200 34Cr	^{54,94} ∞Mn	55.85 ∞Fe	58.93 ₂₇ CO	58.69 28 Ni	63.546 29Cu	≝38 "nZn	69.72 Ji Ga	77.59 92 Ge	74.92 "As	лы "Se	79.904 35Br	83.80 _≫ Kr
5	85.47 "Rb	₽£2 ≆Sr	≋छ्ञ ⊮Y	91.22 •Zr	92.91 ₄1Nb	95.94 42 ^{Мо} 42	(96) ₄₉ TC	101.1 ₄4 Ru	102.91 45Rh	1064 ₄₀Pd	107.87 47Ag	™2AI ⊕Cd	114.82 ₄₉ 10	118.69 ₅₀S∩	121.75 51 Sb	127.50 ₅₂Te	126.90 53	131.29 ₅₄ Xe
6	132.91 ₇₅ С5	137.33 58 Ва	138.91 57 La	178,49 72Hf	180.95 73 Та	183.85 74₩	186.2 75 Re	1902 ₇₈ OS	1922 77	195.08 75 Pt	196.97 ₇₉ Au	200.59 "Hg	204.38 81 TI	207.2 52Pb	208.98 53Bi	249 84PO	(210) •••At	aza) ⊷Rn
7	(223) ₈₇ Fr	226.03 88 Rd	227.03 89AC															

Lanthankle Series	140.12	140 <i>90</i> 77	144.24	(145)	159.36	^{ាភាទស}	15725	15859	162.50	16433	16726	168.59	173.04	17497
	₃₈ Ce	₅₉ Pr	40Nd	Ք Pm	_e Sm	_ស Eu	"Gd	_e Tb	₆₈ Dy	#HO	_{ев} Ег	#TM	_ж ҮЬ	₇₁ Lu
Actinide Series	232.04 ⊛Th	anaa "Pa	23803 ₽U	23725 ₁₈ Np	, Pu	۵۹) Amی	∞ wCm	(247) "Bk	رکی Gr	α54) "Es	(≊7) 100 Fm	⁽²⁵⁸⁾ ™Wd	(25%) 1 <u>112</u> NO	(260) 105

Puzzle # 1: Why masses show this pattern? FLAVOR PROBLEM

Standard Model

Puzzle # 1: Why masses show this pattern? FLAVOR PROBLEM

Standard Model

Why Masses at All? Fermions

• In quantum mechanics class, we put the electron mass **m** in by hand

 $[p^2/2\mathbf{m} + V(\mathbf{x})] \Phi(\mathbf{x}) = E \Phi(\mathbf{x})$

It's not something to explain, we just take it for granted.

• In quantum field theory, it was initially the same

 $\overline{\Psi}(i\not\partial + m)\Psi = 0$

• But then a problem arose: the Weak Nuclear Force violates parity (1957)

Fermion Mass vs. Weak Nuclear Force

- For massless spin-¹/₂ particle, helicity is conserved
 - All observers agree on what a particle's helicity is
- For spin-¹/₂ particle with mass, helicity isn't a good quantum number
 - Different observers disagree

Mass relates positive and negative helicity particles

- But weak nuclear force violates "parity" [invariance under mirror]
 - Converts neutrinos to electrons and back again
 - Always create neutrinos with negative helicity
 - Electrons of negative and positive helicity behave differently
- Can't simply write $\overline{\Psi}(i\not\partial + m)\Psi = 0$ and combine it with the weak force

 $W^1 W^2 W^3$

 $W^+ W^- Z$

Y

Question:

How can the W and Z particles become massive? How can electrons and other fermions become massive?

Answer: Higgs Mechanism

- Invented a number of times in quick succession 1963-64
 - Condensed matter (non-relativistic) first Anderson
 - Within a year, relativistic version, largely independent
 - Higgs; Englert & Brout; Guralnik, Hagen, Kibble
 - Goldstone?

• $(d^2/dt^2 - c^2 \nabla^2) \Phi = 0$

Spin-0 ("scalar") fields $\Phi(x,y,z,t)$ Classical eq of motion is wave eq.

– Each wave mode $e^{i\omega t - ikx}$ acts as independent oscillator

$$\omega^2 - \mathbf{k}^2 \mathbf{c}^2 = \mathbf{0}$$

Quantize: De Broglie: $E = \hbar \omega$, $p = \hbar k$ \implies spin-0 particles with $E^2 - p^2 c^2 = 0$ MASSLESS

•
$$(d^2/dt^2 - c^2 \nabla^2) \Phi = -(m^2 c^4 / \hbar^2) \Phi$$

Add a mass term

– Each wave mode $e^{i\omega t - ikx}$ acts as independent oscillator

$$\omega^2 - k^2 c^2 = m^2 c^4 / \hbar^2$$

Quantize: De Broglie: $E = \hbar \omega$, $p = \hbar k$ \implies spin-0 particles with $E^2 - p^2 c^2 = m^2 c^4$ MASSIVE

•
$$(d^2/dt^2 - c^2 \nabla^2) \Phi = -(m^2 c^4 / \hbar^2) \Phi$$

• $(d^2/dt^2 - c^2\nabla^2) A = 0$

Also for electromagnetic waves: (with vector potential A)

– Each wave mode $e^{i\omega t \cdot ikx}$ acts as independent oscillator

$$\omega^2 - k^2 c^2 = 0$$

Quantize: De Broglie: $E = \hbar \omega$, $p = \hbar k$ \implies spin-0 particles with $E^2 - p^2 c^2 = m^2 c^4$ MASSIVE \implies spin-1 particles with $E^2 - p^2 c^2 = 0$ MASSLESS

- $(d^2/dt^2 c^2\nabla^2)\Phi = -(m^2 c^4/\hbar^2)\Phi + igA\cdot\nabla\Phi + g^2A^2\Phi$
- $(d^2/dt^2 c^2\nabla^2) \mathbf{A} = -g^2 \Phi^* \Phi \mathbf{A} + ig \Phi^* \nabla \Phi ig \Phi \nabla \Phi^*$
 - Nonlinear coupled wave equations

Couple the two fields together (coupling strength g)

- \implies spin-0 particles with \implies spin-1 particles with
- $E^2 p^2 c^2 = m^2 c^4$ $E^2 - p^2 c^2 = 0$

MASSIVE MASSLESS

- $(d^2/dt^2 c^2\nabla^2)\Phi = -(m^2c^4/\hbar^2)\Phi + igA\cdot\nabla\Phi + g^2A^2\Phi + \dots$
- $(d^2/dt^2 c^2\nabla^2) \mathbf{A} = -g^2 \Phi^* \Phi \mathbf{A} + ig \Phi^* \nabla \Phi ig \Phi \nabla \Phi^*$
 - Nonlinear coupled wave equations
 - Add potential V(Φ),

minimum at $\Phi = v$

Let $< 0 |\Phi| |0 > = v$ nonzero Write $\Phi = v + \delta \Phi$

 \implies spin-0 particles with \implies spin-1 particles with

 $E^2 - p^2 c^2 = m^2 c^4$ $E^2 - p^2 c^2 = 0$

- $(d^2/dt^2 c^2\nabla^2)\Phi = -(m^2c^4/\hbar^2)\Phi + igA\cdot\nabla\Phi + g^2A^2\Phi + \dots$
- $(d^2/dt^2 c^2\nabla^2) \mathbf{A} = -\mathbf{g}^2 \mathbf{v}^2 \mathbf{A} + i\mathbf{g}\Phi^*\nabla\Phi i\mathbf{g}\Phi\nabla\Phi^* + \dots$

Let $< 0 |\Phi| |0 > = v$ nonzero Write $\Phi = v + \delta \Phi$

– The expectation value for Φ generates mass for A !!

 \implies spin-0 particles with \implies spin-1 particles with

 $E^{2} - p^{2}c^{2} = m^{2} c^{4}$ $E^{2} - p^{2}c^{2} = g^{2} v^{2} \hbar^{2}$

- $(d^2/dt^2 c^2\nabla^2)\Phi = -(m^2 c^4/\hbar^2)\Phi + igA\cdot\nabla\Phi + g^2A^2\Phi + \dots$
- $(d^2/dt^2 c^2\nabla^2) \mathbf{A} = -\mathbf{g}^2 \mathbf{v}^2 \mathbf{A} + i\mathbf{g}\Phi^*\nabla\Phi i\mathbf{g}\Phi\nabla\Phi^* + \dots$

Let $< 0 |\Phi| |0 > = v$ nonzero Write $\Phi = v + \delta \Phi$

– The expectation value for Φ generates mass for A !!

Superconductor: Φ Cooper pair density

- Photon massive
- Electric screening; Meissner effect

Particle Physics: $\Phi \Longrightarrow H$ "Higgs Field"

- <H> = v = 246 GeV
- W⁺, W⁻, Z massive (80,91 GeV) [photon massless]
- Fermions couple to $H \Longrightarrow$ they also become massive
- Standard Model: δ H is a massive scalar field: the Higgs boson

- Spin-zero field H gets expectation value v = 246 GeV
- W, Z bosons get mass of order v (photon remains massless)
- Standard model fermions get mass less than or of order v
- Quantum of waves oscillating around v is the Higgs particle

Saga of a Century!! And Not Over Yet

- 1897 Electron discovered, mass measured, source of mass unknown
- 1905-20 Massless photon suggested; discovered 1924
- 1957 Discovery that weak nuclear force is mirror-asymmetric!
- 1964 Higgs Field papers (Higgs, Brout & Englert, and Guralnik, Kibble & Hagen)
- 1967 Weinberg (and Salam) theory of weak nuclear force, based on crucial work by Glashow, using Higgs Field to give masses for the then-known particles
- Mid-1970s Serious consideration of how to make/discover Higgs Particle
- 1980s–90s proposal of the U.S. SSC, European Large Hadron Collider (LHC)
- 1990s–2000s– searches elsewhere for simplest Higgs: 0 115, 140 170 GeV
- 2012 LHC data reveals new particle consistent with Higgs at about 125 GeV

Proton mass = 0.938 GeV

The Large Hadron Collider

The Design:

- Underground tunnel
- Store bunches of high-energy protons going in opposite directions
- Accelerate, steer, focus bunches using electric and magnetic fields
- Adjust until collision location, rate matches requirements

In proton-proton collisions, hope to produce

- Higgs particles, at a bare minimum
- Other new and unexpected particles or phenomena, if they are there

gluon gluon \Rightarrow Higgs \Rightarrow photon photon

gluon gluon \Longrightarrow Higgs \Longrightarrow photon photon

gluon gluon \Rightarrow Higgs \Rightarrow photon photon

gluon gluon \Rightarrow Higgs \Rightarrow photon photon

July 4, 2012

Number of Collisions with Two Photons

vs. Invariant Mass of the Two Photons

Proton + Proton \rightarrow Higgs? \rightarrow Two photons

July 4, 2012

Number of Collisions with Four Leptons

vs. Invariant Mass of the Four Leptons

"lepton pair" = electron + positron or muon + anti-muon

38

So Much We Still Don't Know

- Is this a Higgs particle? (probably, in my view)
- Could this be anything else? (yes, but similarity to a Higgs will then be accidental)
 - Know more by November and March
 - Then not much for a while
 - 2013-2014 LHC shutdown, some continuing data analysis
- SM or not SM: One Higgs field or several, each with its own type of Higgs particle?
- SM or not SM: An elementary field, or made from other elementary fields
 - Higgs particle elementary like electron? Or composite like proton?
- Is it possible the Higgs field has no particle at all? (It was; but data apparently says no!)

Maybe – But at a very high price:

THE HIERARCHY "PROBLEM"

The Hierarchy Paradox

- <u>Quantum Harmonic Oscillator</u>: Zero Point Energy $E_0 = \frac{1}{2} \hbar \omega$
- <u>Quantum Field</u>: Infinite # of Coupled Oscillators per Unit Vol.
 - Zero-Point Energy Density E_0 /Vol → Infinity

Is this infinite constant a problem?

- Probably not infinite
- Spacetime probably changes at Gravitational scale, E_0 /Vol not infinite
 - Probably $E_0 / Vol = 10^{15} \text{ TeV} / (10^{-34} \text{ m})^3$ [still huge]

The Hierarchy Paradox

- <u>Quantum Harmonic Oscillator</u>: Zero Point Energy $E_0 = \frac{1}{2} \hbar \omega$
- <u>Quantum Field</u>: Infinite # of Coupled Oscillators per Unit Vol.
 - Zero-Point Energy Density $E_0 / Vol \rightarrow Infinity \ 10^{15} \text{ TeV} / (10^{-34} \text{ m})^3$

Is this huge constant a problem?

– Not if you ignore gravity...

» Gravity → This is a Huge Cosmological Constant

» By rights this should destabilize cosmos – ??!??

But wait – it isn't even constant! Even without gravity, must pay attention!

- For each field, value of ω depends on mass of the field
- Masses of many fields depend on value of Higgs field <H> = v
- E_0 is really $E_0(H)$

\rightarrow Big Quantum Correction to Higgs Potential V(H) from E_0 /Vol

Light and Lonely Higgs Is "Unnatural"

- In either case:
 - The Higgs boson should have an **enormous** mass
 - The energy scale of the weak nuclear force should be **huge** or <u>zero</u>
- Unnatural for there to be an observable Higgs boson, by this argument
- But we *need* one for the SM to make theoretical sense
 - And there's something like one in the data
 - So either the SM is incomplete, or the hierarchy argument is wrong
- Light spin-0 particle, with nothing additional to explain its presence, would fly in face of our understanding of quantum field theory
 - Such "Naturalness" arguments have worked throughout particle physics and condensed matter physics in the past
 - Failure here would be jaw-droppingly mysterious
 - "SM is simplest repair" but also most radical of all

The Standard Model + Gravity + Dark Stuff

If what we have at LHC is just the SM, leaves many deep unsolved problems:

- #10¹⁵ Hierarchy Problem: Why is v nonzero but very small?
 - Why spin-zero particle with nothing new near its mass scale?
- #0 Mass Problem: Why is there mass at all? Apparently solved.
- #1 Flavor Problem: Why the wacky pattern of masses? Of decays?
 - Why is top quark so heavy?
- #2 CP Problem: CP symmetry violated in weak nuclear force, but not strong nuclear force (even though latter seems natural)
- And more --
 - #3 Why are there three generations of particles in SM?
 - #4 Why are there four types of forces in SM?
 - #X What is dark matter?
 - $\#10^{120}$ C.C. Problem: Why is universe accelerating, but very slowly?
 - # ω Why is quantum mechanics the world's way of being?

Popular Potential Solutions?

The Hierarchy Problem:

How is it that v / $m_{Planck}c^2 \sim 10^{-15}$ instead of = 0 or ~ 1

- Higgs field is a composite field held together by new forces at the TeV scale
 Calculation of zero point energy is wrong above that point
- Supersymmetry:
 - "Superpartner" particles for every known particle near TeV scale
 - Cancel the zero-point energy of fermions and bosons of similar mass
- Gravity, Extra Dimensions at TeV scale, not 10¹⁵ TeV
 - Planck scale, spacetime, etc. are not what we think

These and others predict new particles/forces/phenomena that LHC can find *(sooner or later)*

Searching for Signs

- Dozens of different search strategies in use
 - Still looking mostly for relatively high rate, easily-detected processes
 - Testing SM predictions for the Higgs particle itself in detail
- So far? Nothing.
 - Big breakdown in quantum field theory unlikely
 - Many (but not all) composite-Higgs scenarios excluded
 - Otherwise still ambiguous
 - Disfavors many versions of supersymmetry (others remain)
 - Disfavors some classes of extra dimension models (others remain)
 - Some sensitivity to some types of hidden sectors (many remain)
- But still in early stages of LHC!

less than few % of total data collected many types of data analysis strategies not tried yet

Is it the SM (for now), or Isn't it?

- Theoretically: SM or **not** SM is **night** vs. **day**
 - Not SM at LHC? then great puzzles of SM especially the hierarchy problem may be on the verge of solution.
 - Only SM at LHC? Hierarchy problem unsolved; a lightweight lonesome elementary scalar particle... And all the other puzzles to remain unsolved for now as well. Very deep mysteries.
- Experimentally: SM or **not** SM may be **night** vs. **deep twilight**.
 - Plenty of non-SM theories may differ from SM by
 - Subtle effects on the Higgs particle's properties of order 10%
 - Hard-to-discover new particles
 - Thus all possible information must be squeezed from LHC's data
 - Can prove SM is false; can't prove it true!

– Maybe just need a bit more precision…?

Goals of Next Phase of LHC

2012 at 8 TeV per collision; 2015-2018 or later at 13-14 TeV per collision

- Precision measurements of the new particle
 - Is it really a Higgs particle?
 - Do all of its properties agree perfectly with the predictions of the SM?
 - Spin, Parity
 - Production rates
 - Decay rates
 - Any exotic properties?
- Continued search for non-SM particles, forces, phenomena
- Precision tests of many other SM predictions
- Aim to determine as far as possible: SM or **not** SM

The Higgs Era Has (probably) Begun

- A new particle has been discovered at the Large Hadron Collider
 - Consistent with **some** type of Higgs particle
 - Consistent so far with the **simplest** type, that of the Standard Model
- The Standard Model has numerous profound puzzles; is it really right?
 - The Higgs field gives mass to most Standard Model particles
 - Explains how particles can have mass at all
 - But we have no idea what sets the precise values of the masses
 - And then there's the huge Hierarchy Problem
 - Why is weak scale neither zero nor at Planck scale?
 - How/why is a lightweight spin-0 particle like Higgs reasonable?
- Solutions to Hierarchy Problem all give discoverable particles at LHC
 No sign of them yet, but it is still early days at the LHC
- So stay tuned as we test the Standard Model from all sides