Helium Rain and Core Erosion in Gas Giant Planets Predicted with Ab Initio Simulations

Burkhard Militzer

University of California, Berkeley

http://militzer.berkeley.edu

- **1. Introduction to Exoplanets and Simulations**
- 2. Helium rain on Jupiter
- **3. Phase diagram of water ice**
- 4. Erosion of icy and rocky materials in cores in giant planets
 - ***Results by Hugh Wilson and Shuai Zhang***

Supported by NASA and NSF.

NASA's Kepler Mission

- Determine the frequency of Earth-size and larger planets in the habitable zone of sun-like stars
- Determine the size and orbital period distributions of planets

Pre-Kepler Transiting Planets - 2009

Kepler Candidates as of February 1, 2011

Ab Initio Simulations of Materials at High Pressure

<u>Focus:</u> Characterization of the Interior of Solar and Extrasolar Giant Planets

Paul Dirac (1929):

The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too *complex to be solved*.

Paul Dirac (1929):

The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too *complex to be solved* **EXACTLY**.

1) Path integral Monte Carlo for T>5000K

New Path Integral Monte Carlo Simulations of Heavier Elements Aid Fusion Capsule Design

Comparison of Ab initio Simulations with Shock Wave Experiments

Quantum Monte Carlo Calculations of SiO₂ Phases at Mantle Pressures

Not associated with global seismic discontinuity

K. Driver *et al. Proc. Nat. Acad. Sci. 107 (2010) 9519*

Path integral Monte Carlo for T>5000K Density functional molecular dynamics below

Born-Oppenheimer approx. MD with classical nuclei:

F = m a

Forces derived DFT with electrons in the instantaneous ground state.

What is meant by first-principles simulations?

Schrödinger equation:

$$-\frac{\hbar^2}{2m} \vec{\nabla}^2 \psi(\vec{r}) + V(\vec{r}) \psi(\vec{r}) = E \psi(\vec{r})$$

Look for an antisymmetric solution (Pauli exclusion):

$$\Psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_1(\mathbf{x}_1) & \chi_2(\mathbf{x}_1) & \cdots & \chi_N(\mathbf{x}_1) \\ \chi_1(\mathbf{x}_2) & \chi_2(\mathbf{x}_2) & \cdots & \chi_N(\mathbf{x}_2) \\ \vdots & \vdots & & \vdots \\ \chi_1(\mathbf{x}_N) & \chi_2(\mathbf{x}_N) & \cdots & \chi_N(\mathbf{x}_N) \end{vmatrix}$$

Simulation of molecular hydrogen

Methane – molecular orbitals

Comparison of molecular and metallic hydrogen

Molecular hydrogen

Metallic hydrogen

Jupiter's Composition

Guillot et al. (Jupiter book, 2002, chap.3)

The Size of Jupiter's Core is uncertain

Guillot et al. (Jupiter book, 2002, chap.3)

Juno Mission Iaunched successfully August 2011

Mission Timeline:

- Launch August 2011
- Earth flyby gravity assist October 2013
- Jupiter arrival July 2016
- End of mission (deorbit) October 2017

Galileo Entry Probe found: Helium and Neon depleted in Jupiter's Atmosphere

Why does Saturn cool so slowly? Observed Excess in Luminosity

Model for Saturn consistently predict too fast cooling rates (by ~2 Gyrs)

Can hydrogen and helium become immiscible? Helium rain inside Saturn?

G(P,T)=E+PV-TS Main difficulty is to calculate the mixing entropy!

Now we have good theoretical evidence for hydrogen-helium immiscibility in Saturn

G(P,T)=E+PV-TS Main difficulty is to calculate the mixing entropy!

Gibbs Free Energy Calculations with Thermodynamic Integration

1. Determine density for given and P and T

Where does neon given the choice between a hydrogen and helium rich phase? G(P,T)=E+PV-TS

Neon prefers a helium droplet over the hydrogen-rich fluid

Where does neon given the choice between a hydrogen and helium rich phase? G(P,T)=E+PV-TS

Gibbs free energy calculation for neon insertion in hydrogen and helium

Neon depletion is consistent with helium depletion in Jupiter

spektrumdirekt

SPEKTRUMDIREKT.DE DIE WOCHE INFO & SERVICE

Meldung | 23.03.2010

SONNENSYSTEM

Helium wäscht Edelgas aus den Jupiterwolken

Die Jupitersonde Galileo hat Planetologen vor rund 15 Jahren viele Erkenntnisse geliefert und ein paar neue Rätsel aufgegeben. Eines glauben sie nun gelöst zu haben: Die Frage, warum in der Atmosphäre des Gasriesen nur ein Zehntel der Menge des Edelgases Neon zu finden ist, die im Baumaterial des Sonnensystems ursprünglich enthalten war. Laut Hugh Wilson und Burkhard Militzer von der University of California in Berkely belegen Modellrechnungen, dass eine Art Edelgasregen auf Jupiter verantwortlich ist.

<u>Þ</u>

MARTES 23 DE MARZO DE 2010

La lluvia de helio en Júpiter explica la falta de neón en la atmósfera

En la Tierra, el helio es un gas utilizado para mantener a flote los globos. En el interior de Júpiter, sin embargo, las condiciones son tan extrañas que, según las predicciones de los científicos de la Universidad de California Berkeley, el helio se condensa en gotas y cae como lluvia.

SELECCION DE NOTAS

Informe especial: Alquimia cósmica en el laboratorio

El experimento de

Rutherford en el siglo 21

Maxwell v el arte de

News Search	Breaking News Business Entertainment International Internet Sports Technology BNN News Feeds News Forum			
Google ^{ne} Custom Se Go	Home/			
Home	Tuesday 23rd March, 2010			
Breaking News	Helium rain explains scarcity of neon in Jupiter's atmosphere			
Business >				
Editorials				
Entertainment	Ani i ussay 230 March, 200			
Health 🔶	In a new research, scientists at the UC (University of California) Berkeley, US, have suggested that belium rain is the best way to explain the scarcity of peop			
International				
Internet >	in the outer layers of Juniter	Lad Hand Par		
Markets 🔶				
Media 🔶	Neon dissolves in the helium raindrops and falls towards the deeper interior where it re-dissolves, depleting the upper layers of both elements, consistent			
Religion >				
Special Interest				
Sports >	with observations.	Former British cabinet ministers Stephen		
Technology		Byers, Patricia Hewitt, and Geoff Hoon		
	"Helium condenses initially as a mist in the upper layer, like a cloud, and as the droplets get larger, they fall toward the deeper interior," said UC Berkeley	have been suspended amid claims the trio have been trying to sell their influence for profit through lobbying arrangements.		

droplets get larger, they fall toward the deeper interior," said UC Berkeley post-doctoral fellow Hugh Wilson, co-author of the research paper.

THE MYSTERIES FROM ANCIENT CIVILIZATIONS TO THE UFO

WELCOME TO THE BLOG WHERE YOU CAN FIND NEWS FROM THE WEB ABOUT EVERYTHING THERE IS TO KNOW ABOUT THE MYSTERIES FROM ANCIENT CIVILIZATIONS TO THE UFO, THROUGH NIBIRU-PLANETX, SPACE, TO 2012 AND OTHER, WITH THE MYSTERIES ASSOCIATED TO THEY, TILL NOW NOT KNOW. "WHAT UNTIL YESTERDAY WAS UNKNOWN , WILL BE THE KNOWLEDGE OF TODAY"!

WEDNESDAY, MARCH 24, 2010

Helium Rain on Jupiter Explains Lack of Neon in Atmosphere

A slice through the interior of Jupiter shows the top layers that are

depleted of helium and neon, the thin layer where helium drops condense and fall, and the deep interior where helium and neon again mix with metallic hydrogen. (Credit: Burkhard Militzer/UC Berkeley)

#sustainability

Bill Gates building nuclear reactor (but it's only a little one)

EMMA WOOLLACOTT | Tue 23rd Mar 2010, 08:48 am

Bill Gates (yes, really) and Toshiba are reported to be building a next-generation nuclear reactor.

#communication

Portable mind-reader lets users write with their thoughts

EMMA WOOLLACOTT | Tue 23rd Mar 2010, 07:28 am

European scientists have developed the first portable device that allows users to type merely by thinking.

#space

Helium falls like rain on Jupiter

EMMA WOOLLACOTT | Tue 23rd Mar 2010, 05:38 am

New research suggests that it's raining helium in the interior of Jupiter. UC Berkeley scientists reckon this is the best way to explain why there's so much less neon in the outer layers of the planet than predicted. Why grew the giant plants so large while all terrestrial planets stayed small? Because they form beyond the ice line.

Properties of the Water Molecule

Why is Water Denser Than Ice?

Other examples where liquid is denser than the solid: silicon, gallium, germanium, antimony, bismuth, plutonium

Phase Diagram of water ice

The Ice in Your Freezer is Hexagonal: Ice 1h

Ice II is rhombohedral (Unit cell angles $\alpha = \beta = \gamma = 90^{\circ}$)

Ice VI is a self-clathrate

Pauling's Ice Rules

- 1) Every oxygen atom has two covalent bonds
- 2) Every oxygen atom has two hydrogen bonds (tetrahedral coordination)
- 3) In between two oxygen atoms, there can only be one H atom.
- 4) Dipole moment of the unit cell should be zero.

Ice VII (proton-disordered) and Ice VIII (proton-ordered)

Ice VII (proton-disordered) and Ice VIII (proton-ordered)

Ice XIII, XIV, and XV all discovered by proton ordering (by adding KOH)

Phase Diagram of water ice

Phase Diagram of water ice

Pbcm phase predicted with ab initio simulations by Benoit et al. (1996)

Phonon instability leads to new phase of water ice at 7.6 megabar

Militzer and Wilson, PRL 105 (2010) 195701

Extended Phase Diagram of Water Ice

Improved Structural Search Methods revealed six additional ice structures at yet higher pressures

Name/Symmetry	Author,Year	Pressure (Mbar)	#mol.
Ice X (Pn-3m)	Polian,1984	0.44	2
Pbcm	Benoit, 1996	3	4
Pbca	Militzer, Wilson, 2010	7.6	8
I-42d	Wang, 2011	8.1	8
	McMahon,2011	11.7	4
D2.	Ji, 2011	11.4	4
r 21	Wang, 2011	14	4
	Hermann, 2011	11.7	4
P2 ₁ /c	Ji, 2011	19.6	8
C2/m	McMahon, 2011	56.2	2
(metallic)	Hermann, 2011	60	2
P2 ₁ /m	Zhang, Militzer, 2012	135	4
I4/mmm	Zhang, Militzer, 2012	330	2

P2₁ symmetry

Militzer, Wilson, PRL 105, 195701 (2010). Wang et al., *Nature Commun.*, 2, 563 (2011). McMahon, PRB 84, 220104(R) (2011). Ji et al., PRB, *84*, 220105(R) (2011). Hermann et al., PNAS *109*, 745 (2011) **Zhang, Wilson, Driver, Militzer,** arXiv:1209.3448

Is the interface between ice and metallic hydrogen stable in giant planet cores?

Wilson and Militzer, Astrophys. J. 745 (2012) 54

Analysis of Gibbs Free Energy differences shows ice erosion is an entropy driven process

Computer simulations predict erosion of icy cores in Saturn and Jupiter

Erosion of other core materials: silicates and iron

Implications of our Core-Erosion Calculations for Jupiter and Saturn

Three core-erosion scenarios:

- Rapid in Jupiter and Saturn: <u>homogenized envelops</u>, core were much bigger originally
- Slow in J & S: <u>inefficient up-convection</u>, gravity wins, Juno cannot distinguish a slowly eroding core and a stable one
- Fast in J, slow in S: This could explain the difference in core size in the Guillot models for J and S.

Recent core erosion model using double-diffusive convection: Leconte and Chabrier, A&A (2012)

