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Cells aren’t just bags of enzymes!



Cell are complex, precise machines



The cell as a self-organizing machine



Cell geometry at the level of organelles

For each organelle: size
numbernumber
position



Importance of Organelle Size

Physiological function,
Fl f i diFlux of intermediates Disease
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Why organelle size control is hard to study

Golgi apparatus chloroplastg pp p

We need a simpler system to study



Cilia/Flagella – a simpler organelle to study size control



Flagellar Length Control in Chlamydomonas

Flagella as model organelle
Li-Linear

-Easy to visualize and measure
-Number shape and position are constants-Number, shape, and position are constants
-same as cilia in animal cells
-size directly relates to fitnessy

Chl d d l iChlamydomonas as a model organism
-rapid growth
-yeast-like haploid geneticsyeast like haploid genetics
-GFP, RNAi, microarrays
-genome sequence completedg
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Wild t

Fitness consequences of altered flagellar length

L fl llWild-type Long flagella



Unequal flagellar length Short flagellaq g g g

Important:  not too long or too short
two flagella equal lengths



Swimming speed versus flagellar lengths
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Wild-type flagellar lengths fall into optimal fitness range
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Flagellar Microtubule Dynamics

Intraflagellar Transport

bl
(+)(-)

assembly

disassembly

Cell body

Marshall and Rosenbaum.  2001.  J. Cell Biol.  155:405-14.



Intraflagellar Transport (IFT)

“IFT Train”



IFT movement is powered by a motor protein - kinesin



Imaging IFT by TIRF in Chlamydomonas
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Intraflagellar Transport

assembly
(+)(-)

disassembly

Goal of control system: y
assembly = disassembly   iff   correct length

1. Disassembly length independent --> need to control assembly1. Disassembly length independent  need to control assembly
2. Assembly rate-limited by IFT 

Marshall and Rosenbaum.  2001.  JCB 155:405-1

How does transport by IFT depend on length?



Transport by IFT is inherently length-dependent

Round trip time ~ LRound trip time  L

Transport rate per particle  ~ 1/L tipp p p

Total transport rate ~ N/L

Cell body Assembly rate ~ 1/LCell body Assembly rate  1/L

Assuming N is independent of L



Balance-Point model for flagellar length control

Assembly rate ~ 1/L

St d t t l tiat
e

Steady-state solution ra

di bl tdisassembly rate

length



Transport by IFT is inherently length-dependent

Round trip time ~ LRound trip time  L

Transport rate per particle  ~ 1/L tipp p p

Total transport rate ~ N/L

Cell body Assembly rate ~ 1/LCell body Assembly rate  1/L

Assuming N is independent of L



Engel BD, Ludington WB, Marshall WF.  2009 JCB 187, 81-9



Total IFT content is approximately length-independent
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Length Regulation  Controlling IFT quantity

Round trip time ~ LRound trip time  L

Transport rate per particle  ~ 1/L tipp p p

Total transport rate ~ N/L

Cell body Assembly rate ~ 1/LCell body 

N is independent of L

WHAT CONTROLS N?



Balance-Point model for flagellar length control

Assembly rate ~ 1/L

St d t t l tiat
e

Steady-state solution ra

di bl tdisassembly rate

length



A challenge for the model:

Flagellar equalization after severing one flagellum



Flagellar length equalization following severing
Coyne & Rosenbaum 1970y



Traditional interpretation as evidence for length-sensor

Uh ohUh oh,
I’m too long!



Competition for cytoplasmic precursor poolp y p p p

dLi/dt = Af(Pi)/Li - D

dPi/dt = Bfp(Pc,Li)/Li - CfL(Pi - Pc)- Af(Pi)/Li

Pc = T- Pi - Li

P1 P2
Pc  T Pi Li

cytoplasmic pool Pc
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Balance-Point Model predicts Equalization of Lengths
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Overshoot – something the model does NOT predict

Requires equal-length flagella to have opposite behaviorsRequires equal length flagella to have opposite behaviors



Checking for overshoot using laser scissors
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Standard method to immobilize cells

Cells do not divide
Become filled with clear vacuoles
Spontaneously drop their flagella



Custom microfluidic chamber for 
Chlamydomonas laser surgery



Overshoot vanishes in microfluidic chambers
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Overshoot vanishes in microfluidic chambers
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Precursor pool competition explains long-zero response

P1 P2

cytoplasmic pool Pc

D i l th t l l l th fl llDynamic length control  equal length flagella



Initial Bolus Model

Fixed quantity of IFT protein loaded in
No entry or exit pool keeps re circulatingNo entry or exit – pool keeps re-circulating

Intraflagellar Transport

bl
(+)(-)

assembly

disassembly

Cell body



Testing Initial Bolus Model

Method:   Fluorescence Recovery After Photobleaching
(FRAP)  of  IFT proteins in one flagellum

tt

t



Microfluidic chamber for Chlamydomonas FRAP

Will LudingtonWill Ludington

http://www.cellasic.com/ONIX_chlamy.html



Hiro Ishikawa
Julia Gunzenhäuser
Rogelio Hernandez-Lopez
Alex Ritter



What regulates IFT particle Injection?

Intraflagellar Transport

bl
(+)(-)

assembly

disassembly

Cell body



Quantifying IFT in living cells by TIRF imaging

GFP tagged proteins:
KAP (Mary Porter)
IFT27 (H i Qi )IFT27 (Hongmin Qin)
IFT20 (Karl Lechtreck)

Analysis:
Frequencyq y
Intensity
Speed

Injection Rate = 
Frequency x IntensityFrequency x Intensity



Injection rate is length-dependent
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What regulates IFT injection into the flagellum?



Probing length control system by measuring noise

Intrinsic --> variation of L1 vs L2

L L

Intrinsic  variation of L1 vs L2

L1 L2

Extrinsic > cell cell variation ofExtrinsic --> cell-cell variation of
both L1 and L2

A l t “d l t ” th dAnalogous to “dual reporter” method 
for noise in gene expression
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Noise in wild type flagellar length  
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Length versus diameter
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Some extrinsic noise is probably due to cell size variation



Fluctuations of flagellar length



Linear Noise Model
Restoring “force” depends on length set-pointRestoring force  depends on length set point

at
e

ra

length

Fluctuations should be damped out more slowly in long-flagella mu



Prediction of noise model:
Any parameter change that increases length increases noiseAny parameter change that increases length, increases noise

dL A(P – 2L)= - D + 
dt L

D  +   



Chlamydomonas lf mutants have increased length

Lf1
Lf2
Lf3
Lf4Lf4

Li+Li

P. Lefebvre, UMN



Long-flagella mutants have increased noise
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Slower damping of fluctuations in mutant with long flagella

lf1lf1

wt



Future direction:   experiment merging/parameter estimation

L vs t  L vs N            long-zero        fluctuations

ConsistentDirectly
parameter
set   ?

measure
parameters
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Time-series analysis of IFT injection

Will Ludington



Quasiperiodic Fat-tail distribution

Event size-magnitude correlation

Also:   bursting, long-memory process



IFT shares the properties of Avalanche-like Systems
Earthquakes SandpilesEarthquakes,  Sandpiles

-Cellular automata-based avalanche model 
yields observed IFT dynamics

-Accounts for IFT train size & frequency changes
-Dynamics are regulated by accumulation



Could IFT injection be regulated by basal body recruitment?



Short flagella recruit more IFT Protein than
long flagella

KAP-GFP intensity

long flagella

KAP-GFP intensity

RegeneratingRegenerating

St dSteady
state

Will Ludington



Accumulation of IFT protein
at basal body is aat basal body is a
decreasing function of length
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Flagellar length regulates accumulation at basal body

How does the cell know how long the flagellum is?



Approach #1:   Use our imagination
Time-of-flight length sensorTime of flight length sensor

(+)( )

Intraflagellar Transport

assembly
(+)(-)

disassembly

Time ~ distance

Short: IFT particles return before hydrolysisShort:   IFT particles return before hydrolysis
Long:    Hydrolysis occurs en route

GTP/GDP ratio tells you about length



t
Prediction for time of flight:

t

slow retrograde IFT 
should mimic long flagella

 decrease injection decrease injection
increase frequency 
decrease magnitudedecrease magnitude

Result is the OPPOSITE ->
flagellum thinks it is too short

Ben Engel
(MPI Martinsried)(MPI Martinsried)



Approach #3:   Genetics

Lf1
Lf2
Lf3
Lf4Lf4

Li+Li

Kim Wemmer



Injection rate changes in If4
But remains length-dependent
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lf mutants alter dependence of IFT injection versus length



Approach #2:
Does known biochemistry of flagellaDoes known biochemistry of flagella
suggest a plausible length sensor?

RanGTP could act as a flagellar volume sensor



Chemical/Genetic Epistasis:
Actin mutant suppresses effect of lithium on lengthActin mutant suppresses effect of lithium on length

Lithium    LF4

ActinActin

Length increase

Prachee Avasthi Crofts



What about other organelles?


Organelle



Surface area S
S

St d t t l ti SSteady-state solution:        = S

Steady-state surface area S=/Steady state surface area   S /

Marshall, WF.  2002.  Trends Cell Biol. 12,414-9.



Organelle Size Scaling in Budding Yeast
ria
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Prediction:   reduced trafficking to vacuole  smaller size



Tuning yeast vacuole size

apl5∆
D l i bl kDeletion blocks 
ALP trafficking 
pathwaypathway
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What about short flagella mutants?



Conceptual model for katanin length phenotype:  Competition for tubulin



What about short flagella mutants?

Elisa Kannegaard, Jessica Feldman



Conceptual model for katanin length phenotype:  Competition for tubulin



Example of what the model can explain:

Flagellar equalization after severing one flagellum



Flagellar length equalization following severing
Coyne & Rosenbaum 1970y



Traditional interpretation as evidence for length-sensor

Uh ohUh oh,
I’m too long!



Competition for cytoplasmic precursor poolp y p p p
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Balance-Point Model predicts Equalization of Lengths
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Precursor pool competition explains long-zero response

P1 P2

cytoplasmic pool Pc

D i l th t l l l th fl llDynamic length control  equal length flagella



Overshoot – something the model does NOT predict

Requires equal-length flagella to have opposite behaviorsRequires equal length flagella to have opposite behaviors



Checking for overshoot using laser scissors
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Custom microfluidic chamber for 
Chlamydomonas laser surgery



Overshoot vanishes in microfluidic chambers
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Overshoot vanishes in microfluidic chambers
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IF number of IFT particles is length-independent:

tip

Cell 
body 

Round trip time ~ L PER PARTICLE

1/Transport rate  ~ 1/L
iff N constant

Model breaks down completely if
N ~ L



Total IFT content is approximately length-independent
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Balance-Point model for flagellar length control

Assembly rate ~ 1/L

St d t t l tiat
e

Steady-state solution ra

di bl tdisassembly rate

length



How does the flagellum know how long it is?

Initial Bolus

Wait-release

Time-of-flight

Tip diffusion
Levy 1974 J. Theor. Biol.  43, 133-49

ProportionalProportional 
current
Lefebvre et al. 1978 JCB 78, 8-27
Beck & Uhl, 1994  JCB 125, 1119-25
Rosenbaum 2003 Curr. Biol. 13, R506-7



Rapid exchange of IFT proteins between flagella and cytoplasm

Not consistent with  “initial bolus” mechanism



How does the flagellum know how long it is?

Initial Bolus

Wait-release

Time-of-flight

Tip diffusion
Levy 1974 J. Theor. Biol.  43, 133-49

ProportionalProportional 
current
Lefebvre et al. 1978 JCB 78, 8-27
Beck & Uhl, 1994  JCB 125, 1119-25
Rosenbaum 2003 Curr. Biol. 13, R506-7



Prediction for time of flight:Prediction for time of flight:

slow retrograde IFTslow retrograde IFT 
should mimic long flagella

 decrease injection
increase frequency 
decrease magnitude



How does the flagellum know how long it is?

Initial Bolus

Wait-release

Time-of-flight

Tip diffusion
Levy 1974 J. Theor. Biol.  43, 133-49

ProportionalProportional 
current
Lefebvre et al. 1978 JCB 78, 8-27
Beck & Uhl, 1994  JCB 125, 1119-25
Rosenbaum 2003 Curr. Biol. 13, R506-7



Possible implications of a RanGTP gradient


