Organelle Size Control Systems

Wallace Marshall

Department of Biochemistry & Biophysics Center for Systems and Synthetic Biology UCSF

Cells aren't just bags of enzymes!

Cell are complex, precise machines

The cell as a self-organizing machine

Cell geometry at the level of organelles

For each organelle:

size number position

Importance of Organelle Size

Physiological function, Flux of intermediates

Disease

Why organelle size control is hard to study

Golgi apparatus

chloroplast

We need a simpler system to study

Cilia/Flagella – a simpler organelle to study size control

Flagellar Length Control in Chlamydomonas

Flagella as model organelle

- -Linear
- -Easy to visualize and measure
 -Number, shape, and position are constants
 -same as cilia in animal cells
 -size directly relates to fitness

Chlamydomonas as a model organism

-rapid growth
-yeast-like haploid genetics
-GFP, RNAi, microarrays
-genome sequence completed

Flagellar Length Control in Chlamydomonas

Flagella as model organelle

- -Linear
- Easy to visualize and measure
 Number, shape, and position are constants
 same as cilia in animal cells
- -size directly relates to fitness

Chlamydomonas as a model organism

-rapid growth
-yeast-like haploid genetics
-GFP, RNAi, microarrays
-genome sequence completed

Fitness consequences of altered flagellar length Wild-type Long flagella

Unequal flagellar length

Short flagella

Important:

not too long or too short two flagella equal lengths

Swimming speed versus flagellar lengths

Wild-type flagellar lengths fall into optimal fitness range

Intraflagellar Transport (IFT)

IFT movement is powered by a motor protein - kinesin

Imaging IFT by TIRF in Chlamydomonas

Goal of control system: assembly = disassembly iff correct length

Disassembly length independent --> need to control assembly
 Assembly rate-limited by IFT

How does transport by IFT depend on length?

Marshall and Rosenbaum. 2001. JCB 155:405-1

Transport by IFT is inherently length-dependent

Round trip time ~ L

Transport rate per particle ~ 1/L

Total transport rate ~ N/L

Cell body

Assembly rate ~ 1/L

tip

Assuming N is independent of L

Balance-Point model for flagellar length control

Transport by IFT is inherently length-dependent

Round trip time ~ L

Transport rate per particle ~ 1/L

Total transport rate ~ N/L

Cell body

Assembly rate ~ 1/L

tip

Assuming N is independent of L

Engel BD, Ludington WB, Marshall WF. 2009 JCB 187, 81-9

Total IFT content is approximately length-independent

<u>Length Regulation → Controlling IFT quantity</u>

Round trip time ~ L

Transport rate per particle ~ 1/L

Total transport rate ~ N/L

Cell body

Assembly rate ~ 1/L

tip

N is independent of L

WHAT CONTROLS N?

Balance-Point model for flagellar length control

A challenge for the model:

Flagellar equalization after severing one flagellum

Flagellar length equalization following severing Coyne & Rosenbaum 1970

Traditional interpretation as evidence for length-sensor

Competition for cytoplasmic precursor pool

Competition for cytoplasmic precursor pool

Balance-Point Model predicts Equalization of Lengths

time

Overshoot – something the model does NOT predict

Requires equal-length flagella to have opposite behaviors

Checking for overshoot using laser scissors

Standard method to immobilize cells

Cells do not divide Become filled with clear vacuoles Spontaneously drop their flagella

Custom microfluidic chamber for Chlamydomonas laser surgery

Overshoot vanishes in microfluidic chambers

Overshoot vanishes in microfluidic chambers

Precursor pool competition explains long-zero response

cytoplasmic pool P_c

Dynamic length control \rightarrow equal length flagella

Initial Bolus Model

Fixed quantity of IFT protein loaded in No entry or exit – pool keeps re-circulating

Testing Initial Bolus Model

Method: Fluorescence Recovery After Photobleaching (FRAP) of IFT proteins in one flagellum

Microfluidic chamber for Chlamydomonas FRAP

Will Ludington

Hiro Ishikawa Julia Gunzenhäuser Rogelio Hernandez-Lopez Alex Ritter

Quantifying IFT in living cells by TIRF imaging

<u>GFP tagged proteins:</u> KAP (Mary Porter) IFT27 (Hongmin Qin) IFT20 (Karl Lechtreck)

<u>Analysis:</u> Frequency Intensity Speed

Injection Rate = Frequency x Intensity

Injection rate is length-dependent

What regulates IFT injection into the flagellum?

Probing length control system by measuring noise

Intrinsic ---> variation of $L_1 vs L_2$

Extrinsic --> cell-cell variation of both L_1 and L_2

Analogous to "dual reporter" method for noise in gene expression

Noise in wild type flagellar length

Length versus diameter

Diameter

Some extrinsic noise is probably due to cell size variation

Fluctuations of flagellar length

Fluctuations should be damped out more slowly in long-flagella mu

Prediction of noise model:

Any parameter change that increases length, increases noise

$$\frac{dL}{dt} = \frac{A(P-2L)}{L} - D + \eta$$

Chlamydomonas If mutants have increased length

Lf1 Lf2 Lf3 Lf4 Li+

P. Lefebvre, UMN

Long-flagella mutants have increased noise

LF1 mutants - increased intrinsic noise LF4 mutants - increased extrinsic noise

Slower damping of fluctuations in mutant with long flagella

Future direction: experiment merging/parameter estimation

<u>Hiroaki Ishikawa</u> Ben Engel Prachee Avasthi Will Ludington <u>Susanne Rafelski</u> Kimberly Wemmer

Mark ChanElisa KannegaardJuliette AzimzadehMark Slabodnick

Amy Chang Sarah Reif

National Institute of General Medical Sciences

Additional Thanks Joel Rosenbaum, Mary Porter, Hongmin Qin, Karl Lechtreck, George Witman, Kurt Thorn, Linda Shi, Michael Berns (UCSD), David Kovar (U. Chicago)

Time-series analysis of IFT injection

Will Ludington

Also: bursting, long-memory process

IFT shares the properties of Avalanche-like Systems Earthquakes, Sandpiles

-Cellular automata-based avalanche model yields observed IFT dynamics

- -Accounts for IFT train size & frequency changes
- -Dynamics are regulated by accumulation

Could IFT injection be regulated by basal body recruitment?

Short flagella recruit more IFT Protein than long flagella

Will Ludington

Accumulation of IFT protein at basal body is a decreasing function of length

6 Hiro Ishikawa 5 Basal body intensity 3 2 1 0 ⁰ 0 2 **í**4 16 **î**12 4 [^] 16 18 18 6 8 10

Flagella length (µm)

Flagellar length regulates accumulation at basal body

How does the cell know how long the flagellum is?

Approach #1: Use our imagination Time-of-flight length sensor

Short: IFT particles return before hydrolysis Long: Hydrolysis occurs en route

GTP/GDP ratio tells you about length

Prediction for time of flight:

slow retrograde IFT should mimic long flagella → decrease injection increase frequency decrease magnitude

Result is the OPPOSITE -> flagellum thinks it is too short

Ben Engel (MPI Martinsried)

Approach #3: Genetics

Kim Wemmer

Lf1 Lf2 Lf3 Lf4

Injection rate changes in *If4* But remains length-dependent

If mutants alter dependence of IFT injection versus length

Approach #2: Does known biochemistry of flagella suggest a plausible length sensor?

RanGTP could act as a flagellar volume sensor

Chemical/Genetic Epistasis: Actin mutant suppresses effect of lithium on length

Prachee Avasthi Crofts

What about other organelles?

Marshall, WF. 2002. Trends Cell Biol. 12,414-9.

Organelle Size Scaling in Budding Yeast

Susanne Rafelski

Mark Chan

Prediction: reduced trafficking to vacuole \rightarrow smaller size

Tuning yeast vacuole size

apl5∆ Deletion blocks ALP trafficking pathway

What about short flagella mutants?

Conceptual model for katanin length phenotype: Competition for tubulin

What about short flagella mutants?

Elisa Kannegaard, Jessica Feldman

Conceptual model for katanin length phenotype: Competition for tubulin

Example of what the model can explain:

Flagellar equalization after severing one flagellum

Flagellar length equalization following severing Coyne & Rosenbaum 1970

Traditional interpretation as evidence for length-sensor

Competition for cytoplasmic precursor pool

Competition for cytoplasmic precursor pool

Balance-Point Model predicts Equalization of Lengths

time

Precursor pool competition explains long-zero response

cytoplasmic pool P_c

Dynamic length control \rightarrow equal length flagella

Overshoot – something the model does NOT predict

Requires equal-length flagella to have opposite behaviors

Checking for overshoot using laser scissors

Custom microfluidic chamber for Chlamydomonas laser surgery

Overshoot vanishes in microfluidic chambers

Overshoot vanishes in microfluidic chambers

IF number of IFT particles is length-independent:

Round trip time ~ L PER PARTICLE

Transport rate ~ 1/L iff N constant

Model breaks down completely if N ~ L

Total IFT content is approximately length-independent

Balance-Point model for flagellar length control

Rosenbaum 2003 Curr Biol 13 R506-7

Rapid exchange of IFT proteins between flagella and cytoplasn

Not consistent with "initial bolus" mechanism

Rosenbaum 2003 Curr Biol 13 R506-7

Prediction for time of flight:

slow retrograde IFT should mimic long flagella → decrease injection increase frequency decrease magnitude

Rosenbaum 2003 Curr Biol 13 R506-7

Possible implications of a RanGTP gradient

