Quantum devices with diamond defects

Lilian Childress Bates College, TU Delft, Yale University, McGill University

> University of Toronto November 8, 2012

A few applications of diamond defect centers

The quest for quantum bits

Controllability vs coherence

•Solid state quantum systems

✓ Fast electrical or optical gating
✓ Typically short coherence times
✓ Inconsistent fabrication outcomes

•Atoms & molecules, isolated nuclear spins, photons

- \checkmark Longest coherence times
- ✓ Excellent selection rules
- ✓ Difficult to prepare, control, and measure on fast timescales

•Impurity-based electronic spins in solids

✓ Fast control possible
with microfabricated gates

 ✓ Long coherence times in spinless hosts

 \checkmark NV diamond: An interface between nuclear spins and photons

The nitrogen-vacancy center in diamond

- Ground state electronic spin triplet
- Coherent interactions with proximal nuclear spins

Fast control ~ ns (electron) ~ μs (nuclear)

 Optical transitions: single-defect isolation, preparation & detection of the electronic spin and the nuclear spins with which it interacts

Stuttgart, Harvard, U CSB, Canberra

The nitrogen-vacancy center in diamond

even at room temperature

Stuttgart, Harvard, U CSB, ANU

A new arena for exploring quantum phenomena and investigating applications

The nitrogen-vacancy center in diamond

Outline

2. Two photon quantum interference

Outline

1. Optical spin readout

Outline

1. Optical spin readout

Conventional agree from m = 0High fluorescence from m = 0Single-shot detection of Time-averaging or multiple spins repetition* required! e.g. Buckley et al. **Our approach:** resonant excitation *Single shot readout of a nuclear spin, Neumann et al. Science 2010 **Conventional agree from** m = 0 $m_s = \pm 1$

S = 1

 $m_s = 0$

Resonant excitation of a single NV center at low temperature

Mostly spin-conserving transitions

Some spin-mixing within the excited state

High fidelity spin preparation: Optical pumping

An order of magnitude reduction in error rate

Resonant readout of the NV center spin

Can we collect enough photons to measure the spin before it flips? Yes!

Resonant readout of the NV center spin

Single shot detection fidelity(lower bound)

 $F_{avg} = 93\%$

Resonant readout of the NV center spin

How ideal is our quantum measurement?

Partially destructive: readout also optically pumps the spin

But: The shorter the readout duration, the less likely a spin flip is to occur

Short duration readout:

Allows measurement-based quantum state preparation

Measurement-based initialization of a multi-spin register

Rotates electronic spin conditional on the nuclear spin state – a CNOT gate

Probabilistic state preparation for the nuclear spin

Measurement-based initialization of a multi-spin register

NV B: No proximal ¹³C isotopic impurities

Straightforward extension to larger numbers of nuclear spins

Measurement-based initialization of a multi-spin register

Initialization by measurement into 1 of 36 electron-nuclear spin configurations

Compatible with sequential readout of electronic and nuclear spin

Preparation, manipulation, and single-shot readout of a two-spin quantum register N NR_{RF}∕ ^{|4}N |–1⟩ R<u>MW</u> 0 0 е Measurement (m_s |mj based state Driven spin preparation rotations Single shot Repetitive single shot electron spin readout of the qubit readout nuclear spin qubit

Preparation, manipulation, and single-shot readout of a two-spin quantum register

Single-shot detection of *two* spin qubits

2. Two photon quantum interference

Quantum interference between photons emitted by different NVs can be used to establish long-distance entanglement

Photons cannot emerge from different ports

Indistinguishable photons => destructive interference

Resonant emission: Towards two photon quantum interference

532nm

Wanted: indistinguishable photons

Recipe:e

- 1. Speletizetinersemisolate ZPL
- 2. $spin product m_s = 0$
- 3. Pornezeretipencering

But...

Inhomogeneity between NVs Spectral diffusion in time

Resonant emission: Towards two photon quantum interference

Solution # 1: Tune

Tunable optical transitions: Strong DC Stark shifts

Wanted: indistinguishable photons

Recipe:

- 1. Spectral filters to isolate ZPL
- 2. Spin pumping into $m_s=0$
- 3. Polarization filtering

Resonant emission: Towards two photon quantum interference

Solution # 2: Get lucky

Wanted: indistinguishable photons

Recipe:

- 1. Spectral filters to isolate ZPL
- 2. Spin pumping into $m_s=0$
- 3. Polarization filtering

But...

Inhomogeneity between NVs Spectral diffusion in time

Natural linewidth = 15 MHz

Spectral diffusion broadened linewidth ~ 500 MHz

Coping with spectral diffusion

Legero et al. 2003

Coping with spectral diffusion

Solution #3: Time resolution

Wanted: indistinguishable photons

Time resolved two-photon quantum interference

Outlook: Integrated optics

Critical technology:

Collection efficiency typically << 1% ZPL only 3% of total emission

Cavity quantum electrodynamics

Emission on cavity resonance enhanced by

 $F_{P} = \frac{3}{4\pi^{2}} \left(\frac{\lambda}{n}\right)^{3} \frac{Q}{V}$ Quality factor

Mode volume

Diamond nanophotonics

Promising avenue to enhance ZPL emission fraction *and* improve collection efficiency

Summary

Heading towards entanglement distribution for quantum communication and quantum networks

Thanks to

LucioRobledo HannesBernien Bas Hensen Toenov.d. Sar Gijs de Lange Wolfgang Pfaff Ronald Hanson

\$\$ FOM, SOLID, Research Corporation

Anna Kashkanova DonghunLee Jack Sankey Andrew Jayich Brian Yang Mitchell Underwood Jack Harris

Yale

