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II Classical billiards

Free motion of a point particle in some
Euclidean domain Ω ⊂ R2 with elastic
reflections at the boundary ∂Ω.

! !

Depending on the boundary one obtains
completely different dynamical behaviour :
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Arnd Bäcker 3! ⇓ ⇐ ⇒ Σ ⊕

II Classical billiards

Free motion of a point particle in some
Euclidean domain Ω ⊂ R2 with elastic
reflections at the boundary ∂Ω.

! !

Depending on the boundary one obtains
completely different dynamical behaviour :

Integrable systems (regular motion)

Chaotic systems
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Arnd Bäcker 3! ⇓ ⇐ ⇒ Σ ⊕

II Classical billiards

Free motion of a point particle in some
Euclidean domain Ω ⊂ R2 with elastic
reflections at the boundary ∂Ω.

! !

Depending on the boundary one obtains
completely different dynamical behaviour :

Integrable systems (regular motion)

Chaotic systems
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we find its
Eigenvalues

EigenSTATEs:
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α
cα e−iEαt/h̄ |α�



have any
Quantum signatures

Do chaotic systems

V (x, y) = 1

2
(x2 + y2) + x2y − 1

3
y3 = 1

2
r2 + 1

3
r3 sin(3θ)

|cα|
2

Aαα

Eα

←− ∆E −→

If ∆E is “small”, then

A =
∑

α

|cα|
2Aαα

is independent of the cα’s

=⇒ ∆E ∼ N−1/2E

=⇒ A = 〈A〉T

?

1



have any
Quantum signatures

Do chaotic systems

V (x, y) = 1

2
(x2 + y2) + x2y − 1

3
y3 = 1

2
r2 + 1

3
r3 sin(3θ)

|cα|
2

Aαα

Eα

←− ∆E −→

If ∆E is “small”, then

A =
∑

α

|cα|
2Aαα

is independent of the cα’s

=⇒ ∆E ∼ N−1/2E

=⇒ A = 〈A〉T

?

1

Yes!



Energy eigenvalue statistics:

s = nearest neighbor spacing

P(s) = ?



Energy eigenvalue statistics:

s = nearest neighbor spacing

P(s) = ?

Integrable system: P (s) ∼ e
−s



Energy eigenvalue statistics:

s = nearest neighbor spacing

P(s) = ?

Integrable system: P (s) ∼ e
−s

Chaotic system: P (s) ∼ s
β
e
−s2

V (x, y) = 1
2(x

2 + y2) + x2y − 1
3y

3 = 1
2r

2 + 1
3r

3 sin(3θ)

|cα|2

Aαα

Eα

←− ∆E −→

If ∆E is “small”, then

A =
�

α

|cα|2Aαα

is independent of the cα’s

=⇒ ∆E ∼ N−1/2E

=⇒ A = �A�T

if system is chaotic and A = h̄-independent operator

β = 1, 2, 4

1



Energy eigenvalue statistics:

s = nearest neighbor spacing

P(s) = ?

Integrable system: P (s) ∼ e
−s

Chaotic system: P (s) ∼ s
β
e
−s2

V (x, y) = 1
2(x

2 + y2) + x2y − 1
3y

3 = 1
2r

2 + 1
3r

3 sin(3θ)

|cα|2

Aαα

Eα

←− ∆E −→

If ∆E is “small”, then

A =
�

α

|cα|2Aαα

is independent of the cα’s

=⇒ ∆E ∼ N−1/2E

=⇒ A = �A�T

if system is chaotic and A = h̄-independent operator

β = 1, 2, 4

1

Wigner-Dyson distribution
Random Matrix Theory
GOE, GUE, GSE



Example:



Ball bouncing on a tilted floor
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WHAT’S HAPPENING IN THE

MATHEMATICAL SCIENCES
9

approach to solving the Schrödinger equation known as Feynman’s

path integral (introduced by the physicist Richard Feynman).  What

Gutzwiller didn’t know—at the time—was that mathematicians

had also developed an extensive theory of trace formulas for a com-

pletely different purpose: number theory.  

Mathematicians have long been fascinated by the existence of

prime numbers—numbers such as 2, 3, 5, etc., which have no fac-

tors except themselves and 1.  One of the oldest facts about primes

dates back to Euclid, around 300 BC: There are infinitely many of

them.  Euclid’s theorem is easily proved (see “Euclid’s Finest: A

Prime Time Proof”), but it leaves another question unanswered: If

you look only at the numbers up to, say N , how many primes do

you find?  

Number theory reached the first of many peaks in 1896, with a

proof of the celebrated Prime Number Theorem, which states that

the number of primes up to any number N is approximately

N/ lnN, where lnN is the natural logarithm of N .  The Prime

Figure 3. The nearest-neighbor spacings for a nuclear data ensemble

(NDE) are similar to the statistics of a set of random matrices called the

Gaussian orthogonal ensemble (GOE).  The Poisson distribution is shown

for comparison.  (Figure courtesy of Oriol Bohigas, Institut de Physique

Nucleaire, Orsay, France, and Kluwer Academic Publishers, O. Bohigas,

R. U. Haq, and A. Pandey in “Nuclear Data  from Science and Technology,

K. H. Bockhoff, ed., Reidel, Dordrecht 1983, Figure 1, p. 809. With kind per-

mission from Kluwer Academic Publishers.)

Level spacings in nuclei:
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Quantum energy eigenfunctions

Berry’s random wave conjecture:
     ’s are gaussian random
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IV SoE – Random wave model – chaotic systems

Random wave
6000th eigenfunction,
cardioid billiard
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∆Ck,R(s)

H |α〉 = Eα|α〉

A = h̄-independent operator

〈α|A|α〉 → classical, microcanonical average of A

+ O(h̄1/2)

〈α|A|α〉 = O(h̄0)

Aαβ = 〈α|A|β〉 varies erratically with α and β

O(h̄0) = 〈α|(A−〈A〉)2|α〉 =
∑

β !=α

〈α|A|β〉〈β|A|α〉

=
∑

β !=α

|Aαβ |2

∼ ρ(Ē) |Aαβ |2

∼ h̄−(f−1) |Aαβ |2

Aαβ ∼ h̄(f−1)/2 ∼ e−S(Ē)/2

Let A = a†
pap

3

III. THERMAL EQUILIBRIUM

The expectation value of an observable A in the state specified by eq. (2.1) is given by

At ≡ 〈ψt|A|ψt〉

=
∑

αβ

c∗αcβ ei(Eα−Eβ)tAαβ . (3.1)

We will take At as the main object of study. It is not obvious that this is the right thing to do,
since short-time measurements do not generally yield quantum expectation values. However,
our main goal is to compare with the results of conventional nonequilibrium statistical
mechanics, in which time-dependent expectation values are the basic ingredients (see, e.g.,
[22–24], and Section V, below). A detailed discussion of the quantum measurement problem
would be needed to address this issue properly, but this is beyond the scope of the present
paper.

If we now take the infinite time average of At, we find

A ≡ lim
τ→∞

1

τ

∫ τ

0
dt At

=
∑

α

|cα|
2Aαα , (3.2)

where the last line requires nondegeneracy of the energy eigenvalues. It also requires that
the averaging time τ be much larger than the Heisenberg time τH ≡ 2πh̄/δ ∼ eS. This time
scale is much too large to be physically relevant, and thus the infinite time average must
be regarded as a purely theoretical device. Nevertheless, if the system comes to thermal
equilibrium, then At should be near its equilibrium value 〈A〉T most of the time, and thus
we should have A = 〈A〉T .

To check whether or not this is the case, we first substitute eq. (2.4) into eq. (3.2) to get

A =
∑

α

|cα|
2A(Eα) + O(e−S/2) . (3.3)

We now make a mild assumption about the state |ψt〉. We assume that the expectation
value of the total energy

E ≡
∑

α

|cα|
2Eα (3.4)

has a quantum uncertainty

∆ ≡
[ ∑

α

|cα|
2 (Eα − E)2

]1/2

(3.5)

that is small, in the sense that ∆2|A′′(E)/A(E)| & 1. This is a natural assumption when
N is large, since states of physical interest typically have ∆ ∼ N−1/2E. If we now expand
A(Eα) in eq. (3.3) in powers of Eα − E, we get A = A(E) + O(∆2); combining this with
eq. (2.10), we find
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∼ ρ(Ē) |Aαβ |2

∼ h̄−(f−1) |Aαβ |2

Aαβ ∼ h̄(f−1)/2 ∼ e−S(Ē)/2
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I. INTRODUCTION

Many-body systems typically exhibit certain dynamical properties that are studied under
the subject headings of thermodynamics and statistical mechanics. These properties include
the following:

1) Given an arbitrary initial state, the system almost always evolves towards an identifi-
able condition known as thermal equilibrium, and then remains in this condition at almost
all subsequent times.

2) When the system is in thermal equilibrium, observables of interest take on values that
depend only on the nature of the system and its total energy, but not on any other details
of the specific state of the system.

3) When the system is in thermal equilibrium, the measured value of an observable of
interest at any particular time fluctuates about its equilibrium value, with fluctuations whose
amplitude is suppressed by a factor of N−1/2, where N is the number of degrees of freedom.

4) During the approach to thermal equilibrium, the values of observables of interest
are governed by equations that are not time reversal invariant. These equations typically
depend on the values of other observables, possibly at different times. The information about
the system that is included in these equations is not sufficient to reconstruct the complete
physical state of the system.

5) Often (but not always), these equations are markovian; that is, they depend only
on the values of the observables in question, and their first time derivatives, at any given
moment.

There is a vast literature on the derivation of these properties from an underlying de-
terministic, time reversal invariant dynamics, classical or quantum. In this paper (closely
related earlier work includes [1–16]), we explore to what extent these properties can be de-
duced as consequences of quantum chaos. This means that we will assume that the energy
eigenvalues and (more importantly) the matrix elements of typical observables have certain
properties. These properties are believed (and, in some cases, rigorously proven) to hold for
a canonically quantized system whose classical phase space is fully chaotic at the energies of
interest, and they are likely to hold at least approximately for a broader array of systems.

The outline of this paper is as follows. In Section 2 we state our basic assumptions, and
briefly discuss their origins in quantum chaos theory. Some previous work that is directly
relevant is summarized in Section 3. Sections 4 and 5 present new results concerning the
approach to thermal equilibrium. Section 6 discusses the main conclusions.

II. QUANTUM CHAOS

We assume that the quantum system of interest is bounded and isolated, with N degrees
of freedom, where N ! 1. Since the system is bounded, the energy eigenvalues are discrete,
and since it is isolated, its time evolution is governed by the Schrodinger equation. Let Eα

denote the energy eigenvalue corresponding to the energy eigenstate |α〉; the state of the
system at any time t is then given by

|ψt〉 =
∑

α

cα e−iEαt |α〉 . (2.1)

2
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III. THERMAL EQUILIBRIUM

The expectation value of an observable A in the state specified by eq. (2.1) is given by

At ≡ 〈ψt|A|ψt〉

=
∑

αβ

c∗αcβ ei(Eα−Eβ)tAαβ . (3.1)

We will take At as the main object of study. It is not obvious that this is the right thing to do,
since short-time measurements do not generally yield quantum expectation values. However,
our main goal is to compare with the results of conventional nonequilibrium statistical
mechanics, in which time-dependent expectation values are the basic ingredients (see, e.g.,
[22–24], and Section V, below). A detailed discussion of the quantum measurement problem
would be needed to address this issue properly, but this is beyond the scope of the present
paper.

If we now take the infinite time average of At, we find

A ≡ lim
τ→∞

1

τ

∫ τ

0
dt At

=
∑

α

|cα|
2Aαα , (3.2)

where the last line requires nondegeneracy of the energy eigenvalues. It also requires that
the averaging time τ be much larger than the Heisenberg time τH ≡ 2πh̄/δ ∼ eS. This time
scale is much too large to be physically relevant, and thus the infinite time average must
be regarded as a purely theoretical device. Nevertheless, if the system comes to thermal
equilibrium, then At should be near its equilibrium value 〈A〉T most of the time, and thus
we should have A = 〈A〉T .

To check whether or not this is the case, we first substitute eq. (2.4) into eq. (3.2) to get

A =
∑

α

|cα|
2A(Eα) + O(e−S/2) . (3.3)

We now make a mild assumption about the state |ψt〉. We assume that the expectation
value of the total energy

E ≡
∑

α

|cα|
2Eα (3.4)

has a quantum uncertainty

∆ ≡
[ ∑

α

|cα|
2 (Eα − E)2

]1/2

(3.5)

that is small, in the sense that ∆2|A′′(E)/A(E)| & 1. This is a natural assumption when
N is large, since states of physical interest typically have ∆ ∼ N−1/2E. If we now expand
A(Eα) in eq. (3.3) in powers of Eα − E, we get A = A(E) + O(∆2); combining this with
eq. (2.10), we find

5



I. INTRODUCTION

Many-body systems typically exhibit certain dynamical properties that are studied under
the subject headings of thermodynamics and statistical mechanics. These properties include
the following:

1) Given an arbitrary initial state, the system almost always evolves towards an identifi-
able condition known as thermal equilibrium, and then remains in this condition at almost
all subsequent times.

2) When the system is in thermal equilibrium, observables of interest take on values that
depend only on the nature of the system and its total energy, but not on any other details
of the specific state of the system.

3) When the system is in thermal equilibrium, the measured value of an observable of
interest at any particular time fluctuates about its equilibrium value, with fluctuations whose
amplitude is suppressed by a factor of N−1/2, where N is the number of degrees of freedom.

4) During the approach to thermal equilibrium, the values of observables of interest
are governed by equations that are not time reversal invariant. These equations typically
depend on the values of other observables, possibly at different times. The information about
the system that is included in these equations is not sufficient to reconstruct the complete
physical state of the system.

5) Often (but not always), these equations are markovian; that is, they depend only
on the values of the observables in question, and their first time derivatives, at any given
moment.

There is a vast literature on the derivation of these properties from an underlying de-
terministic, time reversal invariant dynamics, classical or quantum. In this paper (closely
related earlier work includes [1–16]), we explore to what extent these properties can be de-
duced as consequences of quantum chaos. This means that we will assume that the energy
eigenvalues and (more importantly) the matrix elements of typical observables have certain
properties. These properties are believed (and, in some cases, rigorously proven) to hold for
a canonically quantized system whose classical phase space is fully chaotic at the energies of
interest, and they are likely to hold at least approximately for a broader array of systems.

The outline of this paper is as follows. In Section 2 we state our basic assumptions, and
briefly discuss their origins in quantum chaos theory. Some previous work that is directly
relevant is summarized in Section 3. Sections 4 and 5 present new results concerning the
approach to thermal equilibrium. Section 6 discusses the main conclusions.

II. QUANTUM CHAOS

We assume that the quantum system of interest is bounded and isolated, with N degrees
of freedom, where N ! 1. Since the system is bounded, the energy eigenvalues are discrete,
and since it is isolated, its time evolution is governed by the Schrodinger equation. Let Eα

denote the energy eigenvalue corresponding to the energy eigenstate |α〉; the state of the
system at any time t is then given by

|ψt〉 =
∑

α

cα e−iEαt |α〉 . (2.1)

2

Let’s compute 

III. THERMAL EQUILIBRIUM

The expectation value of an observable A in the state specified by eq. (2.1) is given by

At ≡ 〈ψt|A|ψt〉

=
∑

αβ

c∗αcβ ei(Eα−Eβ)tAαβ . (3.1)

We will take At as the main object of study. It is not obvious that this is the right thing to do,
since short-time measurements do not generally yield quantum expectation values. However,
our main goal is to compare with the results of conventional nonequilibrium statistical
mechanics, in which time-dependent expectation values are the basic ingredients (see, e.g.,
[22–24], and Section V, below). A detailed discussion of the quantum measurement problem
would be needed to address this issue properly, but this is beyond the scope of the present
paper.

If we now take the infinite time average of At, we find

A ≡ lim
τ→∞

1

τ

∫ τ

0
dt At

=
∑

α

|cα|
2Aαα , (3.2)

where the last line requires nondegeneracy of the energy eigenvalues. It also requires that
the averaging time τ be much larger than the Heisenberg time τH ≡ 2πh̄/δ ∼ eS. This time
scale is much too large to be physically relevant, and thus the infinite time average must
be regarded as a purely theoretical device. Nevertheless, if the system comes to thermal
equilibrium, then At should be near its equilibrium value 〈A〉T most of the time, and thus
we should have A = 〈A〉T .

To check whether or not this is the case, we first substitute eq. (2.4) into eq. (3.2) to get

A =
∑

α

|cα|
2A(Eα) + O(e−S/2) . (3.3)
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I. INTRODUCTION

Many-body systems typically exhibit certain dynamical properties that are studied under
the subject headings of thermodynamics and statistical mechanics. These properties include
the following:
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all subsequent times.
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physical state of the system.

5) Often (but not always), these equations are markovian; that is, they depend only
on the values of the observables in question, and their first time derivatives, at any given
moment.
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The outline of this paper is as follows. In Section 2 we state our basic assumptions, and
briefly discuss their origins in quantum chaos theory. Some previous work that is directly
relevant is summarized in Section 3. Sections 4 and 5 present new results concerning the
approach to thermal equilibrium. Section 6 discusses the main conclusions.

II. QUANTUM CHAOS

We assume that the quantum system of interest is bounded and isolated, with N degrees
of freedom, where N ! 1. Since the system is bounded, the energy eigenvalues are discrete,
and since it is isolated, its time evolution is governed by the Schrodinger equation. Let Eα

denote the energy eigenvalue corresponding to the energy eigenstate |α〉; the state of the
system at any time t is then given by

|ψt〉 =
∑

α

cα e−iEαt |α〉 . (2.1)
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III. THERMAL EQUILIBRIUM

The expectation value of an observable A in the state specified by eq. (2.1) is given by

At ≡ 〈ψt|A|ψt〉

=
∑

αβ

c∗αcβ ei(Eα−Eβ)tAαβ . (3.1)

We will take At as the main object of study. It is not obvious that this is the right thing to do,
since short-time measurements do not generally yield quantum expectation values. However,
our main goal is to compare with the results of conventional nonequilibrium statistical
mechanics, in which time-dependent expectation values are the basic ingredients (see, e.g.,
[22–24], and Section V, below). A detailed discussion of the quantum measurement problem
would be needed to address this issue properly, but this is beyond the scope of the present
paper.

If we now take the infinite time average of At, we find

A ≡ lim
τ→∞

1

τ

∫ τ

0
dt At

=
∑

α

|cα|
2Aαα , (3.2)

where the last line requires nondegeneracy of the energy eigenvalues. It also requires that
the averaging time τ be much larger than the Heisenberg time τH ≡ 2πh̄/δ ∼ eS. This time
scale is much too large to be physically relevant, and thus the infinite time average must
be regarded as a purely theoretical device. Nevertheless, if the system comes to thermal
equilibrium, then At should be near its equilibrium value 〈A〉T most of the time, and thus
we should have A = 〈A〉T .

To check whether or not this is the case, we first substitute eq. (2.4) into eq. (3.2) to get

A =
∑

α

|cα|
2A(Eα) + O(e−S/2) . (3.3)

We now make a mild assumption about the state |ψt〉. We assume that the expectation
value of the total energy

E ≡
∑

α

|cα|
2Eα (3.4)

has a quantum uncertainty

∆ ≡
[ ∑

α

|cα|
2 (Eα − E)2

]1/2

(3.5)

that is small, in the sense that ∆2|A′′(E)/A(E)| & 1. This is a natural assumption when
N is large, since states of physical interest typically have ∆ ∼ N−1/2E. If we now expand
A(Eα) in eq. (3.3) in powers of Eα − E, we get A = A(E) + O(∆2); combining this with
eq. (2.10), we find
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equilibrium, then At should be near its equilibrium value 〈A〉T most of the time, and thus
we should have A = 〈A〉T .

To check whether or not this is the case, we first substitute eq. (2.4) into eq. (3.2) to get
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We now make a mild assumption about the state |ψt〉. We assume that the expectation
value of the total energy
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that is small, in the sense that ∆2|A′′(E)/A(E)| & 1. This is a natural assumption when
N is large, since states of physical interest typically have ∆ ∼ N−1/2E. If we now expand
A(Eα) in eq. (3.3) in powers of Eα − E, we get A = A(E) + O(∆2); combining this with
eq. (2.10), we find
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.
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the problem, and there is negligible tunnelling among the tubes. We
can vary the weighted average number of atoms per tube, N tube, and
the axial oscillation period, t. For a given array, t is the same to within
6% for all 1,000–8,000 tubes. The 1D coupling strength is given by
g ¼ j2/a1Dn1Dj, where n1D is the 1D density, ja1Dj < a r

2/2a is the 1D
scattering length, a ¼ 5.3 nm is the three-dimensional (3D) scattering
length, a r ¼ ("/mq r)

1/2 ¼ 41.5 nm is the transverse oscillator width,
and m is the Rb mass18.
To study the 1D Bose gases, we turn off the crossed dipole trap and

allow the atoms to expand in one dimension for 27ms before taking
an absorption image from the transverse direction. When we inte-
grate the image transverse to the tubes, we get a 1D spatial distri-
bution that corresponds to the momentum distribution after
expansion, f(p ex). Although the individual 1D gases have Thomas–
Fermi or Tonks–Girardeau f(p ex) profiles, we measure gaussian
f(p ex) distributions, as expected when the f(p ex) for many 1D Bose
gases with different N tube are summed.
To create non-equilibrium momentum distributions, we pulse

on a 3.2 THz detuned 1D lattice along the tubes, which acts as a
phase grating for the atoms. Two pulses, with intensity 11Wcm22

and pulse widths of 23 ms separated in time by 33 ms, can deplete the

zero momentum state and transfer atoms to^2"k peaks19,20 where k
is the wavevector of the 1D lattice light. We wait after the grating
pulses for a variable time, t, beforemeasuring f(p ex). Figure 2 shows a
time series of absorption images spanning a full oscillation in the
crossed dipole trap, when the weighted average of the initial peak g in
each tube, go, is 1.0. The two momentum groups collide with each
other in the centre of the crossed dipole trap twice each full cycle, for
instance at t ¼ 0 and t/2, as illustrated in Fig. 1b. The total collision
energy is 8("k)2/2m ¼ 0.45"q r, less than one-quarter the energy
needed for transverse vibrational excitation21, so the colliding gases
remain 1D.
The first and last images in Fig. 2 differ because the oscillating

atoms dephase. Illustrated conceptually in Fig. 1b, there is dephasing
due to the gaussian crossed dipole trap anharmonicity, which gives an
,8% spread of t across the full-width at half-maximum of each of the
colliding clouds. The top curves in Fig. 3a–c show the time-averaged
f(pex) over the first cycle for different go. Differences in shape among
them reflect the initial energy per particle, which increases with n1D,
and hence go

21. Within 10t to 15t, f(p ex) stops changing noticeably
during an oscillation period. The central observations in this letter
are of the evolution of f(p ex) that are dephased, like the lower curves
of Fig. 3a–c. Comparing only dephased distributions avoids the
complication of how the momentum distribution in the trap evolves
into f(p ex) during expansion, which may slightly depend on the
initial spatial distributions. As atoms have clearly dephased within
each tube, dephasing among tubes is irrelevant.

Figure 2 |Absorption images in the first oscillation cycle for initial average
peak coupling strength go 5 1. Atoms are always confined to one
dimension, in this case in 3,000 parallel tubes, with a weighted average of
110 atoms per tube. After grating pulses put each atom in a superposition of
^2"k momentum, they are allowed to evolve for a variable time t in the
anharmonic 1D trap (crossed dipole trap), before being released and
photographed 27ms later. The false colour in each image is rescaled to show
detail. These pictures are used to determine f(p ex). The first image shows
that some atoms remain near pex ¼ 0 at t ¼ 0. How many remain there
depends on n1D, implying that these remnant atoms do not result from an
imperfect pulse sequence, but rather from interactions during the grating
pulses or evolution of the momentum distribution during expansion. The
relative narrowness of the peaks in the last image compared to the first is
indicative of the reduction in spatial density that results from dephasing
(Fig. 1b). The transverse spatial width of each of the 14 image frames is
70 mm. Horizontal in the figure corresponds to vertical in the experiment, a
minor distinction because a magnetic field gradient cancels gravity for the
atoms.

Figure 3 | The expanded momentum distribution, f(pex), for three values
of go. The curves are obtained by transversely integrating absorption
images like those in Fig. 2. The spatial position, z, is approximately
proportional to the expanded momentum, p ex. The vertical scale is
arbitrary, but consistent among the curves. a, go ¼ 4; b, go ¼ 1; and
c, go ¼ 0.62. The highest (green) curve in each set is the average of f(p ex)
from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)
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from the first cycle, that is, from the images like those in Fig. 2. The lower
curves in each set are f(p ex) taken at single times, t, after the atoms have
dephased: a, t ¼ 34ms, t ¼ 15t (blue) and 30t (red); b, t ¼ 13ms, t ¼ 15t
(blue) and 40t (red); and c, t ¼ 13ms, t ¼ 15t (blue) and 40t (red). The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information for a discussion of the fine spatial
structure in these curves.)

NATURE|Vol 440|13 April 2006 LETTERS

901

Kinoshita, Wenger, & Weiss (2006) 



in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~

P
aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
aCae

{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as

ÂA(t)
! "

: y(t) ÂA
## ##y(t)

! "
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X

a,b

C!
aCbe

i Ea{Ebð ÞtAab ð1Þ

where Aab~ Ya ÂA
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and the asterisk denotes complex conjuga-

tion. The long-time average of ÂA tð Þ
! "

is then

ÂA
! "

~
X

a

Caj j2Aaa ð2Þ

Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads

X

a

Caj j2Aaa~ Ah imicrocan E0ð Þ:
1

N E0, DE

X

a
jE0 { Eaj v DE

Aaa ð3Þ

where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
## ##Ya
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of a few-body

observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there

0 50 100 150 200
tJ

–2 –1 0 1 2
kx[2π/(Lxd)]

Initial

0.5

1.0

1.5

n(
k x

)

1.0

1.5

2.0

0.5

2.0

c

n(
k x

 =
 0

)

a

b

Initial state
Diagonal/relaxation
dynamics
Microcanonical
Canonical

Relaxation
dynamics
Diagonal
Microcanonical
Canonical

Figure 1 | Relaxation dynamics. a, Two-dimensional lattice on which five
hard-core bosons propagate in time. The bosons are initially prepared in the
ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
has units of inverse time; see Supplementary Information). In the
microcanonical case, we averaged over all eigenstates whose energies lie
within anarrowwindow (see SupplementaryDiscussion) [E02DE,E01DE],
where E0: y(0) ĤH
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temperature is kBT5 1.87J, where kB is the Boltzmann constant, meaning
that the ensemble prediction for the energy is E0. c, Full momentum
distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx5 5 is the lattice width.
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in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~

P
aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
aCae

{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as
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is then
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Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads
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where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
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observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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distribution, compared with the predictions of the three ensembles, plotted
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distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx5 5 is the lattice width.
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Numerical investigations:

are no general theoretical arguments supporting the ETH, some
results do exist for restricted classes of systems. For instance, the
ETH holds12 in the case of an integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble.
Furthermore, nuclear shell model calculations have shown that
individual wavefunctions reproduce thermodynamic predictions20.
There are also rigorous proofs that some quantum systems, whose
classical counterparts are chaotic, satisfy the ETH in the semiclassical
limit21–24. More generally, for low-density billiards in the semi-
classical regime, the ETH follows from Berry’s conjecture13,25, which
in turn is believed to hold in semiclassical classically chaotic sys-
tems26. Finally, at the other end of the chaos–integrability spectrum,
in systems solvable by Bethe ansatz, observables are smooth functions
of the integrals of motion. This allows for the construction of indi-
vidual energy eigenstates that reproduce thermal predictions27.

In Fig. 3a–c we demonstrate that the ETH is in fact the mechanism
responsible for thermal behaviour in our non-integrable system.
Figure 3c additionally shows that the second scenario mentioned
above does not occur, because the fluctuations in the EONs jCaj2
are large. Thermal behaviour also requires that both the diagonal
and the chosen thermal ensemble have sufficiently narrow energy
distributions r(E) (the product of the probability distribution and
the density of states), meaning that in the energy region where the
energy distributions r(E) are appreciable, the slope of the curve of the
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function of the eigenstate energy gives a thick cloud of points rather than
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larger than the diagonal one.
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in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~

P
aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
aCae

{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as
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: y(t) ÂA
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C!
aCbe

i Ea{Ebð ÞtAab ð1Þ

where Aab~ Ya ÂA
## ##Yb

! "
and the asterisk denotes complex conjuga-

tion. The long-time average of ÂA tð Þ
! "

is then

ÂA
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~
X

a

Caj j2Aaa ð2Þ

Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads

X

a

Caj j2Aaa~ Ah imicrocan E0ð Þ:
1

N E0, DE

X

a
jE0 { Eaj v DE

Aaa ð3Þ

where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
## ##Ya

! "
of a few-body

observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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Figure 1 | Relaxation dynamics. a, Two-dimensional lattice on which five
hard-core bosons propagate in time. The bosons are initially prepared in the
ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
has units of inverse time; see Supplementary Information). In the
microcanonical case, we averaged over all eigenstates whose energies lie
within anarrowwindow (see SupplementaryDiscussion) [E02DE,E01DE],
where E0: y(0) ĤH
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distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx5 5 is the lattice width.
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in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~

P
aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
aCae

{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as
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Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads
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where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
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observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea

Ya ÂA
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The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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Figure 1 | Relaxation dynamics. a, Two-dimensional lattice on which five
hard-core bosons propagate in time. The bosons are initially prepared in the
ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
has units of inverse time; see Supplementary Information). In the
microcanonical case, we averaged over all eigenstates whose energies lie
within anarrowwindow (see SupplementaryDiscussion) [E02DE,E01DE],
where E0: y(0) ĤH
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~{5:06J andDE5 0.1J. The canonical ensemble
temperature is kBT5 1.87J, where kB is the Boltzmann constant, meaning
that the ensemble prediction for the energy is E0. c, Full momentum
distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx5 5 is the lattice width.
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in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~

P
aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
aCae

{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as
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: y(t) ÂA
## ##y(t)

! "
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where Aab~ Ya ÂA
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and the asterisk denotes complex conjuga-

tion. The long-time average of ÂA tð Þ
! "

is then

ÂA
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Caj j2Aaa ð2Þ

Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads

X

a

Caj j2Aaa~ Ah imicrocan E0ð Þ:
1

N E0, DE

X

a
jE0 { Eaj v DE

Aaa ð3Þ

where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
## ##Ya

! "
of a few-body

observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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over all the basis eigenstates yaj i, the many-body wavefunction
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{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
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a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {
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, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads
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where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
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observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
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ground state of the sub-lattice in the lower-right corner and released through
the link indicated by the drawing of a door. b, The corresponding relaxation
dynamics of the central component n(kx5 0) of the marginal momentum
distribution, compared with the predictions of the three ensembles, plotted
against ‘dimensionless time’ (in our conventions J, the hopping parameter,
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microcanonical case, we averaged over all eigenstates whose energies lie
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ensembles. Here d is the lattice constant and Lx5 5 is the lattice width.
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in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~

P
aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
aCae

{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as
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Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads
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where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
## ##Ya
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of a few-body

observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
very different natures, as depicted in Fig. 2. Although at present there
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in the eigenstate basis of the final hamiltonian ĤH as
y(0)j i~
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aCa Yaj i, whereCa~ Ya j y(0)h i and the index a ranges

over all the basis eigenstates yaj i, the many-body wavefunction
evolves as y(t)j i~e{iĤHt y(0)j i~

P
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{iEat Yaj i, where the Ea
are the eigenstate energies. Thus, obtaining results that are numeric-
ally exact for all times requires the full diagonalization of the 20,349-
dimensional hamiltonian. The quantum-mechanical mean of any
observable ÂA evolves as
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Wenote that if the system relaxes at all, it must be to this value.We
find it convenient to think of equation (2) as stating the prediction of

a ‘diagonal ensemble’, jCaj2 corresponding to the weight that Yaj i
has in the ensemble. In fact, this ensemble is precisely the generalized
Gibbs ensemble introduced in ref. 3 if as integrals of motion we
take all the projection operators P̂Pa~ Yaj i Yah j. Using these as con-
straints on relaxation dynamics, the theory gives the generalized
Gibbs density matrix (or constrained density matrix)
r̂rc~ exp {

PD
a~1 laP̂Pa

$ %
, where la52ln(jCaj2) and D is the

dimension of the Hilbert space. (We note, however, that for the
integrable system treated in ref. 3, the generalized Gibbs ensemble
was defined using a different, minimal set of independent integrals of
motion, the number of which was equal to the number of lattice sites
N, which is much less than D.)

If the quantum-mechanical mean of an observable behaves ther-
mally it should settle to the prediction of an appropriate statistical-
mechanical ensemble. For our numerical experiments we chose to
monitor the marginal momentum distribution along the horizontal
axis n(kx) and its central component n(kx5 0) (see Supplementary
Information). In Fig. 1b, c we demonstrate that both relax to their
microcanonical predictions. The diagonal-ensemble predictions are
the same as these, but the canonical ones, although quite close, are
not. This is an indication of the relevance of finite-size effects, which
may be the origin of some of the apparent deviations from ther-
modynamics seen in the recent numerical studies of refs 4 and 5.

The statement that the diagonal and microcanonical ensembles
give the same predictions for the relaxed value of ÂA reads
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where E0 is the mean energy of the initial state, DE is the half-width
of an appropriately chosen energy window centred at E0 (see
Supplementary Discussion), and the normalization N E0, DE is the
number of energy eigenstates with energies in the window
[E02DE, E01DE]. Thermodynamical universality is evident in this
equality: although the left-hand side depends on the details of the
initial conditions through the set of coefficients Ca, the right-hand
side depends only on the total energy, which is the same for many
different initial conditions. The following three scenarios suggest
themselves as possible explanations of this universality (assuming
that the initial state is sufficiently narrow in energy, as is normally
the case—see Supplementary Discussion).

First, even for eigenstates close in energy, there are large eigenstate-
to-eigenstate fluctuations of both the eigenstate expectation values
(EEVs) Aaa and the eigenstate occupation numbers (EONs) jCaj2.
However, for physically interesting initial conditions, the fluctua-
tions in the two quantities are uncorrelated. A given initial state then
performs an unbiased sampling of the distribution of the EEVs Aaa,
resulting in equation (3).

Second, for physically interesting initial conditions, the EONs
jCaj2 almost do not fluctuate at all between eigenstates that are close
in energy. Again, equation (3) immediately follows.

Third, the EEVs Aaa almost do not fluctuate at all between eigen-
states that are close in energy. In this case equation (3) holds without
exception for all initial states that are narrow in energy (unlike in the
first two scenarios, for which there may be special states that violate
equation (3) despite being narrow in energy).

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the ‘eigenstate thermalizationhypo-

thesis (ETH)’12,13: the expectation value Ya ÂA
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of a few-body

observable ÂA in an energy-Ea eigenstate Yaj i of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average ÆAæmicrocan(Ea) of ÂA at the mean energy Ea
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The ETH suggests that classical and quantum thermal states have
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## ##y(0)
! "

~{5:06J andDE5 0.1J. The canonical ensemble
temperature is kBT5 1.87J, where kB is the Boltzmann constant, meaning
that the ensemble prediction for the energy is E0. c, Full momentum
distribution function in the initial state, after relaxation, and in the different
ensembles. Here d is the lattice constant and Lx5 5 is the lattice width.

NATURE |Vol 452 | 17 April 2008 LETTERS

855
Nature   Publishing Group©2008

in
th
e

ei
ge
n
st
at
e

b
as
is

o
f

th
e

fi
n
al

h
am

il
to
n
ia
n

ĤH
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are no general theoretical arguments supporting the ETH, some
results do exist for restricted classes of systems. For instance, the
ETH holds12 in the case of an integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble.
Furthermore, nuclear shell model calculations have shown that
individual wavefunctions reproduce thermodynamic predictions20.
There are also rigorous proofs that some quantum systems, whose
classical counterparts are chaotic, satisfy the ETH in the semiclassical
limit21–24. More generally, for low-density billiards in the semi-
classical regime, the ETH follows from Berry’s conjecture13,25, which
in turn is believed to hold in semiclassical classically chaotic sys-
tems26. Finally, at the other end of the chaos–integrability spectrum,
in systems solvable by Bethe ansatz, observables are smooth functions
of the integrals of motion. This allows for the construction of indi-
vidual energy eigenstates that reproduce thermal predictions27.

In Fig. 3a–c we demonstrate that the ETH is in fact the mechanism
responsible for thermal behaviour in our non-integrable system.
Figure 3c additionally shows that the second scenario mentioned
above does not occur, because the fluctuations in the EONs jCaj2
are large. Thermal behaviour also requires that both the diagonal
and the chosen thermal ensemble have sufficiently narrow energy
distributions r(E) (the product of the probability distribution and
the density of states), meaning that in the energy region where the
energy distributions r(E) are appreciable, the slope of the curve of the
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Figure 2 | Thermalization in classical versus quantum mechanics. a, In
classical mechanics, time evolution constructs the thermal state from an
initial state that generally bears no resemblance to the former. b, In quantum
mechanics, according to the ETH, every eigenstate of the hamiltonian always
implicitly contains a thermal state. The coherence between the eigenstates
initially hides it, but time dynamics reveals it through dephasing.
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Figure 3 | Eigenstate thermalization hypothesis. a, In our non-integrable
system, the momentum distribution n(kx) for two typical eigenstates with
energies close to E0 is identical to the microcanonical result, in accordance
with the ETH. b, Upper panel: the EEV n(kx5 0), considered as a function of
the eigenstate energy resembles a smooth curve. Lower panel: the energy
distributions r(E) (in units of J21) of the three ensembles we consider here.
c, Detailed view of n(kx5 0) (left-hand scale) and |Ca | 2 (right-hand scale)
for 20 eigenstates around E0. d, In the integrable system, the values of n(kx)
for two eigenstates, a and b, with energies close to E0 and for the

microcanonical and diagonal ensembles are very different from each other;
that is, the ETH fails. e, Upper panel: the EEV n(kx5 0), considered as a
function of the eigenstate energy gives a thick cloud of points rather than
resembling a smooth curve. Lower panel: the energy distributions in the
integrable system are similar to the non-integrable ones depicted in b. f,
Correlation between n(kx5 0) and |Ca | 2 for 20 eigenstates around E0. This
correlation explains why in d the microcanonical prediction for n(kx5 0) is
larger than the diagonal one.
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Conclusions:

Quantum Chaos

“eigenstate thermalization”

Statistical Mechanics !



Many open problems!

Behavior of near-integrable systems ?

Eigenstate thermalization threshold ?

Alternatives to eigenstate thermalization ?








