University of Toronto Colloquium 15 November 2012

Classical chaotic motion

Classical chaotic motion

Poincaré section: values of y & \dot{y} when x=0

Billiard systems

Billiard systems

Integrable:

Billiard systems

Integrable:

graphs by Arnd Baecker

QUANTUM MECHANICS

QUANTUM MECHANICS Given a hamiltonian H, we find its EIGENVALUES and EIGENSTATES: $H|\alpha\rangle = E_{\alpha}|\alpha\rangle$

QUANTUM MECHANICS Given a hamiltonian H, we find its EIGENVALUES and EIGENSTATES: $H|\alpha\rangle = E_{\alpha}|\alpha\rangle$ Then $|\psi_t\rangle = \sum c_{\alpha} e^{-iE_{\alpha}t/\hbar} |\alpha\rangle$

Do chaotic systems have any QUANTUM signatures

Do chaotic systems have any QUANTUM signatures

---- S = nearest neighbor spacing

$$\underline{\qquad} P(s) = ?$$

S = nearest neighbor spacing

$$= P(s) = ?$$

Integrable system: $P(s) \sim e^{-s}$

S = nearest neighbor spacing

$$= P(s) = ?$$

Integrable system: $P(s) \sim e^{-s}$ Chaotic system: $P(s) \sim s^{\beta} e^{-s^2}$ $\beta = 1, 2, 4$

S = nearest neighbor spacing

$$= P(s) = ?$$

Integrable system: $P(s) \sim e^{-s}$

Chaotic system: $P(s) \sim s^{\beta} e^{-s^2}$ $\beta = 1, 2, 4$

> Wigner-Dyson distribution Random Matrix Theory GOE, GUE, GSE

Example:

Example:

Ball bouncing on a tilted floor

Example:

Ball bouncing on a tilted floor

$\frac{\text{integrable}}{\text{chaotic}} \text{ if } \alpha \le 45^{\circ}$

Szeredi & Goodings '93

Quantum level spacings:

Szeredi & Goodings '93

Level spacings in nuclei:

Quantum energy eigenfunctions

Quantum energy eigenfunctions

Berry's random wave conjecture: A_j 's are gaussian random

Berry '77

Random waves:

Cardioid billiard eigenfunction:

Baecker '03

Random waves on a sphere (Eric Heller)

QUANTUM CHAOS and STATISTICAL MECHANICS

Dilute gas in a box:

$$A_t \equiv \langle \psi_t | A | \psi_t \rangle$$

$$\left|\psi_{t}\right\rangle = \sum_{\alpha} c_{\alpha} e^{-iE_{\alpha}t} \left|\alpha\right\rangle$$

$$\left|\psi_{t}\right\rangle = \sum_{\alpha} c_{\alpha} e^{-iE_{\alpha}t} \left|\alpha\right\rangle$$

$$A_t = \sum_{\alpha\beta} c^*_{\alpha} c_{\beta} e^{i(E_{\alpha} - E_{\beta})t} A_{\alpha\beta}$$

$$\left|\psi_{t}\right\rangle = \sum_{\alpha} c_{\alpha} e^{-iE_{\alpha}t} \left|\alpha\right\rangle$$

$$A_t = \sum_{\alpha\beta} c^*_{\alpha} c_{\beta} e^{i(E_{\alpha} - E_{\beta})t} A_{\alpha\beta}$$

$$\overline{A} \equiv \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt \ A_t$$

$$\left|\psi_{t}\right\rangle = \sum_{\alpha} c_{\alpha} e^{-iE_{\alpha}t} \left|\alpha\right\rangle$$

$$A_t = \sum_{\alpha\beta} c^*_{\alpha} c_{\beta} \, e^{i(E_{\alpha} - E_{\beta})t} A_{\alpha\beta}$$

$$\overline{A} \equiv \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt \ A_t$$
$$= \sum_{\alpha} |c_{\alpha}|^2 A_{\alpha \alpha}$$

 $A_t \equiv \langle \psi_t | A | \psi_t \rangle$ $|\psi_t \rangle = \sum_{\alpha} c_{\alpha} e^{-iE_{\alpha}t} | \alpha \rangle$

$$A_t = \sum_{\alpha\beta} c^*_{\alpha} c_{\beta} \, e^{i(E_{\alpha} - E_{\beta})t} A_{\alpha\beta}$$

$$\overline{A} \equiv \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt \ A_t$$
$$= \sum_{\alpha} |c_{\alpha}|^2 A_{\alpha \alpha}$$

 $=\langle A\rangle_T$???

Shnirelman's theorem:

 $\langle \alpha | A | \alpha \rangle \rightarrow \text{classical, microcanonical average of } A + O(\hbar^{1/2})$

if system is chaotic and $A = \hbar$ -independent operator

Shnirelman's theorem:

$$\begin{split} \langle \alpha | A | \alpha \rangle & \to \text{classical, microcanonical average of } A \\ & + O(\hbar^{1/2}) \end{split}$$

if system is chaotic and $A = \hbar$ -independent operator

But all we will need is

 $\langle \alpha | A | \alpha \rangle = O(\hbar^0)$, varies smoothly with E_{α}

which follows from the random-wave conjecture

$$\overline{A} = \sum_{\alpha} |c_{\alpha}|^2 A_{\alpha\alpha}$$
 is independent of the c_{α} 's

$$\overline{A} = \sum_{\alpha} |c_{\alpha}|^2 A_{\alpha\alpha}$$
 is independent of the c_{α} 's

So let $|c_{\alpha}|^2 =$ Boltzmann weight $\implies \Delta E \sim N^{-1/2}E$ $\implies \overline{A} = \langle A \rangle_T$

$$\overline{A} = \sum_{\alpha} |c_{\alpha}|^2 A_{\alpha\alpha}$$
 is independent of the c_{α} 's

So let $|c_{\alpha}|^2 =$ Boltzmann weight $\implies \Delta E \sim N^{-1/2}E$ $\implies \overline{A} = \langle A \rangle_T$

 $\implies \overline{A} = \langle A \rangle_T$ for all c_{α} 's with "small" ΔE

$$\overline{A} = \sum_{\alpha} |c_{\alpha}|^2 A_{\alpha\alpha}$$
 is independent of the c_{α} 's

So let $|c_{\alpha}|^2 =$ Boltzmann weight $\implies \Delta E \sim N^{-1/2}E$ $\implies \overline{A} = \langle A \rangle_T$

 $\implies \overline{A} = \langle A \rangle_T$ for all c_{α} 's with "small" ΔE

Deutsch '91, M.S. '94

Review:

Random wave conjecture \implies

 $A_{\alpha\beta} = \langle \alpha | A | \beta \rangle$ varies erratically with α and β

$$O(\hbar^{0}) = \langle \alpha | (A - \langle A \rangle)^{2} | \alpha \rangle = \sum_{\beta \neq \alpha} \langle \alpha | A | \beta \rangle \langle \beta | A | \alpha \rangle$$

$$=\sum_{\beta\neq\alpha}|A_{\alpha\beta}|^2$$

$$\sim \rho(\bar{E}) \ \overline{|A_{\alpha\beta}|^2}$$

 $\sim \hbar^{-(f-1)} \ \overline{|A_{\alpha\beta}|^2}$

$$\implies \qquad A_{\alpha\beta} \sim \hbar^{(f-1)/2} \sim e^{-S(\bar{E})/2}$$

"A quantum Newton's cradle":

Kinoshita, Wenger, & Weiss (2006)

Kinoshita, Wenger, & Weiss (2006)

Numerical investigations:

Rigol, Dunjko, & Olshanii (2008)

Behavior of near-integrable systems ? Eigenstate thermalization threshold ? Alternatives to eigenstate thermalization ?

