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• What have we learned? Conclusions & Outlook



Earth’s gravity field is highly variable...



...and it changes over time
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GRACE mission objectives

• The mission will precisely measure the planet’s shifting water masses and

map their effects on Earth’s gravity field, yielding new information on the

effects of global climate change.

• The mission will use a microwave ranging system to accurately measure

changes in the speed and distance between two identical spacecraft flying in a

polar orbit about 220 km apart, 500 km above Earth.

• The ranging system is so sensitive that it can detect separation changes as

small as 10 microns — about one-tenth the width of a human hair over a dis-

tance of 220 km.

• The question is, of course:

with what spatial, temporal, and spectral resolution?



The hydrological signal is big and large
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Earthquakes are small (even large ones)
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What GRACE sees and doesn’t see

• Let’s forget about the hydrological signal for the moment.

It is (more-or-less) straightforward to extract from the background.

• Let’s forget about earthquakes for the moment.

They appear hopeless: even the largest ones look too small.

• Let’s focus on the climate signal: longer-term, multi-annual trends.

How well does GRACE detect what may be going on with the world’s ice caps?

Aware of the huge challenges to beat elevated noise levels at small spatial

footprints, the community has developed a multitude of filtering methods to

enhance signal-to-noise ratios and, in particular, to eliminate the prominent

effect of the satellite orbits on the behavior of the solutions (destriping).
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Whither Greenland?

• What goes into the estimation?

• Authors more-or-less agree on the elastic effects (Love numbers etc).

• Authors more-or-less agree on the visco-elastic effects (PGR etc).

• Authors disagree on how to deal with leakage, how to smooth, filter

and average, and how to incorporate the statistical information

that is implicit in the GRACE solutions.

• Authors disagree on matters as fundamental as the choice of basis

to represent the solution. Pixels? Mascons? Spherical harmonics?

How do these choices influence the results?



The problem – 1

The data collected in or limited to R are signal plus noise:

d(r) =

 s(r) + n(r) if r ∈ R,

unknown/undesired if r ∈ Ω−R.

We may assume that n(r) is zero-mean and uncorrelated with the signal,

〈n(r)〉 = 0 and 〈n(r)s(r′)〉 = 0,

and consider the noise covariance:

〈n(r)n(r′)〉.

In other words: we’ve got noisy and incomplete data, on a sphere, Ω.
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The data collected in or limited to R are signal plus noise:

d(r) =

 s(r) + n(r) if r ∈ R,

unknown/undesired if r ∈ Ω−R.

We may assume that n(r) is zero-mean and uncorrelated with the signal,

〈n(r)〉 = 0 and 〈n(r)s(r′)〉 = 0,

and consider the noise covariance:

〈n(r)n(r′)〉.

In other words: we’ve got noisy and incomplete data, on a sphere, Ω.

To honor the spherical shape of the Earth,

we work in the spherical-harmonic basis.
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ẑ

x̂

Spherical harmonics Ylm(r) form an orthonormal basis on Ω:



Spherical harmonics

Scalar signals s(r) modeled on a unit sphere Ω:

ŷ
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Spherical harmonics Ylm(r) form an orthonormal basis on Ω:∫
Ω

YlmYl′m′ dΩ = δll′δmm′ and s(r) =
∞∑
lm

slmYlm(r).
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The spherical harmonics Ylm are not orthogonal on R:∫
R

YlmYl′m′ dΩ = Dlm,l′m′ .

Orthogonality is a big deal, leakage is what happens when it’s lost.

So we construct a new basis from the eigenfunctions of D.

These new, doubly orthogonal, functions are called Slepian functions, g(r).
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ŝαgα(r).



The objective – 2

We want to “explain the data”, by finding what causes them:∫
R

(s− d)2 dΩ = minimum.

Instead of regularizing, we form a truncated expansion:
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Eigenvectors of D expand to bandlimited Slepian functions:

g =
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g2 dΩ
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The Shannon number, or sum of the eigenvalues,

K = (L+ 1)2 A

4π
,

is the effective dimension of the space for which the bandlimited g are a basis.

Voilà! We have concentrated a poorly localized basis of (L+ 1)2 functions, Ylm,both spatially and spectrally, to a new basis with only about N functions, g.
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Slepian functions for Greenland, L = 60
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The procedure

1. Learn as much as possible about the noise and the structure of the signal.

More than likely, this is an iterative procedure.

2. Design basis functions appropriate for the region of interest.

Slepian functions are optimal for this type of problem in multiple respects.

3. Experiment with the bandwidth L of the signal as considered, allow

for small buffers outside the region of interest. Monitor the statistics.

4. In this philosophy, the signal is projected onto the basis in which signal-to-

noise ratios are maximized, and all subsequent estimates take the full spatial

and spectral noise covariance into account.

5. This is very different from most other approaches, though in spirit, it is identical

to the stuff Slepian, Shannon and Wiener figured out in the 1950s.



I. Look at the noise (in the pixel basis)

Spatial Covariance
Full Spectral Covariance

a)

Only Spectral Variance
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c) d)
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Harig & Simons, PNAS 2012



II. Construct an appropriate basis
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III. Project the signal onto the new basis
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III. Project the signal onto the new basis
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IV. Construct the final total estimate

Harig & Simons, PNAS 2012



IV. Construct the final total estimate UPDATE

Harig & Simons, PNAS 2012



IV. Invert for the total budget (if you must)

Harig & Simons, PNAS 2012



IV. Invert for the total budget UPDATE

Harig & Simons, PNAS 2012



Greenland: What have we learned?

• The early estimates were not so much at odds with one another as

lacking a complete understanding of the modeling uncertainty.



Greenland: What have we learned?

• The early estimates were not so much at odds with one another as

lacking a complete understanding of the modeling uncertainty.

• Greenland’s mass loss appears to be on a pretty steady trend,

with no hint of acceleration in recent years.



Greenland: What have we learned?

• The early estimates were not so much at odds with one another as

lacking a complete understanding of the modeling uncertainty.

• Greenland’s mass loss appears to be on a pretty steady trend,

with no hint of acceleration in recent years.

• The average yearly mass loss is about 200 km3yr−1, corrected for

elastic effects. The 95% interval halves with each additional observation year.



Greenland: What have we learned?

• The early estimates were not so much at odds with one another as

lacking a complete understanding of the modeling uncertainty.

• Greenland’s mass loss appears to be on a pretty steady trend,

with no hint of acceleration in recent years.

• The average yearly mass loss is about 200 km3yr−1, corrected for

elastic effects. The 95% interval halves with each additional observation year.

• Modeling by Slepian functions requires very few ad hoc assumptions.

Moreover, in addition to regional mass-average estimates, we get maps.



Greenland: What have we learned?

• The early estimates were not so much at odds with one another as

lacking a complete understanding of the modeling uncertainty.

• Greenland’s mass loss appears to be on a pretty steady trend,

with no hint of acceleration in recent years.

• The average yearly mass loss is about 200 km3yr−1, corrected for

elastic effects. The 95% interval halves with each additional observation year.

• Modeling by Slepian functions requires very few ad hoc assumptions.

Moreover, in addition to regional mass-average estimates, we get maps.

• Maps of the time-averaged mass loss show a marked concentration

at the outlet glaciers. Observed rates compare well with GPS surveys.



Common problems

Planetary gravity/magnetic field : Problem 1

Given d(r) and 〈n(r)n(r′)〉, estimate the signal s(r) at source level:

ŝ(r) =
J∑
α=1

ŝαgα(r), (1)

realizing that the estimate ŝ(r) is localized and bandlimited to L <∞.
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Planetary gravity/magnetic field : Problem 1

Given d(r) and 〈n(r)n(r′)〉, estimate the signal s(r) at source level:

ŝ(r) =
J∑
α=1

ŝαgα(r), (1)

realizing that the estimate ŝ(r) is localized and bandlimited to L <∞.

Also: Cosmic Microwave Background radiation: Problem 2

Given d(r) and 〈n(r)n(r′)〉, and assuming the universe behaves as

〈slm〉 = 0 and 〈slms∗l′m′〉 = Sl δll′δmm′ , (2)

estimate the power spectral density Sl, for 0 ≤ l <∞.

Dahlen & Simons, GJI 2008
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Single-taper ... bandlimited bias

Ŝαl =
1

2l + 1

∑
m

∣∣∣∣∫
Ω

gα(r) d(r)Y ∗lm(r) dΩ

∣∣∣∣2 − noise correction. (5)

Multiple-taper ... bandlimited bias, lower variance, easily implemented

ŜMT
l =

1

N

∑
α

λαŜ
α
l . (6)

Dahlen & Simons, GJI 2008



WMAP & Cosmic Background Radiation — 1
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Mars’ radial magnetic field
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Mars’ magnetic field: Power spectral density
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Mars: Magnetic strength vs decorrelation depth
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Mars: Decorrelation depth vs crustal thickness
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Mars: Decorrelation depth vs crustal thickness
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• The battle to detect the slight secular mass changes from melting ice caps

using GRACE has been about estimating the signal with realistic uncertainties,

both in terms of overall mass loss and as a function of position and time.

• The latest tools in signal analysis and inverse theory come in the form of

spatiospectrally concentrated Slepian functions.

• A power-spectral analysis of the Martian magnetic field reveals that for

much of the planet local source models provide much better fits to the data

than is captured by a global model.

• The correlation of magnetic source depths and strengths with independent

crustal thickness estimates indicates that a significant fraction of the martian

crustal column may contribute to the observed field, as would be consistent

with an intrusive magmatic origin.


