Enhancing Oxide Properties: The Approach of the Modern Alchemist

Darrell G. Schlom

Department of Materials Science and Engineering Cornell University

Kavli Institute at Cornell for Nanoscale Science

The Sorcerers

Craig Fennie (Cornell)

Karin Rabe (Rutgers)

What's New? — Motivation

- Theoretical Predictions
 - Effect of Strain on Ferroelectric Properties of SrTiO₃, BaTiO₃, BaTiO₃ / SrTiO₃ Superlattices
 - N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, *Phys. Rev. Lett.* **80**, 1988 (1998).
 - J.B. Neaton and K.M. Rabe, Appl. Phys. Lett. 82, 1586 (2003).
 - Y.L. Li and L.Q. Chen, Appl. Phys. Lett. 88, 072905 (2006).
 - Ability to Turn on Ferromagnetism in $EuTiO_3$ with E
 - Ability to Turn on Ferroelectricity in $EuTiO_3$ with B
 - C.J. Fennie and K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2007).
 - Effect of Strain on Band Gap of SrTiO₃
 - R.F. Berger, C.J. Fennie, and J.B. Neaton, *Phys. Rev. Lett.* **107**, 146804 (2011).

Effect of Biaxial Strain on BaTiO₃

P.W. Forsbergh, Jr., "Effect of a Two-Dimensional Pressure on the Curie Point of Barium Titanate," *Physical Review* **93**, 686 (1954).

Strained Silicon in MOSFETs

Photo: IBM Corporation (http://www.research.ibm.com/resources/press/strainedsilicon/)

Biaxial Strain via Epitaxy

- Introduction
- Turning a Dielectric into a Ferroelectric Strained SrTiO₃
- Turning a Dielectric into a Multiferroic Strained EuTiO₃
- Conclusions
- Future Directions

In Collaboration with the Groups of:

Craig J. Fennie—*Cornell University* Karin M. Rabe—*Rutgers University* **Long-Qing Chen**—*Penn State University* **David A. Muller**—*Cornell University* **Kyle M. Shen**—*Cornell University* **Venkatraman Gopalan**—*Penn State University* **Susan Trolier-McKinstry**—*Penn State University* **Peter Schiffer**—*University of Illinois* **Ezekiel Johnston-Halperin**—*Ohio State University* **Chris Hammel**—*Ohio State University* **Xiaoqing Pan**—University of Michigan **Jeremy Levy**—University of Pittsburgh **Steven W. Kirchoefer**—*Naval Research Laboratory* **Stanislav Kamba**—Institute of Physics, Czech Republic **John Freeland**—*Argonne National Laboratory* **Phil Ryan**—Argonne National Laboratory **Jürgen Schubert**—Forschungszentrum Jülich GmbH **Jochen Mannhart**—*Max-Planck-Institute für Festkörperforschung* **Reinhard Uecker**—Leibniz Institute für Kristallzüchtung

Effect of Strain on SrTiO₃—Theory

N.A. Pertsev, A.K. Tagantsev, and N. Setter, "Phase Transitions and Strain-Induced Ferroelectricity in SrTiO₃ Epitaxial Thin Films," *Physical Review* **61** (2000) 825-829.

Effect of Strain on SrTiO₃—Theory

Substrates are Key

Commercial Perovskite Substrates

FLOATING ZONE (FZ) CRYSTAL GROWTH

Courtesy to Institute of Crystal Growth, Berlin

W.G. Pfann, 1951

Current trends in silicon crystal growth W.v.Ammon

2012-03-20 Page 14

FIRST 200 mm FZ CRYSTAL

Current trends in silicon crystal growth W.v.Ammon

Floating-Zone Growth of ReScO₃

- Grew Single Crystals of $DyScO_3 (a \approx 3.94 \text{ Å})$ $GdScO_3 (a \approx 3.97 \text{ Å})$ $SmScO_3 (a \approx 3.99 \text{ Å})$ $NdScO_3 (a \approx 4.01 \text{ Å})$
- All Melt Congruently $T_m \sim 2100 \ ^{\circ}\text{C}$

Jochen Mannhart's Group University of Augsburg

Commercial Perovskite Substrates

The Sorcerer's Apprentice

RHEED, QCM, MOSS, BandiT + ARPES, XPS, LEED

Oxide MBE Group

MBE ≈ Atomic Spray Painting

Strain-Enhanced SrTiO₃

M.D. Biegalski, Y. Jia, D.G. Schlom, S. Trolier-McKinstry, S.K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, *Applied Physics Letters* **88** (2006) 192907. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley,
B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, and D.G. Schlom, *Nature* 430 (2004) 758-761.

250 Å SrTiO₃ on (110) DyScO₃ vs. GdScO₃

SrTiO₃ / DyScO₃ ~ 1.0%

SrTiO₃ / GdScO₃ ~ 1.6%

Strain shifts T_C

250 Å SrTiO₃ on (110) DyScO₃ vs. GdScO₃

SrTiO₃ / DyScO₃ ~ 1.0%

SrTiO₃ / GdScO₃ ~ 1.6%

Strain shifts T_C

Effect of Strain on SrTiO₃—Theory

Commensurate when Thin (<~10 ML)

5 ML SrTiO₃/Si

SrTiO₃ 202 reflection

M.P. Warusawithana, C. Cen, C.R. Sleasman, J.C. Woicik, Y.L. Li, L. Fitting Kourkoutis, J.A. Klug, H. Li, P. Ryan, L-P. Wang, M. Bedzyk, D.A. Muller, L.Q. Chen, J. Levy, and D.G. Schlom, "A Ferroelectric Oxide Made Directly on Silicon," *Science* **324** (2009) 367-370.

David Muller—*Cornell University*

Joseph Woicik—*NIST*

20 Å Thick SrTiO₃ / (100) Si

M.P. Warusawithana, C. Cen, C.R. Sleasman, J.C. Woicik, Y.L. Li, L. Fitting Kourkoutis, J.A. Klug, H. Li, P. Ryan, L-P. Wang, M. Bedzyk, D.A. Muller, L.Q. Chen, J. Levy, and D.G. Schlom, "A Ferroelectric Oxide Made Directly on Silicon," *Science* 324 (2009) 367-370.

- Introduction
- Turning a Dielectric into a Ferroelectric Strained SrTiO₃
- Turning a Dielectric into a Multiferroic Strained EuTiO₃
- Conclusions
- Future Directions

Ferromagnetic Ferroelectrics

Mind the Units!

H.W. Jang, S.H. Baek, D. Ortiz, C.M. Folkman, C.B. Eom,
Y.H. Chu, P. Shafer, R. Ramesh, V. Vaithyanathan, and
D.G. Schlom, "Epitaxial (001) BiFeO₃ Membranes with
Substantially Reduced Fatigue and Leakage,"
Applied Physics Letters 92 (2008) 062910

T. Kimura, T. Goto, H. Shintani, K. Ishizaka1, T. Arima, and Y. Tokura, "Magnetic Control of Ferroelectric Polarization," *Nature* **426** (2003) 55-58.

Ferromagnetic Ferroelectrics

Spin-Phonon Coupling—Route to Phase Control

With control parameter take $\omega_0 = 0 \implies \omega^2 \propto -\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle$

$$\mathsf{AFM} \to \langle S_i \cdot S_j \rangle = -1$$

Stable phonon

→ Antiferromagnetic, Paraelectric

 $\mathsf{FM} \to \langle S_i \cdot S_j \rangle = +1$

Unstable phonon

→ Ferromagnetic, Ferroelectric

Leads to a FM-FE state competing with the AFM-PE ground state

Bulk EuTiO₃ (unstrained)

PHYSICAL REVIEW B, VOLUME 64, 054415

Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO₃

T. Katsufuji and H. Takagi

Department of Advanced Materials Science, University of Tokyo, Tokyo 113-8656, Japan and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Japan

Strained EuTiO₃—a Ferroelectric Ferromagnet?

C.J. Fennie and K.M. Rabe, "Magnetic and Electric Phase Control in Epitaxial EuTiO₃ from First Principles," *Physical Review Letters* **97** (2006) 267602.

Strained EuTiO₃—a Ferroelectric Ferromagnet?

C.J. Fennie and K.M. Rabe, "Magnetic and Electric Phase Control in Epitaxial EuTiO₃ from First Principles," *Physical Review Letters* **97** (2006) 267602.

Effect of Strain on EuTiO₃

Commercial Perovskite Substrates

First Principles Epitaxial Phase Diagram of Strained EuTiO₃ (at T = 0 K)

EuTiO₃ / SrTiO₃ by PLD shows Expanded Lattice Constant

FIG. 4. Rod scan through the (001) Bragg peak of $SrTiO_3$ and finitethickness broadened thin-film "Bragg" peak. Solid line is a simple model calculation consisting of a resolution-limited STO Bragg peak and a simple finite-size line shape for the ETO film.

H.-H. Wang, A. Fleet, J.D. Brock, D. Dale, and Y. Suzuki, *J. Appl. Phys.* **96**, 5324 (2004).

Fig. 2. Out-of-plane XRD patterns for thin films grown under $P_{O2} = 1.0 \times 10^{-4}$ Pa (a), 1.0×10^{-5} Pa (b), and 1.0×10^{-6} Pa (c).

K. Kugimiya, K. Fujita, K. Tanaka, and K. Hirao, J. Magn. Magn. Mater. **310**, 2268 (2007).

Fig. 3 X-ray diffraction pattern of EuTiO₃ thin films grown on SrTiO₃ (001), LSAT (001), LaSrGaO₄ (001), and LaAlO₃ (001) single-crystal substrates

S. C. Chae, Y. J. Chang, D.-W. Kim,
B. W. Lee, I. Choi, and C. U. Jung, *J. Electroceram.* 22, 216 (2009).

But EuTiO₃ and SrTiO₃ are perfectly lattice-matched, so no expanded out-of-plane lattice constant expected!

EuTiO₃ / SrTiO₃ by PLD shows Ferromagnetism

Fig. 3. Temperature dependence of magnetization for the film grown under $P_{O2} = 1.0 \times 10^{-6}$ Pa (closed circles). For comparison, data for bulk EuTiO₃ specimen prepared by solid-state reaction, which are magnified by a factor of 10, are also shown (open triangles). The inset shows the dependence of magnetization at 2 K on external magnetic field.

K. Kugimiya, K. Fujita, K. Tanaka, and K. Hirao, J. Magn. Magn. Mater. **310**, 2268 (2007).

S. C. Chae, Y. J. Chang, D.-W. Kim, B. W. Lee, I. Choi, and C. U. Jung, *J. Electroceram.* **22**, 216 (2009).

But EuTiO₃ and SrTiO₃ are perfectly lattice-matched, so no expanded lattice constants or ferromagnetism are expected!

SrTiO₃ / SrTiO₃ by PLD shows Expanded Lattice and Ferroelectricity

E.J. Tarsa, E.A. Hachfeld, F.T. Quinlan, J.S. Speck, and M. Eddy, *Appl. Phys. Lett.* **68**, 490 (1996).

T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, and H. Koinuma, *Appl. Phys. Lett.* **87**, 2419191 (2005).

Y. S. Kim, D.J. Kim, T.H. Kim, T.W. Noh, J.S. Choi ,B.H. Park, and J.-G. Yoon, *Appl. Phys. Lett.* **91**, 042908 (2007).

But homoepitaxial SrTiO₃ is perfectly lattice-matched, so no extended lattice constants or ferroelectricity are expected!

Unstrained EuTiO₃ Control Samples

Reactive Molecular-Beam Epitaxy

• Sources: Eu metal Ti metal O₂ gas

• $T_{\rm sub} \approx 650$ °C

• $P_{O_2} \approx 3 \times 10^{-8}$ Torr

• $v_{\text{growth}} \approx 0.1 \text{ Å/s}$

EuTiO₃ / (001) SrTiO₃ by MBE is ~Intrinsic

Biaxial Strain via Epitaxy

22 nm Thick (001) EuTiO₃ / (001) LSAT

Biaxial Strain via Epitaxy

22 nm Thick (001) EuTiO₃ / (110) DyScO₃

STEM of 22 nm EuTiO₃ / DyScO₃

SHG of Strained EuTiO₃ / (110) DyScO₃

Magnetic Properties of Strained EuTiO₃ / (110) DyScO₃

J.H. Lee, L. Fang, E. Vlahos, X. Ke, Y.W. Jung, L. Fitting Kourkoutis, J-W. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D.G. Schlom, *Nature* 466 (2010) 954-958.

Magnetic Properties of Strained EuTiO₃/DyScO₃ vs. DyScO₃

Peter Schiffer—Penn State University (now University of Illinois)

First Principles Epitaxial Phase Diagram of Strained EuTiO₃ (at T = 0 K)

J.H. Lee, L. Fang, E. Vlahos, X. Ke, Y.W. Jung, L. Fitting Kourkoutis, J-W. Kim, P.J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, P.C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, and D.G. Schlom, *Nature* 466 (2010) 954-958.

First Principles of Straine

Biaxial Strain (%), ε_s

EuTiO₃ Conclusions

- Strained EuTiO₃ Results vs. Theory
 - Unstrained EuTiO₃ has Intrinsic Properties
 - Effect of Strain and Magnetic Field on Soft Modes
 - Ferroelectricity
 - ➢ Ferromagnetism ✓
 - > Ability to Turn on *M* with *E*
 - > Ability to Turn on *P* with *H*

Conclusions

- The Properties of Oxides can be Enhanced using Strain
 - \succ Enhance Ferroelectric $T_{\rm C}$
 - \succ Enhance Ferroelectric P_s
 - > Turn on Ferroelectricity and Ferromagnetism
 - > Alter Bandgap and Band Lineup of Photocatalysts
 - Create Tunable Dielectrics with Highest Figure of Merit of any Known Material in GHz Regime